| PRECISE
/- AUTOMATION

The Guidance Programming Language

GPL Dictionary Pages

Version 2.0.1, March 19, 2008
P/N: GPLO-DI-00110

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

http://www.preciseautomation.com

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc., assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2008 by Precise Automation Inc. All rights reserved.
The Precise Logo is a registered trademark of Precise Automation Inc.
Trademarks

Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2400, Guidance 1400, Guidance 1300,
Guidance 1200, Guidance Controller, Guidance Development Environment, GDE, Guidance
Development Suite, GDS, Guidance Dispense, Guidance Programming Language, GPL, Guidance
System, PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PreciseFlex,
PrecisePower 500, PrecisePower 2000, PreciseVision, RIO are either registered or trademarks of Precise
Automation Inc., and may be registered in the United States or in other jurisdictions including
internationally. Other product names, logos, designs, titles, words or phrases mentioned within this
publication may be trademarks, service marks, or trade names of Precise Automation Inc. or other entities
and may be registered in certain jurisdictions including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO YOU.
PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.

727 Filip Road

Los Altos, California 94024
U.S.A.
www.preciseautomation.com

http://www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation,
which, if not avoided, will result in death or serious injury.

if not avoided, could result in serious injury or major damage to the

f WARNING: This indicates a potentially hazardous situation, which,
equipment.

CAUTION: This indicates a situation, which, if not avoided, could
result in minor injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a
point or procedure, or gives a tip for easier operation

Table Of Contents

GPL Dictionary PAgeS SUMIIMAIYcoiuuuiiiiiiaae ittt e e e e e e aib et e e e e e e s s aaabbe st e e e e e s s s aasbaeeeaaaeasaabbbbeeaaaaeesannrsneeas 1
F N 7= 1 O -1 TR PP UTT RPN 3
Array Class Summary 3
array.GetUpperBound Property 4
array.Length Property 5
array.Rank Property 6
1070] aE=To] 1= @1 1= L] PSPPSR RRT 7
Console Class Summary 7
Console.Write Method 8
Console.WriteLine Method 9
1070) o] A o] 11T g @1 F= 1S3 TP UOPUPURRTN 10
Controller Class Summary 10
Controller.ErrorLog Property 12
Controller.Load Method 14
Controller.PDb Property 15
Controller.PDbNum Property 17
Controller.PowerEnabled Property 19
Controller.PowerState Property 21
Controller.RecordButton Property 23
Controller.ShowDialog Method 24
Controller.ShowDialogMCP Method 27
Controller.SleepTick Method 30
Controller.SoftEStop Property 31
Controller.SystemMessage Method 32
Controller.Tick Property 33
Controller.Timer Property 34
Controller.Unload Method 35
(o= o) oY ol = F= Vo o I Lo Yo OO PPPTT OO 36
Exception Handling Summary 36
Catch Statement 38
End Try Statement 39

Table Of Contents

Exit Try Statement 40
Finally Statement 41
Throw Statement 42
Try..Catch..Finally..End Try Statements 44
exception_object.Axis Property a7
exception_object.Clone Method 48
exception_object.ErrorCode Property 49
exception_object.Message Method 50
exception_object.Qualifier Property 51
exception_object.RobotError Property 52
exception_object.RobotNum Property 53
File and Serial I/O ClASSEScociiiiiiiirie ittt sttt e e s e r e sne e nre e e nnre e nneeenes 54
File and Serial I/0 Classes Summary 54
File.CreateDirectory Method 56
File.DeleteDirectory Method 57
File.DeleteFile Method 58
File.GetDirectories Method 59
File.GetFiles Method 60
New StreamReader Constructor 61
streamreader_object.Close Method 62
streamreader_object.Peek Method 63
streamreader_object.Read Method 64
streamreader_object.ReadLine Method 65
New StreamWriter Constructor 66
streamwriter_object.AutoFlush Property 67
streamwriter_object.Close Method 68
streamwriter_object.Flush Method 69
streamwriter_object.NewLine Property 70
streamwriter_object.Write Method 71
streamwriter_object.WriteLine Method 72
LU T o 1T 1 TP PSR PTR 73
Function Summary 73
CBool Function 74
CByte Function 76
CDbl Function 78

GPL Dictionary Pages

Cint Function 80
CShort Function 82
CSng Function 84
CStr Function 86
Fix Function 88
Hex Function 90
Int Function 92
Rnd Function 94

[0 Toz=1 A o] o IO £ 13T

Location Class Summary 96
location_object.Angle Property 98
location_object.Angles Method 99
location_object.Clone Method 100
location_object.Config Property 101
Location.Distance Method 103
location_object.Here Method 104
location_object.Here3 Method 106
location_object.Inverse Method 108
location_object.KineSol Method 110
location_object.Mul Method 112
location_object.Normalize Method 114
location_object.Pitch Property 115
location_object.Pos Property 117
location_object.PosWrtRef Property 119
location_object.RefFrame Property 121
location_object.Roll Property 122
location_object.Type Property 124
location_object.X Property 125
location_object.XYZ Method 127
location_object.XYZInc Method 129
Location.XYZValue Method 130
location_object.Y Property 132
location_object.Yaw Property 134
location_object.Z Property 136
location_object.ZClearance Property 138
location_object.ZWorld Property 140

Vi

Table Of Contents

[U I O = ST PP UPP T PTPPPO 142
Math Class Summary 142
Math.Abs Method 144
Math.Acos Method 145
Math.Asin Method 146
Math.Atan Method 147
Math.Atan2 Method 148
Math.Ceiling Method 149
Math.Cos Method 150
Math.Cosh Method 151
Math.E Method 152
Math.Exp Method 153
Math.Floor Method 154
Math.Log Method 155
Math.Log10 Method 156
Math.Max Method 157
Math.Min Method 158
Math.PIl Method 159
Math.Pow Method 160
Math.Sign Method 161
Math.Sin Method 162
Math.Sinh Method 163
Math.Sqrt Method 164
Math.Tan Method 165
Math.Tanh Method 166

1Y ToTo | U =3 O - T3 PP PRSP PRSP 167
Modbus Class Summary 167
modbus_object.Close Method 168
modbus_object.ReadCoils Method 169
modbus_object.ReadDevicelD Method 170
modbus_object.ReadDiscretelnputs Method 172
modbus_object.ReadHoldingRegisters Method 173
modbus_object.ReadlnputRegisters Method 175
modbus_object. Timeout Property 177
modbus_object.WriteMultipleCoils Method 178
modbus_object.WriteMultipleRegisters Method 179

Vii

GPL Dictionary Pages

modbus_object.WriteSingleCoil Method 180
modbus_object.WriteSingleRegister Method 181
MOV E CIASS .ottt ettt ettt e et e s e e e Rt e e et e e Rt e sm e e e et e eR e e e R et e ne e e e re e e n e nne e e nnren
Move Class Summary 182
Move.Approach Method 184
Move.Arc Method 186
Move.Circle Method 189
Move.Delay Method 192
Move.Extra Method 193
Move.ForceOverlap Method 195
Move.Loc Method 198
Move.OneAxis Method 200
Move.Rel Method 202
Move.SetJogCommand Method 204
Move.SetSpeeds Method 206
Move.SetTorques Method 208
Move.StartJogMode Method 210
Move.StartTorqueCntrl Method 212
Move.StartVelocityCntrl Method 214
Move.StopSpecialModes Method 217
Move.Trigger Method 218
Move.WaitForEOM Method 220

NEIWOTKING CIASSES ...ttt ettt e e oottt e e e e e e e ea s bt e et e e e e e e e e babbeeeeaaeesaanbbbbeeeaaeeeeannnbeneeas

Networking Classes Summary 221
New IPEndPoint Constructor 223
ipendpoint_object.IPAddress Property 224
ipendpoint_object.Port Property 225
socket_object.Available Property 226
socket_object.Blocking Property 227
socket_object.Close Method 228
socket_object.Connect Method 229
socket_object.Receive Method 230
socket_object.ReceiveFrom Method 231
socket_object.ReceiveTimeout Property 233
socket_object.Send Method 234

viii

Table Of Contents

socket_object.SendTimeout Property 235
socket_object.SendTo Method 236
New TcpClient Constructor 238
tcpclient_object.Client Method 239
tcpclient_object.Close Method 240
New TcpListener Constructor 241
tcplistener_object.AcceptSocket Method 242
tcplistener_object.Close Method 243
tcplistener_object.Pending Property 244
tcplistener_object.Start Method 245
tcplistener_object.Stop Method 246
New UdpClient Constructor 247
udpclient_object.Client Method 248
udpclient_object.Close Method 249
L 0 1T @1 = L] PRSP PP 250
Profile Class Summary 250
profile_object.Accel Property 251
profile_object.AccelRamp Property 253
profile_object.Clone Method 255
profile_object.Decel Property 256
profile_object.DecelRamp Property 258
profile_object.InRange Property 260
profile_object.Speed Property 262
profile_object.Speed2 Property 264
profile_object.Straight Property 266
REFEIENCE FramME ClASS ...coiiiiiiiiiiie ettt e et et e s et e e e s et e e e e b b e e e e abr e e e e annns 268
RefFrame Class Summary 268
refframe_object.Loc Property 270
refframe_object.Palletindex Property 272
refframe_object.PalletMaxIindex Property 274
refframe_object.PalletNextPos Method 276
refframe_object.PalletOrder Property 277
refframe_object.PalletPitch Property 279
refframe_object.PalletRowColLay Method 280
refframe_object.Pos Method 282

GPL Dictionary Pages

refframe_object.PosWrtRef Method 283
refframe_object. Type Property 284
RODOT CIASS vttt s e bt e st e e R e e s e e e e e e aE e e e Rt e nn e e nn e e nr e eennre s
Robot Class Summary 286
Robot.Attached Property 288
Robot.Base Property 289
Robot.Custom Property 291
Robot.DefLinComp Method 293
Robot.Dest Property 295
Robot.DestAngles Property 297
Robot.Home Method 299
Robot.HomeAll Method 300
Robot.LastProfile Property 301
Robot.RapidDecel Property 302
Robot.RestartBase Property 303
Robot.RestartTool Property 304
Robot.Selected Property 305
Robot.Source Property 306
Robot.SourceAngles Property 308
Robot. Tool Property 310
Robot. TrajState Property 312
Robot.Where Property 314
Robot.WhereAngles Property 316

Y [0 g = L O = 11 TP PP UUPPPPRRTP

Signal Class Summary 318
Signal.AlO Property 319
Signal.DIO Property 321
ST R= L] 0 0 =T o OO PP OPRR
Statements Summary 324
Call Statement 325
Class Statement 327
Const Statement 328
Dim Statement 329
Do...Loop Statements 331

Else, ElselF Statements
End Statements

Exit Statements
For...Next Statements
Function Statement
Get Statement

GoTo Statement

If.. Then...Else...End If Statements

Loop Statements
Module Statement
Next Statements
Property Statement
ReDim Statement
Return Statement
Set Statement

Sub Statement

While...End While Statements

Strings

String Summary
String.Compare Method
string.IndexOf Method
string.Length Property
string.Split Method
string.Substring Method
string. ToLower Method
string. ToUpper Method
string. Trim Method
string. TrimEnd Method
string. TrimStart Method
Asc Function

Chr Function
Format Function

Instr Function
LCase Function

Len Function

Mid Function

Table Of Contents

333
334
335
336
339
342
343
345
347
348
349
350
353
354
355
357
359

361
363
365
367
368
369
370
371
372
373
374
375
376
377
380
382
383
384

Xi

GPL Dictionary Pages

UCase Function

I LT T O = T3

Thread Class Summary

New Thread Constructor
thread_object.Abort Method
Thread.CurrentThread Shared Method
thread_object.Join Method
thread_object.Resume Method
thread_object.SendEvent Method
Thread.Sleep Shared Method
thread_object.Start Method
thread_object.Suspend Method
thread_object.ThreadState Property
Thread.WaitEvent Shared Method

A ST] IO =TT Y 1T

Vision Classes Summary
Vision.Disconnect Method
vision_object.ErrorCode Property
vision_object.Process Method
vision_object.Result Method
vision_object.ResultCount Method
vision_object.Status Property
Vision.ToolProperty Shared Property
visresult_object.ErrorCode Property
visresult_object.Info Property
visresult_object.InfoCount Property
visresult_object.InspectActual Property
visresult_object.InspectPassed Property
visresult_object.Loc Property

visresult_object.Type Property

Xii

386
387
389
390
391
392
393
394
395
396
397
398

401
403
404
405
407
409
411
412
413
414
415
416
417
418
420

GPL Dictionary Pages Summary

The Guidance Programming Language Dictionary Pages provide detailed information on each instruction,

keyword, function, and class property and method that is available in GPL. For convenience, these

descriptions are group either by their class or by their major function. Within each group they are sorted

alphabetically.

In general, instruction names, keywords, function names, group names, and property and method names

are indicated in bold. User specified variable names are indicated in italics. Sample GPL program
snippets are presented in the Courier font.

The following table summarizes each of the major groups of descriptions.

Group

Description

Array Class

Provides the properties of any type of variable array.

Console Class

Provides methods for performing output to the serial
console or to the GDE console window.

Controller Class

Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Exception Handling

Includes statements for fielding execution exceptions and
the Exception Class for storing exception information.

File and Serial 1/0 Classes

Provides File, StreamReader and StreamWriter classes
that implement file and serial line input and output
communications.

Functions

Includes standard functions, such as conversion routines,
that do not fall into a specific class.

Location Class

Defines positions and orientations of the robot and
objects.

Math Class

Provides the standard arithmetic and trigonometric
functions.

Modbus Class

Permits programs to communicate with other intelligent
devices using the MODBUS/TCP Ethernet communication
protocol.

Move Class

Provides the basic methods for executing a motion
between Locations using Profiles.

Networking Classes

Classes for Ethernet network communications. Includes
IPEndPoint Class for specifying IP and port addresses;
Socket Class that provides basis for networking I/O
operations; TcpListener Class for TCP server
applications; TcpClient Class for TCP client applications;
and UdpClient Class for UDP server and client
applications.

Profile Class

Defines sets of parameters that specify the trajectory to be
followed when moving between Locations.

RefFrame Class

Defines robot and part reference frames. Cartesian
Locations and RefFrames can be defined with respect to
a RefFrame.

Provides access to the attributes and properties of each

Robot Class robot such as their current position and homing methods.
Signal Class Reads and writes digital, analog and other simple means

GPL Dictionary Pages

of input and output.

Includes control structures, user procedures and functions,

Statements
and other common language elements.
. Provides String manipulation methods in an Object
Strings

oriented fashion.

Provides the means for starting, stopping, and monitoring

Thread Class the execution of independent threads.

Provides the means for interfacing to PreciseVision and

Vision Classes . : . ; : L
— easily generating vision-guided motion applications.

Array Class Summary

Array Class

The following pages provide detailed information on the properties and methods of the

Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the built-
in Array Class. You can use the properties of this class to determine the properties of an

array.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member

Type

Description

array.GetUpperBound

Get Property

Returns the upper bound for a particular
dimension of an array. The lower bound is
always 0, so the total number of elements in
this dimension is one greater than the upper
bound.

array.Length

Get Property

Returns the total number of elements in the
entire array, in all dimensions.

array.Rank

Get Property

Returns the array rank, which is the number of
dimensions in an array.

GPL Dictionary Pages

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.
...array.GetUpperBound(dimension)

Prerequisites

None
Parameters
dimension
A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.
Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dimarray(3,4) As Integer
Dimdl, d2 As Integer

dl = array. Get Upper Bound(0) " Returns the value 3
d2 = array. Get Upper Bound(1) " Returns the value 4
See Also

Array Class | array.Length | Dim Statement | ReDim Statement

Array Class

array.Length Property

Returns the total number of elements in an entire array.
...array.Length

Prerequisites
None

Parameters
None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example, if
you declare: Dim sarray(3) As String.

sarray.Length is the number of elements in the array, in this case 4
(from O to 3).

sarray(0).Length is the length of the string contained in sarray(0), initially
0.

Examples

Dimarray(3,4) As Integer
Dimlength As Integer
Il ength = array. Length " Returns the value 20 = (1+3)*(1+4)

See Also

Array Class | array.GetUpperBound| Dim Statement | ReDim Statement

GPL Dictionary Pages

array.Rank Property

Returns the total number of dimensions (the rank) in the array.
...array.Rank

Prerequisites
None
Parameters
None
Remarks
The Rank of an array is the number of dimensions in that array.

Examples

Dimarray(3,4) As Integer
Di marray2(5) As |nteger
Dmrl, r2 As Integer

rl = array. Rank ' Returns 2
r2 = array2. Rank " Returns 1
See Also

Array Class | Dim Statement | ReDim Statement

Console Class

Console Class Summary

The following pages provide detailed information on the methods of the global Console
Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/icoml". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description
. Shared Writes a number or a string to the console.
Console.Write
— Method
Console WriteLine Shared Writes a number or a string to the console,

Method followed by a line feed (LF) character.

GPL Dictionary Pages

Console.Write Method

Writes a numeric or string value to the GPL console with no line terminator.

Console.Write (number)
Or
Console.Write (string)

Prerequisites

None
Parameters
number
A required numeric expression whose value is displayed.
string
A required string expression whose value is displayed.
Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/icoml". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console. Wite("Test ") ' Produces the output: "Test 1"
Console. Wite(1)

See Also

Console Class | Console.WriteLine | CStr Function | StreamWriter Class

Console Class

Console.WriteLine Method

Writes a numeric or string value to the GPL console followed by a line terminator.

Console.WriteLine (number)
-Or-
Console.WriteLine (string)

Prerequisites

None
Parameters
number
A required numeric expression whose value is displayed.
string
A required string expression whose value is displayed.
Remarks

This method writes a single numeric or string value to the GPL console followed by a line
terminator. Subsequent output appears on the next line. For output that combines both
string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/icoml". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples
Console. WiteLine("Test ") ' Produces the output: Test
Consol e. Wi telLine(1) ' 1

Dimii As |nteger
For ii =1 To 10
Consol e. WitelLine("The square of " & CStr(ii) _
& " is " &CStr(ii*ii))
Next ii

See Also

Console Class | Console.Write | CStr Function | StreamWriter Class

Controller Class

Controller Class Summary

The following pages provide detailed information on the properties and methods of the
global Controller Class. This class provides access to the general facilities provided by
the Guidance Controller, e.g. high power control, E-Stop logic, configuration database
values, etc. As such, this class and all of its members are uniquely defined for Precise
controller products and do not conform to any other standards. In the case of certain
methods, such as the SleepTick, very similar functionality is provided by other means
within the Basic language. However, the members of this class were selected based
upon ease-of-use considerations or because they provide some slightly different, but
important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Controller Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as humeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description
Returns an entry from the system Error Log
Controller.ErrorLog Property as a String value or clears the Error Log.
Controller.Load Method Loadg a GPL project into memory a_nd
compiles it in preparation for execution.
Controller PDb Property Sets. and gets any accessible value in the
— configuration parameter database.
Optimized means to set and get a numeric
Controller.PDbNum Property value in the configuration parameter
database.
Sends a request to either turn on or off high
Controller.PowerEnabled Property (motor) power to the amplifier. Returns
whether high power is on or off.
Controller PowerState Property Gets the current state of the high power
sequence.
Sets and gets the latched Boolean value
Controller.RecordButton Property that indicates if the hardware MCP
RECORD button has been pressed.
Controller.ShowDialog Method Displays a pop-up dialog box on the web
Operator Control Panel.
Displays a pop-up dialog box on the LCD
Controller.ShowDialogMCP |Method display of the Precise Hardware Manual
Control Pendant.
Controller.SleepTick Method Delay§ further execution of a thread for a
specified number of Trajectory Generator

10

Controller Class

periods.

Sets and gets the Boolean flag that

Controller.SoftEStop Property triggers a Soft E-Stop
Enters a message into the GPL system
Controller.SystemMessage Method message log that is displayed on the web
Operator Control Panel.
. Gets the execution repetition period for the
Controller.Tick Property Trajectory Generator.p P
. Gets the value of the controller’s usec clock
Controller.Timer Property in units of seconds
Controller.Unload Method Unloads an idle GPL project from memory.

11

GPL Dictionary Pages

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
_Or-
... Controller.ErrorLog(entry)

Prerequisites

None
Parameters
entry
A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.
Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or from
the motion control system. In addition, GPL applications can enter items into the log
using the Controller.SystemMessage method.

The entries in the Error Log are displayed on the web based Operator Control Panel and
can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a time.
Each returned value contains the time stamp, marker indicating the thread that generated
the error, the numeric error code and the text error message. A example of a typical
returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

If this property is assigned a non-zero value as indicated above, rather than retrieving an
entry, all entries are deleted from the Error Log.

Examples

Dimerr As String
Dimii As |nteger

12

For ii =1 To 100
err = Controller.ErrorLog(ii) '
If (err <> "") Then
Consol e. WiteLine(err)
El se
Exit For '
End | f
Next
Controller.ErrorLog = 1 '

See Also

Controller Class | Controller.SystemMessage

Retrieve all entries fromlog

Display all errors

No nore entries in the |og

Clear all

entries in the |log

Controller Class

13

GPL Dictionary Pages

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that the
project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. This project file
describes all the remaining files within the project. The project must not be currently
loaded.

Parameters
project_folder_path

A required string expression that specifies the name of the folder that
contains the project to be loaded. Normally the folder is located on the
"/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. Finally, the project is compiled so that the loaded
procedures are ready to be executed.

No compilation errors are displayed on the console. Examine the file
/GPL/project_name/Compile.log for a listing of compiler messages.

This method will throw an exception if the project cannot be loaded, if it is already loaded,
or if compilation errors occur.

Examples

Dimth As Thread
Controller.Load("/flash/projects/ Test")

th = New Thread("Min", "Test", "Thread2")
th.Start ()

See Also

Controller Class | Controller.Unload | Thread.Start

14

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index) = <new_string_value>

Or

... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites
None
Parameters

dataid

unit

unit2

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit

number is not very common and this parameter is normally just defaulted
to 1.

array_index

Remarks

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter

Controller Class

15

GPL Dictionary Pages

database. Controller.PDb can be used to read or write all accessible values in the
parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric values,
the values are represented as text numbers separated by commas (in the case of
numeric arrays). If the parameter contains a single string value, the value is read into or
read from a GPL String without delimiting quotation marks. If the parameter contains an
array of strings, each string is delimited by double quotes and sequential values are
separated by commas.

As a convenient for developing custom web pages, the parameter database contains a
series of "GPL program strings" (DatalD's 1800-1819) and "GPL program variable's"
(DatalD's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dimstg As String

Control |l er. PDb(541) = """Label 1"",""Label 2""" ' Sets first two DOUT | abel s
stg = Controller.PDb(100) ' stg set to "Precise Autonation
I nc"

See Also

Controller Class | Controller.PDbNum

16

Controller.PDbNum Property

Controller Class

Optimized means for setting and getting a numeric value in the configuration parameter
database.

Controller.PDbNum(dataid, unit, unit2, array_index) = <new_value>

Or

... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites

Can only access numeric parameter database values.

Parameters

dataid

unit

unit2

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,

this parameter ranges from 1 to n. If not specified, this value defaults to
1.

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit

number is not very common and this parameter is normally just defaulted
to 1.

array_index

Remarks

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter

17

GPL Dictionary Pages

database. Controller.PDbNum is an variation of Controller.PDb that has been
optimized to efficiently read and write numeric values stored in this database.

In addition to generally efficient operation, Controller.PDbNum operates especially
quickly when reading and writing the "GPL program variable's" (DatalD's 1850-1869).
These database elements have been created to allow GPL projects to interface to
custom web pages. Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dmlimt As Single
limt = Controller.PDoNun{16077,,, 2) ' Sets limt equal to the maxi mum
al | owabl e range of travel for jt 2

See Also

Controller Class | Controller.PDb

18

Controller Class

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>

-Or-

Controller.PowerEnabled(timeout) = <boolean_value>
Or

... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 safe systems.
For Category 3 systems, a momentary contact, hardware “Enable Power” button must be
manually pressed.

Parameters
timeout
An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.
Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 safe systems, high power will be
enabled only if a number of safety conditions are satisfied (e.g. no Hard E-Stop signal is
asserted, no fatal system error exists, etc.). This property waits until the power actually
comes on, with a time limit determined by the timeout parameter. If this parameter is
positive and the power does not come on within the time limit, this property throws an
exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but the
property does not wait until power is actually off. Unlike the Hard E-Stop signal that
delays for a fixed period of time before disabling power, turning off PowerEnabled forces
all moving robots to completely decelerate to a stop and allows time for the brakes to be
set before power to the amplifiers is disabled. Therefore, setting PowerEnabled False
allows for a more orderly stopping of motion than does a Hard E-Stop but this operation
is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power is
disabled by any means and is automatically set to True if High Power is enabled.

Examples

19

GPL Dictionary Pages

Di m bState As Bool ean
Control | er. Power Enabl ed = True
Control | er. Power Enabl ed(5) = True

bState = Control |l er. Power Enabl ed

See Also

Request s hi gh power be enabl ed
Request s hi gh power be enabl ed

and waits for up to 5 seconds
bState will be set True if power is
enabl ed, else will be set False.

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

20

Controller Class

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier high

power sequencing.

... Controller.PowerState

Prerequisites
None

Parameters
None

Remarks

In order to enable high power to the amplifiers, the system must transition in an orderly

fashion through several states to ensure that safety and hardware requirements are

satisfied. The PowerState property indicates the current state of the power sequencing.

The possible values returned by this property and their interpretation are presented in the

following table:

PowerState Description
0 System initially starting up
1 Power off, fatal error has occurred
2 Power off, power sequence restarting
3 Power being turned off, no fault condition has occurred
4 Power being turned off, a fault condition has occurred
5 Power is off, a fault has occurred that must be cleared
6 Power is off, waiting for hardware enable power switch to be turned
off
7 Power is off, waiting for enable power signal to be asserted
8 Power is coming up, enabling amplifiers
9 Power is on, performing motor commutation
10 Power is coming up, enabling servos and releasing brakes
11 Power is on, waiting to execute thread or Auto Execution task
12 Power is on, executing Auto Execution task
Examples
Dim state As Integer
state = Control |l er. Power State ' Sets state to one of the values |listed above

See Also

21

GPL Dictionary Pages

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDecel

22

Controller Class

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
Or
... Controller.RecordButton

Prerequisites
None

Parameters
None

Remarks

Whenever the RECORD key on the Precise Hardware Manual Control Pendant (MCP) is
pressed, the value of this property is automatically set to True. This property value
remains True until it is manually set to False.

The RECORD key on the MCP and this property provide a convenient means for GPL
projects to receive a command from the operator to record key data, typically taught robot
locations.

The value of this property can also be accessed via the Parameter Database as the
"MCP Record button pressed" (DatalD 632) value.

Examples

Di m taught _| oc As New Locati on
If (Controller.RecordButton) Then

taught _| oc. Here ' Save current robot |ocation
Control |l er. RecordButton = Fal se
End if

See Also

Controller Class

23

GPL Dictionary Pages

Controller.ShowDialog Method

Displays a pop-up dialog box on the web interface Operator Control Panel.

Controller.ShowDialog(button_labels, message, button_index)

Or

Controller.ShowDialog(button_labels, message, button_index, text field)
Or

Controller.ShowDialog(mode, button_labels, message, button_index, field_labels,

field_values)

Prerequisites

None

Parameters

24

mode

(3rd form of this method) A required numeric expression that specifies
the display mode. Currently only the value 1 is supported, which
indicates a simple list.

button_labels

A required String expression containing the button labels to be
displayed. Up to 4 buttons can be specified, separated by commas. If the
button labels contain blanks or commas, they should be enclosed in
guotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

text_field

(2nd form of this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its
initial value is shown as the default value of the text field. The string must
not contain the vertical bar "|" character.

field_labels

Controller Class

(3rd form of this method) A required 1-dimensional String array that
contains labels to be displayed preceding each data field in the dialog
box. Each String array element contains a label for a separate field. Up
to to 12 fields are permitted. The number of elements in this array
determines the number of fields. The Strings must not contain the
vertical bar "|" character.

field_values

(3rd form of this method) A required 1-dimensional String array that
receives the value of any text entered into the dialog box text fields. The
initial values of this array are displayed as the default values of the text
fields. The Strings must not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator without creating a custom web page. When ShowDialog is called, its operation

is as follows:
1.
2. Waits if another thread is already displaying a dialog box.
3. Posts the dialog box for display and waits for the user to open the
Operator Control Panel on the web interface and click on a button.
4. Un-displays the dialog box.
5. Returns the button index and optional text field information to the

user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>".

This method is overloaded to support several dialog box styles.

In the simplest (1st) form, the pop-up displays only the message text and labeled buttons.
When the user clicks on one of the buttons, the index of the button clicked is returned in
the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value of
the text field is returned in the text_field variable, and the index of the button clicked is
returned in the button_index variable.

In the more complex field_values and field_labels (3rd) form, the dialog box allows
multiple fields to be entered and returned. The mode parameter selects the display mode
and must currently be set to 1. When the user clicks on one of the buttons, the values of
the fields are returned in the field_values array, and the index of the button clicked is
returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

25

GPL Dictionary Pages

Di m bi As |nteger
Control | er. Showhi al og(" Ckay", "Ready to begin process", bi)

Public Sub Test1l
Di m bi As |nteger
Dmreply As String
reply = "Part_1" ' Default is Part_1
Control |l er. Showhi al og(" Ckay, Cancel ",

"Enter part name", bi, reply)

If bi =1 Then

Ckay sel ected

El se

' Cancel selected
End | f
Consol e. WiteLine("You entered: " & reply)
End Sub

Public Sub Test2
DimButtons As String = "Ckay, Cancel"
Dim Text As String = "Enter the field val ues"
Di m Label (2) As String
DmField(2) As String
Di m I ndex As Integer

Label (0) = "X val ue"
Label (1) = "Y val ue"
Label (2) = "Z val ue"
Fi el d(0) = "100.0"
Field(1l) = "100.0"
Field(2) = "0.0"

Control |l er. Showhi al og(1, Buttons, Text, |ndex, Label, Field)

Consol e. WiteLine("Button: " & CStr(Index))

Console. WiteLine("Field 0: " & Field(0))

Console. WiteLine("Field 1: " & Field(1l))

Console. WiteLine("Field 2: " & Field(2))
End Sub

See Also

Controller Class | Controller.ShowDialogMCP | Controller.SystemMessage

26

Controller Class

Controller.ShowDialogMCP Method

Displays a pop-up dialog box on the LCD display of the Precise Hardware Manual
Control Pendant.

Controller.ShowDialogMCP(button_mask, message, button_return)
Or
Controller.ShowDialogMCP(button_mask, message, button_return, text field)

Prerequisites

Precise Hardware Manual Control Pendant must be connected to the controller.

Parameters

button_mask

A required Integer expression whose bits specify the MCP key presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String expression containing the message to be displayed on
the LCD display. If atext field is specified, the message must include a
substring (‘##...##') that defines where the characters of the text_field are

output in the MCP display. The number of pound signs (#) defines the
width of the input field.

button_return

A required ByRef Integer variable that receives the bit flag that indicates
the button that was pressed to terminate the dialog operation.

text_field

An optional ByRef String variable that receives the value of any text
entered into the dialog box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator via the Precise Hardware Manual Control Pendant. When ShowDialogMCP is
called, its operation is as follows:

1.

27

GPL Dictionary Pages

2. Waits if another thread is already displaying a MCP dialog box.

3. Replaces the standard MCP display with the contents of the message
and the optional embedded text_field, and lights the LED on the APP
key.

4. If the optional text_field is defined, accepts presses of the 0-9, ., +, -
or DEL keys and presents the results in the LCD display.

5. If the display and keypad are switched back to their standard mode
due to a manual control operation or error message, blinks the APP
key LED until the APP key is pressed to re-display the dialog.

6. When one of the specified termination keys is pressed, un-displays the
dialog box.

7. Returns the termination key button bit flag and the optional text field
value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed in
the following table together with their associated button_mask and button_return values.

button_mask&

Key Label button:return
Enter &H000001
Record &H000002
Yes &H000004
No &H000008
Quit &H000010
Prev &H000020
Next &H000040
F1 &H010000
F2 &H020000
F3 &H040000
F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert the
operator. The beeping operation can be suppressed by resetting the "Beep MCP when
APP mode started" (DatalD 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

28

Di m but As Integer

Dimss, CRLF As String

CRLF = Chr(GPL_CR) & Chr(GPL_LF)

ss =" Ready to begin" & CRLF & CRLF _
& " <Yes> or <No>"

Control | er. ShowhDi al ogMCP(&H4+&H8, ss, but)

Di m but As Integer
Dimreply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)

ss =" Enter part nunber:" & CRLF _
& "' HAH#AHHAH " & CRLF & CRLF _
& " <Enter> or <Quit>"
reply = "12" ' Default reply val ue

Control | er. ShowDi al ogMCP(&H1+&H10, ss, but, reply)
If but = &H10 Then

Consol e. Witeline("Request cancelled")
El se

Consol e. WiteLine("You entered: " & reply)
End | f

See Also

Controller Class | Controller.ShowDialog | Controller.SystemMessage

Controller Class

29

GPL Dictionary Pages

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
Or
Controller.SleepTick

Prerequisites

None
Parameters
ticks
An optional numeric expression that specifies an Integer number of
Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.
Remarks

Often times, a program must poll input data values periodically. While it is possible to use
a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or other
GPL threads. The SleepTick method allows a thread to relinquish control of the CPU for
a specified period of time and then resume execution at the next sequential statement.

Since many operations are synchronized to the operation of the Trajectory Generator, the
delay time for this method is specified in units of Trajectory Generator execution periods.

Please note that other programming languages like Basic typically have other means for
putting a thread to sleep for a specified period of time.

Examples

Control |l er. Sl eepTi ck ' Delays thread execution until
' after the start of the next
trajectory cycle
Control ler. Sl eepTick (2/Controller.Tick) ' Delays thread execution for
' approximately 2 seconds

See Also

Controller Class | Controller.Tick | Controller.Timer

30

Controller Class

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
Or
... Controller.SoftEStop

Prerequisites
None

Parameters
None

Remarks

A Soft E-Stop initiates a rapid deceleration of all robots currently in motion and generates
an error condition for all GPL programs that are attached to a robot. This property can be
used to quickly halt all robot motions in a controlled fashion when an error is detected.

This function is similar to a Hard E-Stop except that Soft E-Stop leaves High Power
enabled to the amplifiers and is therefore used for less severe error conditions. Leaving
power enabled is beneficial in that it prevents the robot axes from sagging and does not
require high power to be manually re-enabled before program execution and robot
motions are resumed. This function is also similar to a Rapid Deceleration feature except
that a Rapid Deceleration only affects a single robot and no program error is generated.

If set, the SoftEStop property is automatically cleared by the system if High Power is
disabled and re-enabled.

Examples

Dim bState As Bool ean

Controller.SoftEStop = True ' Triggers a Soft E-Stop condition

bState = Controll er. Soft ESt op ' bState will be set True since a
Soft E-Stop has been asserted

See Also

Controller Class | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

31

GPL Dictionary Pages

Controller.SystemMessage Method

Enters a message into the GPL system message log that is displayed on the web
Operator Control Panel.

Controller.SystemMessage(message)

Prerequisites

None
Parameters
message
A required String expression containing the message to be entered into
the message log.
Remarks

This method enters a line into the system message log with other system messages and
error message entries. The system message log is kept sorted in time order. This log is
displayed by the Operator Control Panel in the System Messages box.

Examples
Control | er. Systemvessage("Cycle time: " & CStr(now saved))
Control | er. Syst emVessage(" Operati on conpl ete")

See Also

Controller Class | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

32

Controller Class

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in seconds.
...Controller.Tick

Prerequisites
None

Parameters
None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates the
series of individual commands to move each joint of each robot along its designated path.
To accomplish this task, the Trajectory Generator executes at a configurable repetition
rate. The Tick property returns the period of the repetition rate in seconds. Typically this
will be set to a value of 0.004 or 0.008 seconds.

Examples

Di m peri od As Doubl e

period = Controller.Tick ' Sets period equal to the Trajectory
Gener ator execution period, e.g. 0.004
seconds
See Also

Controller Class | Controller.SleepTick | Controller.Timer

33

GPL Dictionary Pages

Controller.Timer Property

Returns the current value of the controller’s usec clock, in units of seconds, as a Double.

...Controller.Timer

Prerequisites

None

Parameters

None

Remarks

This method reads the current value of the controller’'s usec clock and returns the value in
units of seconds. This clock value starts counting from January 1, 1988. Given the
number of significant bits in a Double, the Timer value will not lose accuracy until
approximately the year 2124.

Examples

Dim StartTi me, El apsedTime As Doubl e

StartTime = Controller. Tiner ' Reads system cl ock

Controller. Sl eepTick(2/ Controller.Tick) ' Sleep for about 2 seconds

El apsedTime = Controller. Tiner-StartTine " Value will be approx 2
See Also

Controller Class | Controller.SleepTick | Controller.Tick

34

Controller Class

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.
Controller.Unload(project_name)

Prerequisites

No procedures in this project can be currently executing.
Parameters

project_name

A required string expression that contains the name of the project to be
unloaded.

Remarks

This method unloads a project by removing all of its associated data from the controller's
memory and removing all associated files from the GPL project memory area.

This method throws an exception if any procedure in this project is currently executing.
No exceptions are thrown if the project is not currently loaded or does not exist.

Examples

Dmth As Thread
Control |l er.Load("/fl ash/ projects/ Test")

th = New Thread("Min", "Test", "Thread2")
th.Start ()
th.Joi n(0) ' Wait for thread to conplete

Control |l er. Unl oad(" Test")
See Also

Controller Class | Controller.Load | Thread.Join

35

Exception Handling

Exception Handling Summary

The following pages provide detail information on the exception handling instructions and
the properties and methods of the Exception Class. The exception handling statements
provide a structured means for a procedure to detect and respond to program execution
exceptions that would otherwise cause the procedure to halt execution. When an
exception occurs, information on the cause of the exception can be automatically saved
in an Exception Object and execution can be branched to a block of code designed to
service the exception.

Exception Objects have two basic forms: a general Exception and a robot Exception.
Both forms store a humerical code that indicates the type of exception. In addition, the
robot Exception includes the number of the robot and the axes that are associated with
the exception. The general form of the Exception includes a Qualifier value that can
provide addition information on the nature of the exception.

The table below briefly summarizes the exception handling statements that are described
in greater detail in the following pages.

Statement Description
Used within a Try...Catch...Finally...End Try series of
Catch statements to mark the start of the block of instructions
executed when an exception occurs.
End Try Marks the end of the exception handling structure.
Exit Tr Termingtes the execution of a Try or Catch block of
e instructions.
Used within a Try...Catch...Finally...End Try series of
Finally statements to mark the start of the block of instructions that is
always executed at the completion of the Try or Catch blocks.
Throw Generates a program execution exception.
Exception handling structure that captures execution exceptions
Try...Catch...Finally... |within a block of instructions and executes statements to field
the exception if necessary.

The table below briefly summarizes the properties and methods of the Exception Class
that are described in greater detail in the following pages.

Member Type Description
exception obj.Axis Propert Sets and gets a bit mask indicating the robot
: perty axes associated with a robot Exception.

exception obi.Clone Method Methoq that returns a copy of the
exception_obj.

exception obj.ErrorCode Property Sets and gets the number of the error
message.

exception ob.Message Method Returns the full text string that_ is gene_rated
based upon the exception_obj properties.

exception obi.Oualifier Property Sets and gets the_error message qualifier for
a general Exception.

36

Exception Handling

exception obj.RobotError

Property

Sets and gets the Boolean that indicates if
an Exception is a robot or general type.

exception obj.RobotNum

Property

Sets and gets the number of the robot
associated with a robot Exception.

37

GPL Dictionary Pages

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions executed when an exception occurs.

Catch exception_object

Prerequisites

Must always follow a Try statement block. Either a Catch or Finally statement or one of
each must appear in a Try structure.

Parameters
exception_object

Required Exception Object. The exception_object must already have a
data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate the Object.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions. If
the Catch block is triggered, the information on the execution exception is automatically
stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves contained
within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

38

Exception Handling

End Try Statement

This statement marks the end of the exception handling structure.
End Try

Prerequisites
Must always follow a Catch or Finally statement block.
Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

39

GPL Dictionary Pages

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of instructions.
Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this
instruction is illegal within a Finally block.

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement
execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
information on the general format of the exception handling structure.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

40

Exception Handling

Finally Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions that is always executed at the completion of the Try or Catch blocks.

Finally

Prerequisites

Must always follow a Try or Catch statement block. Either a Catch or Finally statement
or one of each must appear in a Try structure.

Remarks

The Finally statement marks the start of the block of instructions that is always executed
after the successful execution of a Try series of statements or at the completion of the
Catch series of statements. This allows a program to specify a series of statements that
are guaranteed to be executed before execution continues following the End Try
statement.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

41

GPL Dictionary Pages

Throw Statement

Generates a program execution exception.
Throw exception_object

Prerequisites
None
Parameters
exception_object

Required Exception Object. The Exception can contain either a
general or a robot formatted error.

Remarks

This statement can be included in any procedure and need not be contained within a
Try...Catch...Finally...End Try structure. Whenever it is executed, a program exception
is immediately signaled. If this statement is not executed within a Try block, execution of
the thread is terminated and the error contained within the exception_object is reported to
the operator.

The Throw statement is often used within a Catch block. If the Exception captured by
the Catch is not to be processed by the Catch block, the Exception can be reissued by
a Throw statement. This allows Exceptions that are not to be serviced by a Catch to be
passed to a higher-level Catch or to halt thread execution.

To allow application programs to generate their own special Exceptions, two error codes
exist that are never automatically generated by the controller:

(-786) *Project generated error*
(-1038) *Project generated robot error*

These error codes can be emitted by the Throw instruction to alert the operator to special
exception conditions not normally detected by GPL.

Examples

Di m excl As New Exception
Try
retry:

Move. Loc(l ocl, profilel)
Move. Wi t For EOM

Catch excl
If (excl.ErrorCode = -153) Then ' Soft envel ope error?

profilel. Speed *= .9 ' Yes, reduce speed

CGoTo retry
End |f

42

Throw excl
End Try

See Also

Exception Handling

Emit unknown error

Exception Handling

43

GPL Dictionary Pages

Try..Catch..Finally..End Try Statements

Exception handling structure that captures execution exceptions within a block of
instructions and, if necessary, executes statements to field the exception.

Try
[try_statements]

[Catch exception_object
[catch_statements]]

[Finally
[finally_statements]]

End Try

Prerequisites
None
Parameters
try_statements

Optional statement or list of statements whose exceptions, if any, will be
handled by another block of code rather than immediately resulting in the
termination of thread execution.

exception_object

Exception Object, required if the Catch statement is defined. When an
exception occurs during the execution of the try_statements, the
exception description is automatically stored in the exception_object prior
to the execution of the catch_statements. The exception_object must
already have a data section allocated prior to the execution of the Catch,
i.e. the New qualifier should have been previously used in a Dim
statement to instantiate the Object.

catch_statements

Optional statement or list of statements that are executed if an exception
occurs during the execution of the try_statements.

finally_statements

Optional statement or list of statements that are always executed at the
successful completion of the try_statements or the completion of the
catch_statements.

Remarks

44

Exception Handling

If an exception of any type occurs when the try statements are executed, rather than
halting execution and reporting the error, the system automatically stores the exception
information in the exception_object and branches execution to the start of the
catch_statements. The catch_statements can test the exception_object to determine the
nature of the exception and then perform whatever corrective action is necessary. If the
try_statements complete execution without an error or when the catch_statements
complete execution after an exception, the finally_statements are always executed to
perform any required cleanup. At the completion of the finally_statements, regular
instruction execution continues at the first statement following the End Try.

A Try structure must contain either a single Catch statement or a single Finally
statement or one of each type of statement. If a Catch statement is specified, it must
always include an exception_obiject.

Try structures can be nested within each other to an arbitrary depth. For example, a Try
structure can be contained within the catch_statements of another, higher-level Try
structure. Also, procedure calls can be contained within any of the statement blocks
including the try_statements.

If an exception occurs within a procedure that is invoked within a Try structure with a
Catch, the execution of the procedure is immediately terminated and execution will
continue at the first instruction in the catch_statements in the calling procedure. This
feature allows a single Try Catch to be placed at a very high-level and capture any
exceptions in any lower level routines. This case is illustrated in Example #1 below.

Alternately, if the called procedure generates an exception within a Try structure with a
Catch, the catch_statements within the called routine will service the exception.
However, if an exception occurs in a called procedure within a Try without a Catch but
with a Finally, the finally_statements in the called routine will be executed first, then
execution of the called procedure will be terminated, after which execution will continue in
the catch_statements of the calling procedure. This case is illustrated in Example #2
below.

There are special limitations on the use of GoTo instructions in connection with Try
structures. A GoTo contained in the catch_statements can branch execution into the
corresponding try_statements. Also, GoTo's can be contained in the try_statements,
catch_statements, and the finally_statements so long as the branch is to an instruction
within the same block of statements. All other branching into and out of the Try
statement blocks and the main code is not permitted, e.g. you cannot branch from
outside of a Try structure into the try_statements or out of the try_statements into the
finally_statements. These special limitations are illustrated in Example #3 below.

Lastly, an Exit Try statement is provided for prematurely terminating a series of
try_statements or catch_statements. When this instruction is executed in either the
try_statements or the catch_statements, execution branches and continues at the first
statement in the finally_statements. Exit Try instructions are not permitted in the
finally _statements.

Examples

Exanpl e #1

Public Sub MAIN
Di mexcl As New Exception

45

GPL Dictionary Pages

Try
test()
Consol e. WitelLine("Test conpleted") ' Never gets here
Catch excl
Consol e. WitelLine("Exception!") ' |I's executed
End Try
End Sub

Public Sub test()
Dimii As |nteger

ii =1/ 0 ' Cenerates exception
Consol e. WiteLine("lnside Test") " Never gets here

End Sub

Exanpl e #2

Public Sub MAIN
Di mexcl As New Exception

Try
test()
Consol e. WitelLine("Test conpleted") ' Never gets here
Catch excl
Consol e. Wi telLi ne("Exception!") " |Is executed
End Try
End Sub

Public Sub test()
Dimii As |nteger

Try
ii =1/ 0 ' Cenerates exception
Consol e. WiteLine("lnside Test") " Never gets here
Finally
Console. WiteLine("Finally in Test") ' |Is executed
End Try
Consol e. Wi telLi ne("Test done") " Never gets here
End Sub
Exanpl e #3

Di mexcl As New Exception
Di mindex As Integer
Robot . Attached = 1
Try
retry:
Move. Loc(l ocl, profilel)
Move. Wi t For EOM
Catch excl
Control |l er. Syst emvessage(excl. Message)
Control | er. Showhi al og(" Ok, Cancel ", "Retry?", i ndex)
If index = 1 Then
| f Robot.Attached = 0 Then
Control | er. Power Enabl ed = True
Robot . Attached = 1

End | f
GoTo retry " LEGAL BRANCH
End | f
GoTo bad_j unmp " | LLEGAL BRANCH! !'!
End Try
bad_j unp:

See Also

Exception Handling | Exit Try Statement | Throw Statement

46

Exception Handling

exception_object.Axis Property

Sets and gets a bit mask indicating the robot axes associated with a robot Exception.

exception_object.Axis = <new_bitmask_value>
Or
...exception_object.Axis

Prerequisites

Only valid for robot Exceptions.
Parameters
None

Remarks

For robot Exceptions, the Axis property specifies the robot axes or motors that are
associated with the error condition. This value is a bit mask where the least significant bit
(&H1) represents the first axis or motor. Up to 12 bits can be set and multiple bits can be
set at the same time. For example, when the error code is -1012 (Joint out-of-range), the
Axis property bits indicate the which axes have violated their software ranges of motion.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the Axis bits are initially all set to 0.

Examples
Di mexcl As New Exception ' Create new general exception
excl. Robot Error = True " Indicate its a robot error
excl. Error Code = -1012 ' *Joint out-of-range*
excl. Axis = &HA ' Specify axes 2 and 4

Consol e. WitelLi ne(excl. Message) ' *Joint out-of-range* Robot 1. 2 4

See Also

Exception Handling | exception object.RobotError | exception object.RobotNum

47

GPL Dictionary Pages

exception_object.Clone Method

Method that returns a copy of the exception_object.
...exception_object.Clone

Prerequisites
None
Parameters
None
Remarks
For objects, if a program contains a simple assignment statement:
object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object 1 = object_2.Clone

Examples
Di mexcl As New Exception ' Create new exception with data
Di m exc2 As Exception ' Create new exception with no data
excl. ErrorCode = -1002 " *Invalid axis* error code
excl. Robot Error = True
exc2 = excl. d one ' Makes a copy of excl data
exc2. Axis = &HC ' Does not affect excl data

Consol e. WitelLi ne(excl. Message) ' *Invalid axi s* Robot 1
Consol e. WitelLi ne(exc2. Message) ' *Invalid axi s* Robot 1. 3 4

See Also

Exception Handling

48

Exception Handling

exception_object.ErrorCode Property

Sets and gets the number of the error message.

exception_object.ErrorCode = <new_value>
Or
...exception_object.ErrorCode

Prerequisites
None

Parameters
None

Remarks

The ErrorCode property of an Exception is the primary value that indicates the type of
exception that is represented by the exception_object. This value can range from 4095
to -4095 and each utilized value has a text string associated with it for display purposes.
In most cases, the ErrorCode is further qualified by additional information such as a
robot number, axis number or other information.

To facilitate the interpretation of the ErrorCodes, positive values indicate success or
warning conditions and negative numbers indicate an error of some type. A value of O is
the general success code.

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
section of the Precise Documentation Library.

When a New Exception is created, it defaults to a general Exception with an ErrorCode
value of 0 (success).

Examples
Di mexcl As New Exception ' Create new general exception
excl. ErrorCode = -786 ' *Project generated error*
excl. Qualifier =8 ' Specify the qualifier

Consol e. WitelLi ne(excl. Message) ' *Project generated error*: 8

See Also

Exception Handling

49

GPL Dictionary Pages

exception_object.Message Method

Returns the full text string that is generated based upon the exception_obj properties.
...exception_object.Message

Prerequisites
None

Parameters
None

Remarks

Given any exception_obiject, this method interprets the ErrorCode and any defined
refinement information such as the RobotNum, Axis, or Qualifier properties as
appropriate and returns the equivalent text string that is normally output to indicate this

exception.

Examples
Di mexcl As New Exception ' Create new general exception
excl. Robot Error = True " Indicate its a robot error
excl. Error Code = -1012 ' *Joint out-of-range*
excl. Axis = &HA ' Specify axes 2 and 4

Consol e. WitelLi ne(excl. Message) ' *Joint out-of-range* Robot 1: 2 4
See Also

Exception Handling

50

Exception Handling

exception_object.Qualifier Property

Sets and gets the error message qualifier for a general Exception.

exception_object.Qualifier = <new_value>
Or
...exception_object.Qualifier

Prerequisites

Only valid for general Exceptions.
Parameters

None

Remarks

For general Exceptions, the Qualifier property specifies an additional number that can
be used to further refine the meaning of an error condition. This value is stored as a 16-
bit unsigned number and can therefore range from 0 to 65535. For example, when the
error code is -786 (Project generated error), the Qualifier property can be used by the
GPL Project to convey which of several different special error conditions was detected.

When a New Exception is created, it defaults to a general Exception with a Qualifier
property of 0. When an Exception is changed from a robot to a general type, the
Qualifier value is reset to 0.

Examples
Di mexcl As New Exception ' Create new general exception
excl. ErrorCode = -786 ' *Project generated error*
excl. Qualifier = 8 ' Specify the qualifier

Consol e. WitelLine(excl. Message) ' *Project generated error*: 8

See Also

Exception Handling | exception_object.RobotError

51

GPL Dictionary Pages

exception_object.RobotError Property

Sets and gets the Boolean that indicates if an Exception is a robot or general type.

exception_object.RobotError = <boolean_value>
Or
...exception_object.RobotError

Prerequisites
None

Parameters
None

Remarks

Setting the RobotError property of an exception_object to True indicates that it is a robot
Exception and therefore has a RobotNum and an Axis property. Otherwise, setting
RobotError to False indicates that the exception_object is a general Exception and has
a Qualifier property.

Both robot and general Exceptions have the same effect in terms of halting thread
execution and disabling robot power. The only difference between the two types of
Exceptions is which additional properties exist to further refine the interpretation of the
error code.

When a New Exception is created, it defaults to a general Exception. To switch
between robot and general Exception types, the RobotError property should be set as

needed.

Examples
Di mexcl As New Exception ' Create new general exception
excl. Robot Error = True " Indicate its a robot error
excl. Error Code = -1006 ' *Robot al ready attached*
excl. Robot Num = 3 ' Specify the robot

Consol e. WitelLi ne(excl. Message) ' *Robot already attached* Robot 3
See Also

Exception Handling

52

Exception Handling

exception_object.RobotNum Property

Sets and gets the number of the robot associated with a robot Exception.

exception_object.RobotNum = <new_value>
Or
...exception_object.RobotNum

Prerequisites

Only valid for robot Exceptions.
Parameters

None

Remarks

For robot Exceptions, the RobotNum property specifies the number of the robot
associated with the error condition. This value can range from 0 to 16. A value of 0
indicates that it is a conveyor belt and values from 1 to 16 specify regular robot numbers.
For example, when the error code is -1006 (Robot already attached), the RobotNum
property indicates which robot was being accessed when this error was generated.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the RobotNum value is initially set to 1.

Examples
Di mexcl As New Exception ' Create new general exception
excl. Robot Error = True " Indicate its a robot error
excl. Error Code = -1006 ' *Robot al ready attached*
excl. Robot Num = 3 ' Specify the robot

Consol e. WitelLi ne(excl. Message) ' *Robot already attached* Robot 3

See Also

Exception Handling | exception object.RobotError | exception object.Axis

53

File and Serial I/0O Classes

File and Serial 1/0 Classes Summary

The following pages provide detailed information on the properties and methods for the

various classes that implement both file and serial port input and output communications.

The File Class is designed specifically for managing disk files and disk file directories.
The StreamReader and StreamWriter Classes apply to both file and serial

communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

File Class Member Type Description
File.CreateDirectory Shared Qreates a file directory and the path to the
Method directory.
File.DeleteDirectory Shared Deletes a single, empty file directory
: Method ' '
- - Shared . .
File.DeleteFile Method Deletes a single file.
File GetDirectories Shared Returns an array pf strings containing the
Method names of directories in a directory.
File GetFiles Shared Returns an array of strings containing the
— Method names of files in a directory.
StreamReader Member Type Description
New StreamReader fﬂzr;s(t)r(;;ctor Opens a file or serial port device for reading.
streamreader obi.Close Method Closes the file or dgwce associated with a
StreamReader Object.
streamreader obi.Peek Method R_eturns the next t?yte from an input stream
without removing it from the stream.
streamreader obj.Read Method Returns the next byte from an input stream
and removes it from the stream.
. . Reads a line from the input stream
streamreader obj.ReadLine |Method terminated by LF, CR, or CR-LF.
StreamWriter Member Type Description
New StreamWriter E:Ac;?sggctor Opens a file or serial port device for writing.
. , Sets or gets the property that controls
streamwriter obj.AutoFlush |Property whether or not output is buffered.
streamwriter obj.Close Method Closes the file or device associated with a

54

File and Serial 1/0 Classes

StreamWriter Object.

Immediately writes any buffered data for a

streamwriter obj.Flush Method StreamWriter Object.
Sets or gets the property that controls how
streamwriter obj.NewLine Property lines are terminated by the WriteLine
method.
streamwriter_obj.Write Method Writ_es a nl_meer or a String to an output
device or file.
Writes a number or a String to an output
streamwriter_obj.WriteLine Method device or file, followed by the NewLine line

terminator.

55

GPL Dictionary Pages

File.CreateDirectory Method

Creates a file directory and the path to the directory.
File.CreateDirectory (path)

Prerequisites

Directories can only be created on the devices "/ROMDISK" and "/flash".

Parameters
path
A String that contains the path for the directory to create, beginning with
the device name and ending with the new directory name.
Remarks

This method creates a directory in the location specified by the path parameter. If any
intermediate directories in the path are undefined, they are automatically created.

An error occurs if the final directory already exists.
If any error occurs, this method throws an Exception.

Examples

File.CreateDirectory("/ROVDI SK/ tenp/ new_directory") ' Create "new_directory"

' Also creates "tenp" if
needed

See Also

File and Serial I/0 | File.DeleteDirectory

56

File and Serial 1/0 Classes

File.DeleteDirectory Method

Deletes a single, empty file directory.
File.DeleteDirectory (path)

Prerequisites

The directory must be empty.

Parameters
path
A String that contains the path for the directory to delete, beginning with
the device name and ending with the new directory name.
Remarks

This method deletes a single directory in the location specified by the path parameter,
provided that the directory is empty. If any files or sub-directories exist within the
directory, an error occurs.

An error also occurs if the final directory does not exist.
If any error occurs, this method throws an Exception.

Examples

File.Del eteDirectory("/ROVDI SK/tenp/ new directory") ' Delete "new directory"
if enpty

See Also

File and Serial I/O | Eile.CreateDirectory | File.DeleteFile

57

GPL Dictionary Pages

File.DeleteFile Method

Deletes a single file.

File.DeleteFile (path)

Prerequisites

The file cannot be open for read or write.

Parameters
path
A String that contains the path to the file to delete, beginning with the
device name and ending with the file name.
Remarks

This method deletes a single file in the location specified by the path parameter.
An error occurs if the file does not exist.
If any error occurs, this method throws an Exception.

Examples

File.DeleteFile("/ROVD SK/nyfile.txt") ' Delete "nmyfile.txt"
See Also

File and Serial I/0 | File.DeleteDirectory

58

File and Serial 1/0 Classes

File.GetDirectories Method

Reads a directory, gets the names of all sub-directories, and returns them in an array of
Strings.

<string_array> = File.GetDirectories (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK" and "/flash".

Parameters
path
A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.
Remarks

This method permits a GPL program to retrieve the names of sub-directories within a
directory. If the specified directory path does not exist, this method throws an exception.

One sub-directory name is returned per array element. The length of the returned String
array indicates how many sub-directories were discovered. The sub-directory names are
relative to the specified path.

If sub-directories are being actively created or deleted when this method is invoked,
some existing sub-directories may be missed or a blank String element may be returned.

Examples

Dmfiles() As String

Dimii As |nteger

files = File.GetDirectories(path)

Console. Witeline(Cstr(files.Length) & " directories seen")

For ii =1 To files.Length
Console. Witeline("File " & CStr(ii) &": " &files(ii-1))
Next ii
See Also

File and Serial 1/0O | File.GetFiles

59

GPL Dictionary Pages

File.GetFiles Method

Reads a directory, gets the names of all non-directory files, and returns them in an array
of Strings.

<string_array> = File.GetFiles (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK" and "/flash".

Parameters
path
A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.
Remarks

This method permits a GPL program to retrieve the names of files within a directory. If the
specified directory path does not exist, this method throws an exception.

One file name is returned per array element. The length of the returned String array
indicates how many files were detected. The file names are relative to the specified path.

If files are being actively created or deleted when this method is invoked, some existing
files may be missed or a blank String element may be returned.

Examples

Dmfiles() As String

Dimii As |nteger

files = File.GetFil es(path)

Console. Witeline(Cstr(files.Length) & " files seen")

For ii =1 To files.Length
Console. Witeline("File " & CStr(ii) &": " &files(ii-1))
Next ii
See Also

File and Serial I/O | File.GetDirectories

60

File and Serial 1/0 Classes

New StreamReader Constructor

Constructor for creating a StreamReader Object. Also opens a file or device for reading.
New StreamReader (path)

Prerequisites

None
Parameters
path
A String that contains the path for the file or device to open. Local serial
ports are devices named "/dev/icom1", "/dev/com2", etc. Remote serial
ports are named "/dev/comrxy" where "X" is the number of the remote
device and "y" is the number of the serial port on the remote device.
Temporary files may be placed on device "/ROMDISK" and permanent
files may be placed on "/flash".
Remarks

This method opens a file or device and associates it with a new StreamReader Object.

If any error occurs, this constructor throws an Exception.

Examples
Dimconl As New StreanReader ("/dev/coml") " Open serial port #1
Dmtfile As New StreanReader ("/ROVDI SK/test.tnp") ' Open tenporary file
Dimpfile As New StreanReader ("/fl ash/save.txt") ' Open permanent file
See Also

File and Serial 1/0 | New StreamWriter

61

GPL Dictionary Pages

streamreader_object.Close Method

Closes the file or device associated with a StreamReader Object.
steamreader_object.Close

Prerequisites
None

Parameters
None

Remarks

This method closes the file or device that is associated with a StreamReader Object. If
any /O error occurs, it throws an Exception. No error occurs if the file or device is not
currently open.

Examples

st reanr eader _obj ect. d ose()

See Also

File and Serial 1/0 | New StreamReader

62

File and Serial 1/0 Classes

streamreader_object.Peek Method

Returns the next byte from an input stream without removing it from the stream.
...steamreader_object.Peek()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters
None
Remarks

This method returns the next byte from the input stream as an Integer, but it does not
remove the byte from the stream. The next input method call will still return this byte.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method does not block, but immediately returns -1 if no bytes are
available to read.

If no device or file is open, this method throws an Exception.

Examples

Dimconl As New StreanReader ("/dev/coml")
Dimc As |nteger
¢ = coml. Peek()

See Also

File and Serial I/O | streamreader_object.Read

63

GPL Dictionary Pages

streamreader_object.Read Method

Returns the next byte from an input stream and removes it from the stream.
...steamreader_object.Read()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters
None
Remarks

This method returns the next byte from the input stream as an integer. The byte is
removed from the stream so that subsequent calls do not return it.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.
For serial devices, this method blocks if no bytes are available to read.

Be careful when using this method to read data from a serial port since it blocks until a
byte is available. If for some reason the byte is lost due to an error, this method will
continue blocking and hang your procedure.

If no device or file is open, this method throws an Exception.

Examples

Dimconl As New StreanReader ("/dev/coml")
Dimc As |nteger
¢ = coml. Read()

See Also

File and Serial 1/O | streamreader_object.Peek | streamreader object.ReadLine

64

File and Serial 1/0 Classes

streamreader_object.ReadLine Method

Reads a line from the input stream terminated by LF, CR, or CR-LF.
...steamreader_object.ReadLine()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters
None
Remarks

This method returns a String containing the next bytes in the input stream up to the next
LF character (decimal value 10, GPL_LF) or CR character (decimal 13, GPL_CR). It
blocks until the data followed by these line terminators is received or the end-of-file is
seen.

Any LF, CR, or CR-LF pair is removed from the end of the string.

Note that the StreamWriter NewLine property does not have any effect on how
ReadLine interprets the end of line.

Be careful when using this method to read data from a serial port since it blocks until a
line terminator is seen. If for some reason the line terminator is lost or corrupted due to
an error, this method will continue blocking and hang your procedure.

If some other I/O error occurs, this method throws an Exception.

Examples

Dmfile As New StreanReader ("/flash/data.txt")
Dimline As String
line = fil e. ReadLi ne()

See Also

File and Serial I/O | streamreader_object.Read

65

GPL Dictionary Pages

New StreamWriter Constructor

Constructor for creating a StreamWriter Object. Also opens a file or device for writing.

New StreamWriter (path)
-Or-
New StreamWriter (path, append)

Prerequisites

None
Parameters
path
A String that contains the path for the file or device to open. Serial ports
are devices named "/dev/com1”, "/devicom?2", etc. Remote serial ports
are named "/dev/comrxy" where "x" is the number of the remote device
and "y" is the number of the serial port on the remote device. Temporary
files may be placed on device "/ROMDISK" and permanent files may be
placed on "/flash".
append
A Boolean value that determines whether or not new data should be
appended to the end of an existing file. If append is False, a new file is
always created, overwriting any existing file with the same name.
Remarks

This method opens a file or device and associates it with a new StreamWriter Object.
By default, AutoFlush is enabled for serial ports but not for files.

If any error occurs, this method throws an Exception.

Examples
Dimconl As New StreamWiter("/dev/conl") ' Open serial port #1
Dmtfile As New StreamWiter("/ROWDI SK/test.tnp") ' Open tenporary file
Dmpfile As New StreanmWiter("/fl ash/save.txt") ' Open pernmanent file
See Also

File and Serial I/0 | New StreamReader | streamwriter_object.AutoFlush

66

File and Serial 1/0 Classes

streamwriter_object.AutoFlush Property

Sets or gets the AutoFlush property that controls whether or not output is buffered.

steamwriter_object.AutoFlush = <boolean_value>
Or
...Steamwriter_object.AutoFlush

Prerequisites
None

Parameters
None

Remarks

Setting this property to True causes output requests to immediately write data to the file
or device. Setting it to False buffers the output and lets the system decide when to write
it. Buffered output is always immediately written when a Flush or Close method is
executed.

Setting AutoFlush to True for files may significantly slow down any write operations.
By default, AutoFlush is set to True for serial ports and False for files.

Examples

Dmpfile As New StreanmWiter("/fl ash/save.txt") ' Open pernmanent file
pfile. Aut oFl ush = True

See Also

File and Serial 1/O | streamwriter_object.Flush

67

GPL Dictionary Pages

streamwriter_object.Close Method

Closes the file or device associated with a StreamWriter Object.
steamwriter_object.Close

Prerequisites
None

Parameters
None

Remarks

This method closes the file or device that is associated with a StreamWriter Object. Any
pending buffered output is written before the close completes.

If buffered output is being written, this method blocks until the output is complete.

If any I/O error occurs, this method throws an Exception. No error occurs if the file or
device is not currently open.

Examples

streammiter_object.d ose()
See Also

File and Serial 1/0 | New StreamWriter

68

File and Serial 1/0 Classes

streamwriter_object.Flush Method

Immediately writes any buffered data for a StreamWriter Object.
steamwriter_object.Flush

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters
None
Remarks

This method immediately writes any buffered data to the output device or file. When
output is performed, this method blocks until it is complete.

Calling the Flush method is redundant if the AutoFlush property is set to True.

Explicit flush operations are more efficient than setting AutoFlush to True if you are
performing a number of small write requests. If AutoFlush is True, each small write
request causes output to occur. If AutoFlush is False, the small write requests can be
buffered and the entire buffer is written by a single Flush.

A Flush equivalent is always performed by the Close method.
If any I/O error occurs, this method throws an Exception.

Examples

Dimcom As New StreanWiter ("/dev/coml")

com Aut oFl ush = Fal se ' Disable automatic flush
comWite("Wite")

comWite(" a short ")

com Wi teLine("nessage")

com Fl ush

See Also

File and Serial I/O | streamwriter_object.AutoFlush

69

GPL Dictionary Pages

streamwriter_object.NewLine Property

Sets or gets the NewLine property that controls how lines are terminated by the
WriteLine method.

steamwriter_object.NewLine = <newline_string>
Or
...Steamwriter_object.NewLIne

Prerequisites
None

Parameters
None

Remarks

This property is a string of 0, 1 or 2 bytes that is appended to the end of any output
performed by the streamwriter_object.WriteLine method.

By default the NewLine value is a 2-byte string containing an ASCII CR character
(decimal 13, GPL_CR) followed by an LF character (decimal value 10, GPL_LF).

Typical settings for this property are CR, LF, or CR-LF. If set to an empty string, no
terminator is added to the end of lines.

Examples
Dmpfile As New StreanWiter("/dev/conl") ' Open serial port 1
pfile. NewLi ne = Chr (GPL_LF) ' Set terminator to LF (10)
pfile. NewLi ne = Chr (GPL_CR) ' Set terminator to CR (13)
See Also

File and Serial 1/0O | streamwriter_object.WriteLine

70

File and Serial 1/0 Classes

streamwriter_object.Write Method

Writes a number or a String to an output device or file.

steamwriter_object.Write(number)
-Or-
steamwriter_object.Write(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters
number
A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dmtfile As New StreanWiter("/ROVDI SK/test.tnp")

tfile.Wite("Test ") ' Wites "Test "
tfile.Wite(3.14) ' Wites "3.14" on the sane line as "Test "
See Also

File and Serial 1/0O | streamwriter_object.WriteLine

71

GPL Dictionary Pages

streamwriter_object.WriteLine Method

Writes a number or a String to an output device or file, followed by the NewLine line
terminator.

steamwriter_object.WriteLine(number)
Or
steamwriter_object.WriteLine(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters
number
A numeric value that is converted to a String and written.
string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method is the same as the Write method with the addition that it appends the value
of the NewLine property to any output requests.

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dmtfile As New StreanWiter("/ROVDI SK/test.tnp")

tfile.WiteLine("Test") ' Wites "Test"
tfile. WiteLine(3.14) ' Wites "3.14" on the line follow ng "Test"
See Also

File and Serial 1/O | streamwriter object.NewLine | streamwriter object.Write

72

Function Summary

Functions

The following sections present detailed information on the standard functions that are
supported by GPL. These functions are not grouped into a specific Class and are
provided in this manner to be compatible with other Basic Language systems.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these functions to deal with the different possible mixes of
input parameter data types. Also, these functions generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as

numeric overflow does not occur.

The table below briefly summarizes the system functions that are described in greater

detail in the following sections.

Function

Description

CBool (expression)

Converts any numeric type or String to Boolean

CByte (expression)

Converts any numeric type or String to Byte.

CDbl (expression)

Converts any numeric type or String to Double.

Cint (expression)

Converts any numeric type or String to Integer.

CShort (expression)

Converts any humeric type or String to Short.

CSng (expression)

Converts any numeric type or String to Single.

CStr (expression)

Converts any numeric type to String.

Fix (number)

Truncates towards zero any numeric type returning only
the integer portion of the number.

Hex (expression)

Converts an Integer value to String in Hexadecimal
format.

Int (number)

Truncates towards negative infinity any numeric type
returning only the integer portion of the number.

Rnd (seed)

Returns a pseudo random number.

73

GPL Dictionary Pages

CBool Function

Converts any numeric type or String to a Boolean value.

...CBool (expression)

Prerequisites
None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

74

Functions

Dims_val As Single

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WLL GENERATE AN ERRCR
See Also

Functions | Fix Function | Int Function

75

GPL Dictionary Pages

CByte Function

Converts any numeric type or String to a Byte value.

...CByte (. expression)

Prerequisites
None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

76

Functions

Dims_val As Single

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WLL GENERATE AN ERRCR
See Also

Functions | Fix Function | Int Function

77

GPL Dictionary Pages

CDbl Function

Converts any numeric type or String to a Double value.

...CDbl (expression)

Prerequisites
None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

78

Functions

Dims_val As Single

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WLL GENERATE AN ERRCR
See Also

Functions | Fix Function | Int Function

79

GPL Dictionary Pages

Cint Function

Converts any numeric type or String to an Integer value.

...CInt (expression)

Prerequisites
None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

80

Functions

Dims_val As Single

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WLL GENERATE AN ERRCR
See Also

Functions | Fix Function | Int Function

81

GPL Dictionary Pages

CShort Function

Converts any numeric type or String to a Short value.

...CShort (expression)

Prerequisites
None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value

82

Functions

Examples

Dims_val As Single

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) " WLL GENERATE AN ERROR
See Also

Functions | Eix Function | Int Function

83

GPL Dictionary Pages

CSng Function

Converts any numeric type or String to a Single value.

...CSng (expression)

Prerequisites
None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

84

Functions

Dims_val As Single

s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WLL GENERATE AN ERRCR
See Also

Functions | Fix Function | Int Function

85

GPL Dictionary Pages

CStr Function

Converts any numeric type to a String value.

...CStr (. expression)

Prerequisites
None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

86

Dimstg As String
stg = CStr(3.14159) ' Sets stg equal to "3.14159"

See Also

Functions | Eix Function | Format Function | Int Function

Functions

87

GPL Dictionary Pages

Fix Function

Returns the integer portion of any number by truncating towards zero.

...Fix (number)

Prerequisites
None
Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For

example:

Dims_val As Single

s_val =1Int(-1.2) ' Sets
s_val = Fix(-1.2) ' Sets
s_val =1Int(-1.9) ' Sets
s_val = Fix(-1.9) ' Sets

Unlike the conversion routines (e.g. Cint,
rather than round them. For example:

Dims_val As Single

s_val =1nt(1.2) ' Sets
s_val = Cint(1.2) ' Sets
s_val =1nt(1.9) ' Sets
s_val = Cnt(1.9) ' Sets

s_val
s_val
s_val
s_val

equal
equal
equal
equal

to
to
to
to

-2
-1
-2
-1

CShort), these functions truncate their values

s_val
s_val
s_val
s_val

equal
equal
equal
equal

to
to
to
to

NP PP

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

Dims_val As Single

s_val = Int(3.14159) ' Sets s_val equal
s_val = Int(3.99999) ' Sets s_val equal

88

to 3
to 3

See Also

Functions | Int Function

Functions

89

GPL Dictionary Pages

Hex Function

Converts an Integer value to a String value in Hexadecimal format.

...Hex (expression)

Prerequisites
None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single,
however, the value is converted to Integer prior to conversion to a String

value.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values
CBool Boolean Any 0 or non-zero value
CByte Byte 0to 255
CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.
Cint Integer -2,147,483,648 to 2,147,483,647
CsShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.
Cstr String Any valid Double value
Hex String Any valid Integer value
Examples

90

Dimstg As String

Dimii As I|nteger

ii = Cnt("&H1234") ' Sets ii equal to 4660
stg = Hex(ii) ' Sets stg equal to "1234"

See Also

Functions | Eix Function | Format Function | Int Function

Functions

91

GPL Dictionary Pages

Int Function

Returns the integer portion of any number by truncating towards negative infinity.

...Int (number)

Prerequisites

None
Parameters
number
A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.
Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dims_val As Single

s_val =1Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val =1Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. Cint, CShort), these functions truncate their values
rather than round them. For example:

Dims_val As Single

s_val =1nt(1.2) ' Sets s_val equal to 1
s_val = Cnt(1.2) ' Sets s_val equal to 1
s_val =1nt(1.9) ' Sets s_val equal to 1
s_val = Cnt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

92

Functions

Dims_val As Single

s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3
See Also

Functions | Fix Function

93

GPL Dictionary Pages

Rnd Function

Returns a pseudo random number.

...Rnd (seed)

Prerequisites

None
Parameters
seed
An optional expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.
Remarks

Returns a pseudo random number whose value is greater than or equal to 0 and less
than 1.0.

The returned value is only pseudo random because the returned numbers are part of an
extremely long sequence of values that only repeat after 2232 numbers are generated.
Each time that the controller is restarted, the starting point or seed in the sequence is
determined by the system clock calendar. So, the sequence of values produced by this
function appears quite random for normal testing purposes.

If it is desired to force the sequence of numbers to restart at a fixed value, thereby
allowing a test to be exactly repeated, the optional seed parameter can be used as

follows:
seed value Effect on function
<0 The specified seed value is taken as the starting point for the pseudo
random sequence and the sequence will be continued from this value. The
number returned by this execution of the Rnd will always be the same.
=0 The last value returned by the Rnd function will be returned again.
>0 The next number in the pseudo random sequence will be returned.
Not specified |Same as specifying a seed value >0.

Examples

Dimr_val As Single

r_val = Rnd() ' Sets r_val to sone random val ue

r_val = Rnd(-1) ' Forces seed to -1, will return sane nunber
' each tinme.

r_val = Rnd() ' Returns next value after seed

r_val = Rnd(0) ' Returns sane value as last |ine above

94

See Also

Functions

Functions

95

Location Class

Location Class Summary

The following pages provide detailed information on the properties and methods of the
Location Class. This class and its Location Object instances provide the fundamental
means for representing robot and part positions and orientations within GPL. Location
Objects and Profile Objects (which define motion performance parameters) are the
standard arguments required by most Move methods for defining how to drive the robot
along a path to a destination specified by a Location.

Each Location Object contains data that defines: a Type indicator; a position and
orientation; clearance information that is used to safely approach the Location; and robot
configuration specific information that pertains to the target robot.

There are two Type’s of Location Objects: Angles and Cartesian. The Angles
Locations store robot positions as an array of axes positions. When we refer to the
“position” or “total position” of an Angles Location, we are referring to the array of axes
positions. The more general Type is called a Cartesian Location. Cartesian Locations
contain a Cartesian position and orientation that is displayed as an X, Y, Z displacement
and a set of three Euler Angles: Yaw, Pitch, and Roll. In addition to this position and
orientation, each Cartesian Location contains an optional pointer to a reference frame
object. The X, Y, Z, Yaw, Pitch, and Roll values define the Location’s “position with
respect to the reference frame” (PosWrtRef). When we refer to the “position” or “total
position” of a Cartesian Location, we are discussing the combined effect of the “position
with respect to the reference frame” and any specified reference frames.

Since flexible automation must alter a robot’s actions in order to accommodate to
variations in a material handling, assembly or other type of operation, extensive methods
are provided for mathematically manipulating the position and orientation of Locations.
The table below briefly summarized the properties and methods that are described in
greater detail in the following sections.

Member Type Description

location obj.Angle Property Sets and gets a single axis position for an
Angles Location.

location obi.Angles Method Changes all of the axes positions values in

an Angles Location.

location obj.Clone Method Returns a copy of the location_obj.

Sets and gets the bit flags that specify special

location_obj.Config Property robot specific location attributes.

Returns the distance between the XYZ

Location.Distance Method positions of two Cartesian Locations.

Modifies the “total position” of the
location _obj.Here Method location_obj to be equal to the current
location of a robot.

Defines the "total position" of location_ob)j
location_obj.Here3 Method based upon the XYZ coordinates of three
specified locations.

Returns the inverse of the “total position” of

location obj.Inverse Method the Cartesian location_obj.

96

Location Class

Returns a Cartesian Location equivalent to

location_obj.Kinesol Method an Angles Location for a specific kinematic
model or vise versa.
Returns the result of combining the “total
location obj.Mul Method position” of location_obj with the “total
position” of another Cartesian Location.
Corrects the value of the PosWrtRef of a
location_obj.Normalize Method Cartesian Location for any mathematical
inconsistencies in the value.

. . Sets and gets the Pitch angle of the
location_obj.Pitch Property PosWrtRef of a Cartesian Location.
location obi.Pos Property ISets _and gets the “total position” of the

ocation_obj.
location obi.PosWrtRef Property Sets a_nd gets the PosWrtRef of a Cartesian
Location.
Sets and gets a pointer to the reference
location _obj.RefFrame Property frame object that the location_object is
defined relative to.

. . Sets and gets the Roll angle of the
location_obj.Roll Property PosWrtRef of a Cartesian Location.
location obj.Type Property Sets and gets the Type specification.
location obi.X Property Sets and gets the X pogition valug of the
rocalion_obl.~ PosWrtRef of a Cartesian Location.

Changes the X, Y, Z, Yaw, Pitch, and Roll
location obj.XYZ Method values of the PosWrtRef of a Cartesian
Location.

. . Increments the X, Y, and Z values of the

location_obj.XYZInc Method PosWrtRef of a Cartesian Location.
Returns a Cartesian Location with a "total

Location.XYZValue Method position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

. . Sets and gets the Y position value of the
location_obj.Y Property PosWrtRef of a Cartesian Location.

. . Sets and gets the Yaw angle of the
location_obj.Yaw Property PosWrtRef of a Cartesian Location.
location obi.Z Property Sets and gets the Z pos_ition valuga of the
1oEanon_ohy.2 PosWrtRef of a Cartesian Location.

Sets and gets the distance along the Z-axis
location _obj.ZClearance Property that defines the safe approach position to the

Location.

Sets and gets the flag that indicates if the
location_obj.ZWorld Property approach distance is measured along the

Tool or World Z coordinate axis.

97

GPL Dictionary Pages

location_object.Angle Property

Sets and gets the position of a single robot axis, in units of millimeters or degrees, to and
from an Angles Location Object.

location_object.Angle(axis) = <new_numeric_value>
Or
...location_object.Angle(axis)

Prerequisites

The location_object must be an Angles Location Object.

Parameters
axis
A required numeric expression that specifies the number of the axis to be
accessed. This value can range from 1 for the first axis up to a maximum
value of 12.
Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angle property allows a program to access and manipulate individual axis position
values. To set all of the axes positions at one time, the Angles method should be utilized.

If the location_object is not of the Angles type, accessing the Angle property will
generate an error.

Examples

Dimlocl As New Location ' Create new Location set to default values
Di m ang As Doubl e

locl. Angles(-21.5, 23.2, 10) ' Set locl to Angles type and define position
ang = locl. Angl e(2) ' ang will be set to 23.2

locl. Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angles

98

Location Class

location_object.Angles Method

Changes all of the axes positions values stored in an Angles Location Object.
location_object.Angles(axis_1, ..., axis_12)

Prerequisites
None
Parameters
axis_1,...,axis_12

Up to 12 optional numeric expressions that specifies the new position
value for each of the robot axes. If an expression is not specified, the
corresponding axis position will default to a value of 0. Each value is in
units of millimeters or degrees as appropriate for the axes.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angles method sets the values of all of the axes positions in the location_object.
Any unspecified positions are set to 0. To read or write individual axis positions, the
Angle property should be utilized.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the location_objectType will be set to indicate it is an Angles
Location Object.

Examples
Dimlocl As New Location ' Create new Location with default val ues
Di m ang As Doubl e
locl. Angl es(-21.5, 23.2, 10) ' Set locl to Angles type and define
ang = locl. Angl e(2) ' ang will be set to 23.2
locl. Angle(2) *= 2 " Position of axis 2 will be 46.4
See Also

Location Class | location_object.Angle

99

GPL Dictionary Pages

location_object.Clone Method

Method that returns a copy of the location_object.
...location_object.Clone

Prerequisites
None
Parameters
None
Remarks
For objects, if a program contains a simple assignment statement:
object 1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples
Dimlocl As New Location ' Create new |l ocation set to default val ues
Dimloc2 As Location ' Create new location with no data all ocated
locl. X = 10.2 ' Set X position in |ocl.
loc2 = locl. Clone ' Makes a copy of locl data
loc2.Y = -27.1 ' Doesn't affect |locl data

See Also

Location Class

100

Location Class

location_object.Config Property

Sets and gets an Integer bit mask that specifies how the Cartesian position of a
Location Object is to be converted to a set of axes position values.

location_object.Config = <new_Integer_value>
-Or-
...location_object.Config

Prerequisites
None

Parameters
None

Remarks

For some robots, there are multiple sets of axes positions that will position the robot’s tool
or gripper at the same position and orientation. For simple robots, this can occur if a wrist
axis can rotate more than 360 degrees. For more complex geometries, the alternate sets
of axes positions might correspond to what is termed “right” and “left” shoulder
configurations.

GPL’s optional kinematic modules include methods for automatically selecting among
different sets of positions in some instances. For example, if the final wrist axis of a robot
can rotate a total of 720 degrees, GPL can automatically select which revolution of this
axis should be selected as the destination for a motion to a Cartesian end point.
Normally, GPL will rotate the wrist to the closest position that satisfies the Cartesian
specification. However, if this would violate a wrist joint limit stop, GPL will rotate the
wrist in the opposite direction.

In other cases, GPL cannot automatically select the best set of joint angles to be used.
In these cases, GPL will generally try to maintain the robot in the same configuration
unless instructed otherwise. For example, if a position can be reached in both a "right"
and a"left" shouldered configurations, GPL will maintain the same shoulder configuration
unless explicitly directed to change. This is done to prevent large, unexpected motions
that can occur when switching the shoulder configuration.

To both indicate the current geometric configuration and to specify a change in
configuration, the Config property provides a series of bit flags that instruct GPL how it is
to convert Cartesian Locations into joint angles. When a Cartesian destination is
specified with one or more of these bits set, the next motion to this Location will try to put
the robot into the specified configuration. If bits are not set, GPL assumes that the robot
should be instructed to stay in its current configuration.

While some configuration changes can be implemented during either a Cartesian or joint-
interpolated motion, other changes can only be performed during joint-interpolated
motions. For example, you cannot change from a right to a left shouldered configuration

101

GPL Dictionary Pages

and simultaneously move the tool tip along a Cartesian straight-line path. If a
configuration bit is specified which is not compatible with the specified motion type, the
configuration bit is ignored and no error is generated.

The bits currently defined for the Config property are described in the following table. As
a programming convenience, these bits also have GPL constants defined.

Config Legal During
Bit Corc::tl;nt Cartesian Description
Mask Motion
&HO01 | GPL_Righty No Change robot to a right shouldered configuration.
&HO02 GPL_Lefty No Change robot to a left shouldered configuration.
&HO04 GPL_Above No Change robot to have the elbow above the wrist.
&HO08 GPL_Below No Change robot to have the elbow below the wrist.
&H10 GPL_Flip No Change robot to have the wrist pitched up.
&H20 | GPL_NoFlip No Change robot to have the wrist pitched down.
&H1000 | GPL_Single Yes |cgrees rather than use its full range of motion.

Since the robot configuration options are a function of the robot's geometry, please see
the documentation in the Kinematics Library for which bits apply to your robot.

Examples

Dimlocl As New Location ' Create new Cartesian Location
locl. Config = GPL_Ri ghty+GPL_Si ngl e
' Set mask word to force robot to right
shoul dered and limt wist rotation

See Also

Lo