l PRECISE
- AUTOMATION

The Guidance Development Environment

Introduction and
Reference Manual

Version 2.0.1, March 19, 2008
P/N: GDEO-DI-00010

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

http://www.preciseautomation.com

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc., assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2008 by Precise Automation Inc. All rights reserved.
The Precise Logo is a registered trademark of Precise Automation Inc.
Trademarks

Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2400, Guidance 1400, Guidance 1300,
Guidance 1200, Guidance Controller, Guidance Development Environment, GDE, Guidance
Development Suite, GDS, Guidance Dispense, Guidance Programming Language, GPL, Guidance
System, PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PreciseFlex,
PrecisePower 500, PrecisePower 2000, PreciseVision, RIO are either registered or trademarks of Precise
Automation Inc., and may be registered in the United States or in other jurisdictions including
internationally. Other product names, logos, designs, titles, words or phrases mentioned within this
publication may be trademarks, service marks, or trade names of Precise Automation Inc. or other entities
and may be registered in certain jurisdictions including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO YOU.
PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.

727 Filip Road

Los Altos, California 94024
U.S.A.
www.preciseautomation.com

http://www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation, which, if not
avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which, if not
avoided, could result in serious injury or major damage to the equipment.

CAUTION: This indicates a situation, which, if not avoided, could result in
minor injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a point or
procedure, or gives a tip for easier operation

Table Of Contents

Guidance Development Environment

GDE Introduction

Installation and Startup

Installing GDE/GDS on a PC
Configuring the Controller for GPL Execution
Activating GDS Components

Connecting to the Controller

GDE Windows and Tools

N o0~ W

GPL Projects Overview
GDE Screen Layout
Editor and Debugger Window
Main Menu Bar

Main Toolbar

Debug Toolbar

Project Manager Window
Object Browser Window
Robot Control Window
GPL Output Window
Threads Window
Program Stack Window
File Manager Window

Console Window

GDE Programming Examples

Hello World Example

Pick and Place Example

11
14
17
19
20
22
23
24
25
26
27
28

30

30
33

Guidance Development Environment

GDE Introduction

The Guidance Development Environment (GDE) is a software package that allows you to develop and
debug Guidance Programming Language (GPL) software projects. GDE runs on a Windows PC. To
execute and debug programs, the PC must be connected to the controller via Ethernet either locally or
remotely. However, for offline development, the PC need not be connected to a Guidance Controller.

In this document, instructions for installing and executing GDE are provided. This is followed by a
description of each of the components of GDE, their basic operation, and the functions that they provide.
Finally, the step-by-step process of developing and executing the traditional “Hello World” program is
presented along with a simple robot pick-and-place application.

In order to execute the examples in this document, the following are required:

A 500 MHz or faster PC running Windows 2000 or Windows XP

Microsoft Internet Explorer version 6.x or later

A 10/100 Ethernet card for the PC

At least 20 MB of space on the PC's disk

A 2x CD-ROM drive interfaced to the PC

The Guidance Development Suite distribution disk (P/N: PDS0-DA-00010)

A Guidance Controller interfaced to a robot, e.g. a PrecisePlace 2300 or 2400

WARNING: Before proceeding with this Guide, please ensure that the
following steps have already been performed:

e The robot has been properly mounted, all required safety
interlocks have been installed and tested, and power has been
connected. For the PrecisePlace robots, this information is

A provided in the “PrecisePlace 2300/2400 Robot, Hardware
Introduction and Reference Manual”.

e If you are integrating the Guidance Controller to a new
mechanical system for the first time, please see the section on
“Setting Up a Controller” in the Precise Documentation Library for
instructions on configuring the controller.

Prior to reading this document, it is highly recommended that you first do the following:

e Perform the exercises in the “Guidance Controller Setup and Operation, Quick
Start Guide” to familiarize yourself with the operation of the controller and to
verify that the controller has been properly interfaced to the PC.

Guidance Development Environment

o Read the “Guidance Programming Language, Introduction to GPL”to gain a
basic understanding of the functions available in GPL and their associated
syntax. For the examples in this document, a thorough understanding of GPL is
not necessary. However, when you wish to learn more, all of the GPL
statements and classes with their methods and properties are described in the
"Guidance Programming Language, GPL Dictionary Pages".

Once you have completed these steps, it's time to get started.

Installation and Startup

Installing GDE/GDS on a PC

GDE is distributed as a component within the Guidance Development Suite of programs (GDS). GDS
includes GDE plus other useful PC applications such as the Precise Datalogger Viewer, which graphs the
results of controller data collection sessions. To install GDE, you must install GDS.

If you previously installed GDS on your computer, you should un-install the old version by performing the
steps below. If you are installing GDS for the first time, you can skip the first set of instructions.

» Shut down all programs that are running including virus protection programs.

¥

Bring up the Window's Control Panel by clicking “Start > Settings > Control Panel”.
» Double click on the “Add or Remove Programs” selection.

» In the “Add or Remove Programs” popup window, scroll down and click on “Guidance
Development Suite”.

» Click the “Remove” button and click on “Yes” to confirm the action.

» Close all of the windows that you opened.
To install GDS on your computer, perform the following steps:

» Shut down all programs that are running including virus protection programs.

» Insert the Guidance Development Suite CD-ROM into your computer’'s CD-ROM drive. A
panel should popup that welcomes you to the GDS Setup Wizard. If the installer does not
automatically start, click “Start > Run”, type in “D:\setup.msi” (where D is the CD-ROM drive),
and click “Ok”.

» Follow the instructions in the Setup Wizard to install GDS. Note, GDS relies upon the
Microsoft .NET Framework in order to operate. This is a standard module that Microsoft
provides free of charge. If the Setup Wizard detects that this module is not available, you will
be asked if you wish to install the Framework now. You should respond "Yes". This will launch
a browser to take you to the download site for the required software.

At the conclusion of this process, GDE will be installed on your PC along with the other components of
the Guidance Development Suite. You can now begin to use GDE. However, please note that in order to
continue to use GDE and other elements of GDS, you must register this product with Precise
Automation. After you start GDE, go to the "Register product” item under the "Help" top-level menu item
for information on the registration process.

Guidance Development Environment

Configuring the Controller for GPL Execution

In order to execute a GPL program that moves the robot, the Guidance controller must be configured for
GPL execution instead of MotionBlocks execution. Once this configuration is stored in the controller's
flash disk, this configuration will be preserved even if the controller is turned off and restarted. To set this
configuration, perform the following steps.

» Please see the “Guidance System Setup and Operation, Quick Start Guide” and follow the
instructions for bringing up the web based Guidance Operator Interface for the controller.

» In the web interface, open the Controller Startup Configuration page, " Setup > Wizards and
Setup Tools> Startup Configuration". The web page should look as follows:

=10 xl

Fle [Edi View Fporbes Teols Help -
Agdress [nitp: Loz 1880, 1/ Sys o him =|/EYca
v w Controller: PrecisePlace 1300 Cartesian e

System Sotup

Wizandy sod Setup Todks
Controller Startup Configuration
Firgt Time Setup

T B

Lo P s

[S —

ty mnatle high power
" Hardwics Tuming ied Madsadl s S

= Parameier Database [waw 7 g haAg 15 Borv Ths mpieat
-

vau & mc Sukneratically skast the scplcatios

Controllar Oparating Modes
-y e L Eoa Bhobioadilocka sefug b candiguss moboa

-

Thusjanje r dgtoshaboally comzile and run GPL Srcpect.

Dregramming Lengusge
[Separd :.,:l-[Lalect

Sat liew Valoan Sase AN b Manh

il | =llal I;I;I

.;J pane D il

» Press the red "Disable Power" button at the top of the page. This is required because the
changes that you will make are not permitted when power to the robot is enabled.

» In the "Controller Operating Mode" panel, click on the "Guidance Programming Language
(GPL) " radio button

» Press the "Set New Values" button to store this setting into memory

» Press the "Save All to Flash" button to store this setting in the flash disk. This ensures that
this setting will remain in effect if the controller is restarted. The button will flash for 10-30
seconds as the data is being written. DO NOT TURN OFF YOUR CONTROLLER WHILE THE
BUTTON IS BLINKING SINCE THIS MAY CORRUPT THE FLASH DISK.

Installation and Startup

You should note that when you selected GPL execution mode, the "Automatically start the operating
mode" option was also set to Yes. With these two settings, each time the robot's power is enabled, the
controller is put into a state where it is ready to accept a Robot.Attached command to permit a GPL
program to take control of a robot.

The controller is now ready to execute a GPL program that includes motion instructions.

Activating GDS Components

To begin using the Guidance Development Environment, you must start the application on the PC.

» To launch GDE, click on "Start > Programs > Precise Automation > GDS xxx >
Guidance Development Environment". The first time GDE begins execution, you will see the
following popup.

Please Activate GDS %]

t"_-., You have not yet activated the Guidance Devalopment Sute.

There is only 30 days until this product will become disabled

Would you like to activate the product now?

No

The license that you purchased for GDS permits you to use GDE to develop software for an unlimited
number of controllers but the package itself is only licensed to execute on a single PC. To complete the
software activation process, you must send information concerning the PC to Precise Automation. To
allow time for sending the information and receiving a reply, all of the applications within GDS are fully
functional for 30 days without being activated. You only need to execute the activation process in one
component of GDS in order to activate all of the components.

If for some reason, you do not wish to initiate the activation process now, this popup will be displayed
each time you start an un-activated component of GDS. In addition, in any GDS component, you can
click on "Help > Product Activation" to display the activation popup.

» To initiate the activation process, click "Yes" in the popup above. This will display the
following activation popup.

Guidance Development Environment

Product Activation *Not Activated®] X|
— Computer 1D
|EI:IF4—ECE2—9"_'IEE—9'4C1 Copy I
— License Key
I Activate
Help | Close |

This popup displays the "Computer ID" that you need to submit to Precise as part of the activation

» To obtain a license key to activate GDS, please send an email to Precise Automation that
contains the following information:

To: sales@preciseautomation.com
Subject: GDS License Key Request

Customer Name: <your name here, optional>
Customer Company: <your company name here>
Telephone Number: <your phone number here, optional>

GDS Serial Number: GDS0-0XXX-XXXXXX
Computer ID Number: XXXX-XXXX-XXXX-XXXX

» You can obtain the GDS Serial Number from the GDS License Certificate that you received
with your order. Below is a picture of the top portion of a typical GDS License with the serial
number circled in red.

P R E C I S E T27 Filp Koad, Los Alos, California 34024
AUTOMATION

Guidance Development Suite
Single Right-To-Use Binary Software License Certificate

Serial Numberi, GDS0-0xxX=1)0XXX

The Guidance Development Suite is a collection of software applications that allows 1s user fo
develop, debug, and suppart mation control software projects that execute on 3 Precise
Automation Guidsnce Series Confroller (2.g. & Guidance 3400) Thiz suite of applications can be
ueed in connaction with an unlirmited nomber of motion controllere. Howevar, thiz licenze anly
permits gne copy of the binary sottware to be mslalied on a smgle PC. Thes certificate grants to

mailto:sales@preciseautomation.com

Installation and Startup

» The Computer ID number should be copied from the Product Activation popup.

» As a convenience, if you are viewing this help in the Precise Documentation Library, you
can click on the following link to get an email template: sales@preciseautomation.com.

» Alternatively, if you do not have email access, please Fax this information to 408-516-8348
together with your own fax number.

Your name and your phone number are optional. However, we recommend that you provide this

information in case there is a problem with your license and we need to get in touch with you. A sample
email should look as follows.

™ DS License Key Request - Message =10] x|

JEila Edit Yiew Insert Format Tools Actions Help

To... ||ssles@preciseautomation.com

GEve |

Subject: [GDS License Key Request

Customer Name: ohn Doe =]
Customer Company: Acme Automation
Telephona Mumber: 1-408-555-5555

DS Seral Mumber. GDS0-0510-100231
Computer ID Mumber, 80F4-8CEZ2-S90CE-94C1

In response to your request, you will receive a license key.

» When you receive your license key, access the Product Activation popup by restarting GDE
or clicking in the GDE menu item "Help > Product Activation".

» Enter the license key in the "License Key" box and press "Activate".

All of your GDS components are now activated.

Connecting to the Controller

Once you launch the Guidance Development Environment, you will be presented with the following
screen and a pop-up for connecting to the Guidance controller via Ethernet.

mailto:sales@preciseautomation.com

Guidance Development Environment

M+ Gl Deewelogiment Eovironspent ® OFlipe * =loix|
Fib Bl vty Seach Cufinrg Leguee Tem Wit ey
drddilavax2-r-lEEIl S 3RQE -0 Py]
[Pojectiumages ¥ %] Bistset Comntyel L]
FY®-0=+0 5 =]
(]
P [P TR e—r e —— "
. o
. @000
bk Fidn 4 Tt 0
(G Ompect Browar L3
o
& #1 Corpoler -
ER Ao
Locmor
#y g
#y Moww
@5 il
@5 Fobal
#1 Sorm 11
Eluhiriar,
 FE=———] -
&= T e love sk

If you only intended to develop software off-line, you could press the "Cancel” button and skip the
process of connecting to the controller. However, since we wish to execute our code on the controller,
you need to establish an Ethernet connection. In the box labeled "IP or Host Name", verify that the IP
address for the controller is correct. By default, Guidance controllers are configured to respond to
192.168.0.1. If the IP address is correct, you can skip the next instructions.

» To set anew IP address for the controller, press the "Configure" button.

» In the Preference popup window, click on the "Connection" tab, enter the new IP address,
and click "Update".

With the correct controller IP address set, you can now connect GDE to the Guidance controller.

» Click the "Connect" button on the connection popup window. The PC should connect to the
controller in just a few seconds.

Note, if you do not wish to be automatically prompted to connect each time that GDE is launched, you
can go to File > Preferences > Connection to disable this feature.

GDE Windows and Tools

GPL Projects Overview

Before we examine the specific elements of GDE, it is important to take a moment to understand GPL
"Projects". In GPL, rather than executing a "program", a "Project” is the basic executable entity.

A Project consists of two or more text files that are stored within a single disk folder (i.e. directory). Each
file is a standard human-readable ASCII file. The folder name and the Project name are synonymous.
Project names conform to the standard GPL symbol name convention and therefore must start with an
alphabetic character or "_" and cannot be a single "_". The first character can be followed by any
combination of alphanumeric characters and "_". Since Project folders can be stored on the flash disk,
Project names are limited to 43 characters in length. Also, since flash disk names are case sensitive, the
first alphabetic character in the Project name is always upper case and all other alphabetic characters are
lower case, e.g. "Test_project”. Specific operations within GPL and GDE are provided for loading,
compiling, and executing a Project.

The file "Project.gpr" must always be present in each project folder and is referred to as the "Project
File". This file contains information on the other files within the Project. For example, the Project File
stores the name of the procedure that is invoked when the Project begins execution. GDE automatically
manages the contents of this file and so it is normally hidden within GDE.

There can be multiple GPL source files within a Project. Each source file has a "gpl" extension. These
files each can contain one or more program modules, which in-turn can contain multiple variable
declarations and procedures.

In addition, a Project can contain one, several or no files with a "gpo" extension. This type of file stores a
global module that is used to defined global Location and Profile objects. This file is convenient for
saving taught robot Locations and general motion Profiles that are accessible by all procedures within
the Project.

Almost all of the work done within GDE involves the creation, debugging, and management of the "*.gpl"
and "*.gpo" files for a given Project.

Since a Project consists of a collection of files within a disk folder, loading a Project into memory or
copying a Project from memory or between disk units is equivalent to copying a file folder and all of its
contents. So, Projects can be managed by graphically dragging and dropping their associated folder onto
the desired destination device. Although only one Project can be executed at any time, as a
convenience, multiple Projects can be concurrently loaded into memory.

GDE Screen Layout

After you have successfully connected to GDE for the first time, you will be presented with the following
initial application layout.

Guidance Development Environment

[€ Gl Development Environment * Connected: 192, 168.0.1 * =0l =]
Ao csaaX9- - EEE00SWEEE W | =

[Rebst Conral LI
SUE-01x+0 5B £
LewdedProwe 00000

(=" | e Hepasien
T 11 STisH _Bwtte | R ek o e
[anabike f -
L P e i D i

O P L T e P S Al _—

R W

[GhpecBromar W ¥

* -‘;C:ru* a

¥ g Functer

¥ A2 Locster

™

§ g low

§ g Pl

™

§ % Soru =

Sleh b e,

a1 A
N e

The GDE layout contains a title bar that displays the IP address of the connected controller, a top menu
bar, a tool bar, the main editor/debugger area and a variety of (dockable) windows. Each of these
dockable windows can be displayed or hidden, resized and repositioned into the arrangement that is most
efficient for your use. Any space not occupied by a dockable window is utilized by the editor/debugger.

To reposition a window, you simply click in its title bar and drag it to its new location. If you drag a
window on to another window, they can split the space or share the space using tab controls. If you click
on the close icon (x) in the top right of a window's title bar, you can use the "View" top-level menu to
redisplay the window. If you click on the "push pin" in the top right of a window's title bar, you will either
"pin" a window and fix its location or "un-pin" a window so it can share its space with another window.

Windows can be resized by grabbing a border and stretching or shrinking it to the desired dimension.

To restore the original positions and sizes of all of the dockable windows, in the main menu, select View
> Window Layout > Load Default Layout.

In the following sections, the functions available from each of the major components of GDE (i.e. main
menu bar, tool bars, and windows) will be described. The components are presented in order of
importance rather than alphabetically. The following table briefly summarizes each of the components.

Component Description

Main window for editing and debugging procedures and
global motion data.

Main menu bar that provides access to most of the functions
provided by GDE.

Editor/Debugger Window

Main Menu Bar

Main Toolbar Provides quick access to common editing and other functions.
Debua Toolbar Provu_:ies debug functions for single stepping, pausing and
DEbly 1001 stopping threads.

Project Manager Window |Displays and manages Projects that are resident in the

10

GDE Windows and Tools

controller's memory and in the flash disk and the PC's hard
drive in the standard GPL Project areas.

Object Browser Window

Provides a list of the methods and properties of all GPL
Classes. Automatically displays abbreviated help information
as text is entered.

Robot Control Window

Displays the controller system messages and state. Allows
robot power to be enabled and disabled and the robot speed
to be reduced for testing.

GPL Output Window

Displays all output generated by the controller in connection
with the execution of GPL Projects.

Threads Window

Displays execution status and the last procedure executed in
each GPL thread.

Program Stack Window

Displays a list of procedures that are on the execution stack
for a given thread.

File Manager Window

Displays and manages all folders and files on the controller's
flash disk.

Console Window

Provides access to the controller's console. Allows GPL

Console Commands to be entered and executed.

Editor and Debugger Window

The Editor and Debugger Window is the primary focus of GDE and occupies all of the space not utilized
by the displayed dockable windows. This window allows you to create and modify GPL source files and
global GPL motion variables, and to debug GPL procedures by single stepping, setting breakpoints,

displaying variable values, etc.

In its normal editing mode, this window will look as follows.

11

Guidance Development Environment

1 Maingpl® | A1 Giodue.gpo 4b %
GPy =l [mm =]
[| *Cremced: 10/5/2Z005 11:00:59 AN j
2 Module GPL
Ik Publiec Suly MAIN
i Dim ii As Inceger
5 Const grippec_on As Integer = 20001 ' Gripper DIOQ =ignal
1]
7 Roboc. Accached = 1 ! Gat control of the robot
Signal.DI0(gcipper on) = Falae ' Turn off gripper
(=] “WE.LnEfﬂﬂ.chpﬂﬂlzlun, :1-u=r_u.nd._:|tup:|
10 For ii = 1 To 10
G0 get the parc
12 Hove. hpproach (pickup_position, fast_motion)
13 Hove.Loc (pickup posicion, slow and stop)
14 Hove.#aicForEOH ! Synch with robot motion
15 Signal.DbIC(gripper on) = True
i6 i ' Go put the part down
Hove. hpproach{pickup posicion,slow and go)
: Hove. kpproach (placemsnt posSition, TAST WMOT10n)
12 Move.Loc (placement position,slow and stop)
20 Mowve - B B
51 4 [approach)| = Fal=e
"‘ H o 1 l
_. % % Loc k_position,slov_and go)
5 Hexc 1 e
26 Hove.L ¥ Rel ow and stop)
27 End Sub ¥ SefTorgues il
28/ - End Module % StartTorgueCnir]
W StopSpacialodes
¥ WaitForEOM
12 | 4

To open a file for editing, you can either double click on the file name in the Project Manager Window or
right click on the file name and choose "Edit" in the pop-up menu.

As each file is opened, at the top of the editor window, tabs with the names of opened files are
dynamically created to allow you easily switch between files. You can edit files located in the controller's
memory, in the controller's flash disk or in the PC's hard drive. Each tab icon is color coded to indicate
where the file is stored: in memory (red), the flash (yellow) or the PC (blue). Any files that have been
modified and not saved are indicated with an "*" following the name.

Just below the file tabs, two pull-down menus are available for quickly positioning the cursor at a specific
module and procedure within a file. For example, in the picture above, the editor is currently position
within the "GPL" module and in the "Main" procedure.

The editor operates in the typical manner for inserting, deleting, cutting, and pasting text. In addition,
context sensitive help is always active. For example, in the screen shot above, a popup box is
automatically displayed as soon as the editor recognizes that you wish to enter a property or method for
the GPL Move class. When you select a property or method, the GDE Object Browser will display the
syntax for this item as well as a short description. Also, the editor automatically capitalizes keywords and
built-in system classes, methods, and properties and color codes the text for greater readability.

If you edit a global modules file that contains motion objects, i.e. a *.gpo file, the editor screen will appear
as follows.

12

GDE Windows and Tools

B renol @ cModulegpo 4bx
botion Obsects e souncs |
=1 458 Hotion Location
1%3 safe_position
1% pickup_pasition
t; placement_posshon
+1 [Motion Profle
1. Motion Frame
Add | Deletn Record |
Motiorlocation: sale_position 5
B [demtiy
Locationh ame sale_postion
B Motion
Conrhg 1]
Pos
PaswilF el
RielFrams
Type Cartesian
B Aohot Angle:
B Robot Caitezian Coodinates
PFitch 180
Rl 180
o B
Y i, 2
Vam o
Z -30.6
B Aohot Claarance
Zllsaiance 1E+32
DWaaid Falze
X
Selz and gets he deplacemant along the -aas, in unilz of milimetess, for the P

This editor display allows you to create new global Motion Location and Profile objects ("Add"), delete
objects ("Delete"), and set the position of a Location equal to the current location of the robot
("Record"). If you select an object in the top treeview panel, all of the properties of the object are
displayed below in the properties window. If you select a specific property, a short description is
displayed in the bottom panel.

Any objects defined within a .gpo file are globally available to all procedures within the Project. This
editing window provides a very simple means of creating, managing, and teaching key application
positions and generic motion Profiles.

If you would prefer to display the treeview panel and the property panel to the right and left of each other
rather than vertically stacked, press the layout icon that is just above the property window and to the right.

To display the underlying text that is generated by this global object editor, press on the "View Source"
button.

Once you start program execution, if you pause stepping by hitting a breakpoint or other means, you are
automatically placed into the debugger. Files being controlled by the debugger appear on their own tabs
in the same manner as files being edited.

13

Guidance Development Environment

AW maingpl | dbx
GP =] [mm =]
1| 'Cresced: 10/5/2005 11:00:59% AM Ej
2 = Hodule GPL
3 Pubblics Subh HAIN

Dim 11 A= Inceger
Const grippec_on Az Integer = 20001 ' Gripper DIO signal

in o

J

Robor . Atcached = 1 ! Gat =ontrol of the roboc
Signal.DI0(gripper_on) = Falss ' Turn off gripper
Hove.Loc (safe_position, slov_and stop)

For fi = 1 To 10

ll, Integer, ' G0 get The partc

moTTT R ach (pickup_position, fast_motionj

Hove.Loc (pickup position, slow and stop)

Move . ¥altForECH ' Synch with robot morion
i Signal.DI0{gripper_on) = True

16 ' Go put the part down
Howe. Approach (pickup posicion,=low and go)

Nove . Approach (placement position,fast motion)

19 Hove.Loc (placement _position,slov_and stop)

20 Howve . HaicForECH ' Zynch wich robor moTion
Signal.DI0(gripper on) = Falae

O a0

LU

e

n o

Move.kpproach (placement position,=low and go)

25 Hext 1i
286 HW&.ME:#:Q_FO.‘IJ:-’WH. alﬂﬂ‘_ﬁnd-_-ﬂtl‘;l]:!l
&3 End Sub

28| - End Hodule
[| i

As a visual cue, files that are being debugged are displayed with a gray background. Also, in the left
margin, the next step to be executed is indicated by a yellow arrow. Any break points that are set are
indicated by a blue dot as in line 14 above. Break points can be set or cleared by clicking in the left
margin in addition to using the selection in the top menu and toolbar. If you hover the cursor over a
variable, the variables name, type, and current value are displayed for the current context. This is shown
for the integer "ii". To display other variables, the right-click menu in debug mode can open the "Debug
Show Variable " pop-up window. This window permits values not currently displayed to be evaluated in
the current execution context.

Both the standard source code editor and the debugger can have their screens split. So, multiple editors
and debuggers can be simultaneously active.

For information on all of the debugging aids, please see the section on the Debug Toolbar.

Main Menu Bar

The Main Menu Bar allows you to execute the majority of the functions available within GDE. Many of the
more common functions are also provided via the Toolbars or within the dockable windows.

The following tables describe the operation of each of the selections within the pull-down menus and are
organized by the name of the menu.

14

GDE Windows and Tools

File

Description

New Project

A new Project is created with the name specified in a subsequent
popup dialog box. That popup also permits you to select whether
you wish to create the Project in the controller's memory, in the flash
disk, or in the PC's hard drive. The new Project will have one empty
source code file and one empty global module file assigned to it.
This operation is equivalent to the "Create a new project file"
operation in the Project Manager.

Save

Saves the file being edited back into its Project folder. The folder can
be in memory, in the flash, or on the PC hard drive. Changes to files
in memory do not take effect until the file is saved back to memory.

Connect

Displays the "Connect to GPL" popup window that allows you to
connect GDE to a Guidance controller.

Disconnect

Terminates the connection between the controller and GDE.

Preferences

Displays the GDE Preferences window. This window allows you to
change the IP address of the controller, the folder on the PC for
storing GPL projects and other settings.

Save as HTML

Standard functions for saving the current editing window in either

Save as RTF HTML or RTF format.
Print... . o L . .
Page Set Standard functions for printing or previewing the text displayed in the
.g up active editor window.
Print Preview...
Exit Terminates execution of GDE.
Edit Description
Undo Standard undo and redo functions that reverse the effect of the
Red previous editing operations or re-instate the effect of operations that
edo were undone.
Cut
Copy Standard cut, copy, paste, and delete functions that operate on the
Paste selected text within the GPL editor.
Delete
Indent For the selected GPL statements in the editor, either moves all of the
Outdent text left or right by one tab (4 character positions).
Comment Selection |[For the selected GPL statements in the editor, either inserts or
Uncomment deletes a comment character in the first column of each line to
Selection "comment out" or revert the code.

Make Uppercase

For the selected GPL statements in the editor, either converts all of

Make Lowercase

the text to upper or lower case.

Delete Horizontal

For the selected GPL statements in the editor, deletes all leading

Whitespace space and tab characters.

Toggle Line Enables or disables displaying the line numbers in the editor and
Numbering debugger windows.

Mark Line If enabled, draws a yellow bar in the left margin of all lines that have

Modifications

been modified but not yet saved to the Project file.

Bookmarks

Displays a submenu of functions that set, clear, and return to
bookmarks in files being edited. When you set a bookmark on a line

in a file, the editor remembers the line number and file name. You

15

Guidance Development Environment

16

can then quickly scroll through all of the bookmark'ed sections of
code by using the "Previous Bookmark" and "Next Bookmark"
selections.

View

Description

Window Layout

Provides "Load Default", "Load Layout" and "Save Layout" selections
for permitting custom desktop layouts to be preserved, reloaded or
set back to the normal default.

Project Manager,
File Manager, ...

Contains a pull down menu selection for each of the dockable
windows. Permits windows to be re-opened if they have been

closed.

Debug

Description

Start with Break

Compiles and starts execution of the Project specified in the "Project"
box in the main toolbar. However, execution is paused at the
Project's first statement to allow you to utilize the debugging facilities

Start

Compiles and starts execution of the Project specified in the "Project"
box in the main toolbar.

Step Into

Executes the next sequential statement in the current thread after
which execution is paused once again. If the statementis a
procedure call, execution is paused inside of the procedure before its
first statement.

Step Over

Executes the next sequential statement in the current thread.
However, if the statement is a call to a procedure, the entire
procedure is executed and execution is paused at the first statement
following the procedure call.

Step Out

Executes all remaining statements in the current procedure and
pauses execution at the first statement following the call to the
current procedure.

Stop All

Halts execution of all threads. After execution has been halted,
execution can no longer be continued and must be restarted.

Toggle Break Points

Sets or clears a break point on the current line of a procedure in
memory. When execution of a procedure encounters a line with a
break point set, execution is paused.

Clear All Break

Clears all of the break points in the file currently displayed in the

Points editor/debugger.
Search Description
EZ?;EZ‘:}';?ZéarCh Displays a standard popup window for finding or replacing text within
Reverse the editing window and provides shortcuts for repeating the operation
Vi

Incremental Search

either going forward or backwards in the file.

Go To Line...

Moves the cursor to the specified line in the editor or debugger

window.

GDE Windows and Tools

Outlining Description

Toggle Outlining Outlining allows you to display all text lines or collapse to their first
Expansion line procedures or modules within a file. This function is convenient
Toggle All Outlining [since most files have multiple procedures and modules. Outlining
allows you to display just those elements that are currently of interest
to you.

Stop Outlining

Tools Description

Brings up a web browser and connects it to the Operator Interface for
the controller. The browser window is treated just like another
opened file within the GDE editor and is displayed in its owned tab'ed
window.

Web Interface

Window Description

Split Horizontally
Split Vertically
Split Four-Way

Divides the current editor or debugger window into 1, 2 or 4 separate
panels. Each panel can be individually scrolled to view different
sections of a file.

No Splits
Help Description
Contents Opens the Precise Documentation Library in an independent window.
About GDE Generates a popup window that displays the GDE version and ID
information along with build information for key components of GDE.

Main Toolbar

The Main Toolbar provides quick access to a number of commonly used functions, particularly text editing
operations, that are also provided in the pull-down list of the Main Menu.

The Main Toolbar, which has been split into two for easier viewing, is shown below.

|
&3 04 Ql o | W = B~ Project IPiu:k_andJ:uIau:e-ldle LI

]

Ad gl a@X|[9~-o~|E

s
[

17

Guidance Development Environment

The following table describes the operations available via this toolbar.

18

Icon Tool Tip Title Description
A new Project is created with the name specified in a
subsequent popup dialog box. That popup also permits
you to select whether you wish to create the Project in
& INew Project the con_troller's memory,_in the_ flash disk, or in the PC's
= hard drive. The new Project will have one empty source
code file and one empty global module file assigned to
it. This operation is equivalent to the "Create a new
project file" operation in the Project Manager.
Saves the file being edited back into its Project folder.
il Isave Document The folt_:ier can be in memory, in the flash, or on the PC
hard drive. Changes to files in memory do not take
effect until the file is saved back to memory.
& |Print Standard functions for printing or previewing the text
.3 Print Preview displayed in the selected editor window.
Cut
-3 [Copy Standard cut, copy, paste, and delete functions that
7, |Paste operate on the selected text within the GPL editor.
X |Delete
&) Undo Standard undo and redo functions that reverse the
effect of the previous editing operations or re-instate
= Redo the effect of operations that were undone.
iE Outdent For the selected GPL statements in the editor, either
. moves all of the text left or right by one tab (4 character
= |Indent I
- positions).
"— |Comment Selection For the selected GPL statements in the editor, either
inserts or deletes a comment character in the first
*> lUncomment Selection column of each line to "comment out” or revert the
- code.
] |Toggle Bookmark Sets, clears, and returns to bookmarks in files being
&) |Previous Bookmark edited. When you set a bookmark on a line in a file, the
T3 Next Bookmark editor remembers the line number and file name. You
can then quickly scroll through all of the bookmark'ed
Q Clear Bookmarks sections of code by using the "Previous Bookmark" and
"Next Bookmark" buttons.
Immediately disables power to the robot's motors. This
L3 |Disable Robot Power is equivalent to the "Disable" button in the Robot
Control Window.
Clicking on this icon or selecting "Toggle Break Point"
in the pull down list, sets or clears a break point on the
current line of a procedure in memory. When execution
T Break Points of a proced_ure_encounters a line with a break _point
set, execution is paused. A second selection in the pull
down list, "Clear All Break Points", clears all of the
break points in the file currently displayed in the
editor/debugger.
Clicking on this icon or selecting "Start" in the pull down
. list compiles and starts execution of the Project
M |Compile and Run

specified in the "Project" box to the right. If you select

"Start with Break" in the pull down list, the Project is

GDE Windows and Tools

compiled and started, but execution is paused before
the first statement to allow you to utilize the debugging
facilities. The "Compile Only" option is a convenience
to allow you to just compile your Project to check for
syntax errors. The "Stop All" selection is equivalent to
the "Stop All" button in the debugger panel. This
function halts execution of all active Projects. After
being halted, execution cannot be continued and must

be restarted.

Debug Toolbar

Whenever a Project is executing or has been paused, the Debug Toolbar is automatically displayed

below the Main Toolbar. The Debug Toolbar provides easy access to the functions available for
continuing, pausing, stopping and single stepping the execution of a specified thread.

The Debug Toolbar is shown below.

M Q| %= (= = = | Thread [Testproject - Idie =]

The following table describes the operations available via this toolbar.

Icon

Tool Tip Title

Description

»

Continue Execution

Continues execution of the thread specified in the
"Thread" box to the right after the thread has been
paused due to an error, a break point, or a Break
command.

Break

Pauses the execution of the thread specified in the
"Thread" box to the right. This is equivalent to hitting a
breakpoint in the specified thread.

Stop All

Halts execution of all threads. After execution has
been halted, execution can no longer be "Continued"
and must be restarted.

||‘|ﬁI

Step Into

Executes the next sequential statement in the specified
thread after which execution is paused once again. If
the statement is a procedure call, execution is paused
inside of the procedure before its first statement.

o
T}

Step Over

Executes the next sequential statement in the specified
thread. However, if the statement is a call to a
procedure, the entire procedure is executed and
execution is paused at the first statement following the
procedure call.

|||Iﬁ+

Step Out

Executes all remaining statements in the current
procedure and pauses execution before the first
statement following the call to the current procedure.

it

Goto Line

Moves the next step pointer to another line within the
same procedure that is currently paused. When

19

Guidance Development Environment

| | eexecution is continued, it will be from the specified line. |

Project Manager Window

The Project Manager Window displays Projects that are loaded in the controller's memory as well as
Projects stored in the controller's flash disk and in the PC's hard drive in the standard GPL Project area.
This window allows Projects to be created, edited, selected for execution, deleted, and transferred
between the controller's memory and the disk areas. This dockable window typically looks as follows:

Project Manager

Loaded Projects
El--@ Testproject
pi _‘1 Main. gpl

Free Memory: 11.5721Mb

EI._"?_,"'; GPL Flash: Aash/projects.”
. [-ZY Calibrate
=5 3} PC Local: C:\Program Files"Precise Automatic
[+-Ft Sampleproject
EI@ Testproject
te|] Main.gpl

Jl | I

The upper window indicates all Projects loaded into the controller's memory. Once loaded into memory,
these Projects are eligible to be executed. In this example, a copy of "Testproject" is loaded into memory.
Just below this window, the amount of the controller's memory still available for use is displayed.

To select a Project for execution or debugging, double click on the Project in the Loaded Projects window
or right click on the Project and choose "Select" in the pop-up menu. Alternatively, Project selection can
be done on the top GDE menu bar.

The lower window indicates the Projects stored in the controller's flash disk (/flash/projects/) directory and
Projects stored in the standard GPL Projects area on the PC's hard drive. In this example, a Project

named "Calibrate" is stored in the flash while two Projects (Sampleproject and Testproject) are stored on
the hard drive.

20

GDE Windows and Tools

To edit a file within a Project, expand the contents of the Project and double click on the file of interest.
You can edit Projects stored in memory, in the flash, or on the PC's hard drive.

To copy a Project between memory, the flash, or the hard drive, simply drag-and-drop the desired
project. Dragging-and-dropping a Project to memory is equivalent to loading a Project in preparation for
execution. Projects that have been modified while in memory must be dragged-and-dropped to flash or
the hard drive if you wish to preserve the changes in the event that the controller is powered down.

The following table describes the operations available via the Project Manager tool bar.

Icon Tool Tip Title Description

A new Project is created with the name specified in a
subsequent popup dialog box. That popup also permits
you to select whether you wish to create the Project in
the controller's memory, in the flash disk, or in the PC's
hard drive. The new Project will have one empty source
code file and one empty global module file assigned to
it. This operation is equivalent to the "New Project"
operation in the top GDE menu bar.

For the selected Project, adds either an additional

New Project

j Add Item to Project source code file or a global module file with the name
specified in a subsequent popup dialog box.

& save Memory To: For a Project stored in memory, allows the operator to:

' "Delete from memory", "Save to flash", or "Save to PC"
= - Opens the selected component in the GDE editor. This
Edit File) ; " :

is equivalent to double clicking on the file.

y Delete Project Or After confirmation, deletes the selected Project or

- |Component selected file within a Project.

Copies a Project stored in flash or on the PC's hard

w Load Project drive to the controller's memory in preparation for
execution.

Displays information from the Project File including the

Project name and list of components. Allows the

procedure, which is called when the Project is

executed, to be changed.

Refresh View Updates the Project and component displayed for the
selected device.

Project Properties

The following table describes the operations available by right-clicking in the Project Manager window.

Right-click Description
Selects a Project that is loaded into the controller's memory for
Select Project execution or debugging. The Project name will be displayed in the

pulldown window on the main toolbar.

Set Project Start Displays a pop-up window that specifies the procedure to be
Method automatically executed when the Project begins running.

Set PC Project Path [These items allow the path to the PC hard drive GDE project area to
be easily modified or restored. When this path is modified, the
Recent Project Projects in the new path are automatically displayed in the Project
Paths Manager's lower window. When GDE is restarted, the last selected
path is remember and again put into effect.

21

Guidance Development Environment

Import Project

Permits a Project to be copied between a folder in the PC's file

Export Project

system and the controller's memory, the controller's flash drive, or
the hard drive GDE project area. These functions simplify sharing
Projects in a common network drive and are convenient for
exchanging Projects via email. In addition, Projects can be dragged
from the PC's file system and dropped into the GDE project area.
However, the reverse process is not currently supported.

Edit Same as the "Edit File" toolbar selection.

New Project Same as the "New Project" toolbar selection.

Add New Item Same as the "Add Item to Project" toolbar selection.

Delete Same as the "Delete Project or Component" toolbar selection.

Copy Project

Copies or duplicates the selected Project. A pop-up window is
displayed that permits the destination and new name of the copy of
the project to be specified.

Load Project to
Controller Memory

Same as the "Load Project" toolbar selection.

Compile Project

Same as the "Compile Only" main toolbar selection. This is a
convenience feature to allow you to just compile your Project to
check for syntax errors.

Refresh

Same as the "Refresh View" toolbar selection.

Object Browser Window

The Object Browser Window displays syntax and help information for all of the GPL statements and class
methods and properties. This dockable window operates in a fashion similar to the .NET Object Browser

and typically looks as follows:

22

GPL Object Browser |

~*f% Controller
~*f% Function
~4% Location
¢ Math
%1% Move
g Profile
b Ancel
bl AecelRamp
i 2y Clone
P Decel
. DecelRamp
5 InRange
'-
i Speed?

b CGhraight
4% Robot
~%% Signal
-« Statemerts

Speed
Member Of: Profile

Description: Peak motion speed specified
&5 3 percentage of the nominal speed.

Click for help.

Robot Control Window

A sample of the Robot Control Window is shown below.

GDE Windows and Tools

You can browse the treeview in the upper panel of the Object Browser for syntax information on specific
statements, methods or properties. An icon to the left of each line provides a quick visual queue to
indicate the type of the language element. When you select an item in the top panel, a short description
of the language element is displayed in the lower panel. If you wish to access the complete GPL
dictionary page for the item, just click on the "Click for help" link or double click the icon in the upper
panel. This will open the Precise Documentation Library at the dictionary page for the selected item.

As you use the GDE editor to create new program steps or modify existing steps, the Object Browser
automatically updates the treeview in the top panel and the brief description in the lower panel to display
the information for the language element that you are entering.

The Object Browser is an information window and source of help information only, so there are no tools
associated with this window.

The Robot Control Window provides the minimum functions necessary to operate and monitor the status
of the robot. With this window, you can enable and disable power to the robot, home the robot, view any
error and system messages that have been generated, see the current system execution state, and
reduce the overall speed of the robot for testing purposes. These functions are the necessary subset of
the operations available in the web based Operator Control Panel and Virtual Manual Control Pendant.

23

Guidance Development Environment

Fobot Control

Clear I System Messages

Haorne I | GPL ready
Syztem State;

D% FRobot Speed 100%

The top panel displays all recent error and system messages that have been generated by the controller.
For example, when the robot is stopped due to an error condition, a message is displayed in the top panel
that indicates the nature of the error. At any time, you can clear the message buffer by pressing the
“Clear" button.

The "Enable/Disable" button turns the power to the robot's motors on and off. The "Home" button
executes the robot's homing sequence to establish the zero position of each axis when the controller is
restarted. The text box to the right of these buttons displays the current execution state of the system.
For example, it indicates if robot power is currently enabled and whether a hardware E-Stop is being
asserted. Prior to executing a GPL program that moves the robot, the robot power must be enabled, the
robot must be homed, and the System State must indicate "GPL ready". If you are not familiar with the
procedures that are necessary for initializing the controller and robot, please see the “Guidance System
Setup and Operation, Quick Start Guide”.

The bottom "Robot Speed” slider is equivalent to the speed control on the web Operator Control Panel.
This allows you to proportionally slow down the overall speed of the robot while you are debugging a new
Project. Changes to the slider take effect immediately even during the middle of a motion.

GPL Output Window

The GPL Output Window displays all output from the controller that is generated in connection with
executing a GPL program. For example, when you compile a GPL program, the output of the compiler
including any error messages will be displayed in this window. In addition, if your GPL program
generates any text output, e.g. by executing a "Console.WriteLine" method, this output will also be
displayed in the GPL Output window.

If the GPL Output window is closed when you begin execution of a Project, this window will automatically
be opened.

24

GDE Windows and Tools

A sample of the GPL Output window is shown below after the "Testproject” has been successfully
compiled and executed.

GPL Output x|

Compile Project: Testproject

02-07-2004 12:22:40: project Testproject, Begin compiler pass 1
Main.gpl Reading file

02-07-2004 12:22:40: project Testproject, Begin compiler pass 2
Main.gpl Reading file

Compile successful

Status: 0:5uccess
Start Project: Testproject
Thread: Testproject

Status: 0:Success

If you want to "Clear" the contents of this window or "Copy" the contents to a file, right click anywhere in
the window to get a popup menu to execute these operations. For the copy function, any text that is
currently selected in the window will be copied to the Windows copy/cut/paste buffer.

Threads Window

The Threads Window displays status information for each active execution thread in the controller. The
main procedures for your Project will always run in their own thread. In addition, more complex
applications may initiate additional threads to allow independent execution of selected code segments.

A sample of the Threads Window is shown below where each line displays the information for a different
execution thread.

25

Guidance Development Environment

x|

Thread Name | State | Last Status | Project | File | Line Mumber |
Testproject Idle 0, Testproject Main.gpl 11

The first column specifies the name of the thread. The thread name is normally the same as the Project
name. The "State" indicates if the thread is running or has ceased execution for some reason (e.g.
paused due to a breakpoint or error). The "Last Status" displays any error message that was generated
when the thread ceased execution. The "Project" displays the name of the Project running in the thread.
If the thread has ceased execution, the "File" and "Line Number" indicate the name of the file that
contained the last procedure executed and the number of the last step executed relative to the start of the
file.

For more information on the interpretation of these values, please see the documentation for the "Show
Threads" Console Command.

The following table describes the operations available via the Threads Window tool bar.

‘ Icon ‘ Tool Tip Title ‘ Description
‘ ‘Refresh ‘Updates the displayed thread information.

Program Stack Window

The Program Stack Window displays the list of procedures that are currently on the execution stack for
the thread specified in the Debug Toolbar "Thread" box.

When a procedure is running, information on the current statement being executed is saved on the
execution stack. When a procedure calls another procedure, information about the current statement in
the calling procedure is preserved on the execution stack and a new "frame" is created on the stack to
store the step information for the called procedure.

A sample of the Program Stack Window is shown below where each line displays the information for a
single stack frame. So, the number of lines indicates the depth of procedure calls currently in effect.
Note, this window will only display information when the referenced thread is active but not running.

26

GDE Windows and Tools

Stack]
Frame I Praject I Process I Proc Line I Filz | Line | Size |
0 Testproject | MAIN g Maingpl | 11 1

The first column specifies the frame number where 0 indicates the frame currently being executed, i.e. the
top of the stack. The "Project” is the name of the Project being executed and "Process" is the name of
the procedure being executed. The "Proc Line" is the number of the statement being executed relative to
the start of the procedure. The "File" is the name of the source code file that contains the procedure. The
“Line" column indicates the number of the statement being executed relative to the start of the file.

Finally, the "Size" displays the size of the stack frame in kbytes.

For more information on the interpretation of these values, please see the documentation for the "Show
Stack" Console Command.

File Manager Window

The File Manager provides access to the entire file structure of the controller. This is wider access than is
available via the Project Manager, which only displays the Project area of the flash disk and the
controller's memory. The entire file structure includes: all folders on the flash, such as the Parameter
Database PAC files in the "/config" folder; the ROMDISK (i.e. the in-memory simulated disk) that contains
the Operator Interface web pages; and the GPL memory image that displays the Projects loaded in the
controller's memory.

The File Manager is provided as a convenience for displaying files not accessible using the Project
Manager such as the Project.gpr files. Should you wish even greater read/write/drag-and-drop access to
the controller's file system, you should utilize the File Manager that is available as part of the Backup and
Restore function of the web Operator Interface.

A sample of the File Manager Window is shown below. In this example, the contents of the flash's
project folder and the GPL folder correspond to the contents displayed in the Project Manager Window
example in this document.

27

Guidance Development Environment

Controller Resource |

| d

x|

- dev
&3 ROMDISK
=22 flash
: 1:] config

El{:'l projects

-2 Calibrate

i L] Testproject
=-{E3 GPL
-2 Testproject
.L:] et

webdir
bindir

The following table describes the operations available via the File Manager tool bar.

Icon Tool Tip Title Description
= - Opens the selected file in the GDE editor. This is
H [EditFile equivalent to double clicking on the file.
. . Opens the selected file in a read-only text display
d Ppreview File window. This can be used for viewing any file.

Console Window

The Console Window provides access to the GPL Console Commands. This window is equivalent to
connecting to the serial port of the controller. The Console Commands are simple, non-graphic text
commands that perform rudimentary operations such as displaying the current memory utilization.

During normal operation and software development, you should not need to issue Console Commands
since their functionality plus more is provided by the web Operator Interface and GDE. However, the

Console Window is provided in GDE for completeness.

A sample of the Console Window is shown below where two typical commands have been issued.

28

GDE Windows and Tools

x|
date
02-05-2004 13:40:50

memory
Main Memony:
Free: 11.5706 Mb, Segments: 37
| Used: 1.2438 Mb, Segments: 1334

For more information on the GPL Console Commands, please see the Software Reference section of the
Precise Documentation Library.

29

GDE Programming Examples

Hello World Example

Now that you have an understanding of the features of the Guidance Development Environment, we want
to put that knowledge to work by developing and executing the traditional "Hello World" computer
program. In this exercise, you will learn how to create a Project, write a simple procedure that outputs the
text "Hello World", load the Project into the controller, and then execute it.

At this time, your GDE environment should be connected to your controller and show look approximately
like the following. Don't worry if you have re-arranged any of the windows or added any projects to the
system. Also, since we will not be moving the robot, the power to the robot need not be enabled.

fF Gl Development Environment * Connected: 192, 168.0.1 =1o0]x]
dAlA AN -r- e S DRI E - e =

7
¥
L

Fres i STEb

2 FL R S raecin’
- P Lo TP Fles'Fase Al

The first step is to create a new Project. For this exercise, you will create this Project on your PC's hard
drive although the Project could just as easily be created on the controller's flash disk.

» To create a new project, click on "File > New Project".

» Inthe"Add New Project" popup box, enter "Hello_world" for the Project name, ensure "PC
hard drive" is selected, and press the "OK" button.

» To bring up the main source code file for editing, in the Project Manager, expand the new
"Hello_world" Project folder and double click on the "Main.gpl" file.

30

GDE Programming Examples

A zoomed view of the Project Manager and the GDE editor will now look like the following.

Project Manager 2 %) Maingpl

R e-ix+08 =R 1| *Creaced; 10/2/2005 4:05:17 BM
Module GFL

Loaded Projects 3 Public Sub MAIN

Free Memary: 11.96530Mb

PR R R R R R R AR R R AR R AR

- % GPL Hash: Mash/pmjects./
=- i PC Local: C-\Program Files'\Precise Automatic
= :@ Hedio_worid
_] GMadule gpa
J !'r"&l'l ;‘;\:
] @ Sampleproject

When you created the Hello_world Project, you saw that GDE automatically adds a main source code file
and a global modules file to new Projects as a convenience. Also, the "Main.gpl" file already contains the
definition for the "MAIN" public procedure. By default, this is the procedure that will be started when we
execute your project, although this can be easily changed by accessing the Project properties.

Next, we want to edit the MAIN procedure and add statements to output the desired text. Then, we want
to load the Project into the controller in preparation for execution.

» In the editor window, below the "Public Sub Main" statement, insert the following lines of
text.

console.witeline("")
console.witeline("Hello world!")
console.witeline("")

» Press the "Save Document" icon on the main tool bar to save your changes.

» In the Project Manager, drag the "Hello_world" Project from the PC to the top "Loaded
Projects" panel and drop it.

As you were entering the text, you might have noticed some aids that are built into GDE. First, after you
typed "console." the system detected that you were referring to the standard Console class and displayed
a popup that you could use to automatically select "Writeline". Secondly, even though you typed
"console" in lower case, the system automatically changed the case of this word. Finally, as you typed,
the Object Browser was changing its contents to highlight the syntax for "writeline" as well as showing a
brief description of this method.

At this point, your new Project is loaded into the controller and is ready to execute. An expanded view of
the Project Manage and editor should now look as follows:

31

Guidance Development Environment

(Project Manager 8 %[[) mamgp |
S P H X+ EB 1| ‘*Created: 10/5/2005 10:50:12 AM
i B Module GPL
Loaded Projects 5 Public Sub MAIN
& Eﬁl Hedlo_worid 4 Console.writeline (")
5 Console.writeline ("Hello world!"™)
[Console writaline ("")
7 End Sulb
8| [-End Module
Free Memory. 12.0322Mb
T S T
- _t GPL Rash: fash/projacts,”
i=- i FCLocal C’\Program Fles'Frecss & o
B Helo_wodd
_] GMadua goo
Bl Maingol
H-{l Sampleproject

You are now ready to execute your Project.

» Either double click on the "Hello_world" Project in the Loaded Projects panel of the Project

Manager to select the project for execution or select the Project name in the top tool bar in the
Project box.

» In the top tool bar, press the "Compile and Run" button (i.e. the green button with the right
arrow).

At this point, the GPL Output window should display text similar to that illustrated below with your "Hello
world!" message shown at the bottom.

x|
Compile Project: Hello_world

02-07-2004 16:18:46: project Hello_word, Begin compiler pass 1

Main.gpl Reading file

GModule.gpo Reading file

02-07-2004 16:18:46: project Hello_word, Begin compiler pass 2

Main.gpl Reading file

GModule.gpo Reading file

Compile successful

Status: 0:5Success

Start Project: Hello_world
Thread: Hello_world
Status: 0:Success

Hello world]|

32

GDE Programming Examples

Congratulations! You have now successfully created and executed your first GPL Project.

If you copy this Project to the flash disk, you and others could now utilize the web Operator Control Panel
to load and execute your new Project entirely from the web interface without the use of the PC. For
instructions on this procedure, please see the “Guidance System Setup and Operation, Quick Start
Guide”.

Pick and Place Example

In this exercise, you will develop a GPL Project that performs a simple simulated pick-and-place
operation. A pick-and-place operation moves the robot's tool tip to a position to pick up a part and then
moves to a second position to drop off the part. In order to clear any possible obstacles and to avoid
dragging the part, the tool tip is retracted after picking up the part and then approaches the place location
slightly over the placement position.

For this application, the robot power must be enabled and the robot must be homed. In addition, the web
Guidance Operator Interface will be used to manually move the robot to teach the pick and place
locations. As in the Hello World example, the starting point for this exercise is to create a new Project.
However, the second step in this process will be to define the global Location and Profile data rather
than writing the program.

» To create a new project, click on "File > New Project".

» Inthe"Add New Project" popup box, enter "Pick_and_place" for the Project name, ensure
"PC hard drive" is selected, and press the "OK" button.

» To bring up the global module file for editing, in the Project Manager, expand the new
"Pick_and_place" Project folder and double click on the "GModule.gpo" file.

At this time, the GDE application should be displaying the panel for editing and managing global robot
data. The zoomed up view of the Project Manager and editor should look as follows:

33

Guidance Development Environment

P_ru_]gcﬂnagar 2 lll I:|1 Main.gol f-l'| GModule.gpo | i
o I « H| =1 |
T S S
Loaded Projests ok Mokion Location
(g8 Hello_wodd & Metion Profie
3 | ot selected
E{rﬁﬂmlEIll]lliﬁﬂl@ll“—"l"IIIII'IIIIJ (T s i‘l B

- GPL Rash: Mash/projects
[=- ¥ PC Local: C\Program Fies'\Precise A fomath
gkl Hello_word
=EM Pick_and_place
_) GModule goo
_] Man.gpl
% (FH Sampleproject

Next, we wish to define and teach three motion Locations: the simulated pick-up position, the placement
position, and a safe position. We will start with the safe position. This should be a robot location that is
above the work surface and one that we can safely reached from most positions in the work envelope.

» Using the Virtual Manual Control Pendant in the web Operator Interface, move the robot to a
"safe" location that you have selected.

» To create a new global Location object, in the Motion Objects panel, click on the "Motion
Location" icon and press the "Add" button. In the pop-up window that requests the
Location's name, enter "safe_position" and press "Ok".

» To set the position of the new Location equal to the current position of the robot, click on

"safe_position" in the Motion Objects panel and press the "Record" button at the bottom of
the Motion Objects panel and click "Yes" to confirm the operation in the pop-up window.

After these steps are completed, the main editing display should look like the following.

34

GDE Programming Examples

it GHudule.apo| 4 b x

Motion Objects
] {ﬁ: Mobion Location
1t safe_postion
Maban Profia

add | Remove Record

MotionLocation: saie_position
i o8
= | e rillsly
LocationMame safe_position
1B Mation
Lonfig o
Pos
Pos\WriRef
Type Cartesian
B Robot Angh

180
-180
X 228
Y 50 579938
¥anwd 0
4 -B. 768719
1B Robot Clemrance
pam 1E+32
Zwlorld Falze
| Robot Cartesian

Since new Locations are created with a type of "Cartesian” by default, we have collapsed the "Robot
Angles" properties in the picture above as these properties are only meaningful for "Angles" Locations.
The important information to note is that a new Location object is displayed in the top window and the
property window shows its property values along with its object name. Your actual "Robot Cartesian
Coordinates" will be different since they will reflect your actual safe position. You should also note that
the ZClearance value is huge since we have not defined a clearance distance for this position.

Repeating this procedure, we will now define Location objects for the simulated pickup and the
placement positions. For these positions, you should select places in your workspace that are clear of
obstacles and, just to be safe, 20-40mm above the work surface.

» Repeat the procedure above to move the robot to the pickup position, create a new global
Location object named "pickup_position", and record the robot location.

» For this position, we want to set the ZClearance value to a height above the pickup location
that we will allow us to move to the pickup location without hitting any obstructions. For
example, enter a small clearance value, such as 25mm to 50mm for the ZClearance property.

» Repeat the procedure again and move the robot to the placement position, create a new
global Location object named "placement_position", and record the robot location.

35

Guidance Development Environment

» For this position, we want to set the ZClearance value to a height above the placement
location that we will allow us to move to the placement position without hitting any obstacles.
For example, enter a small clearance value, such as 25mm to 50mm for the ZClearance

property.

» Press the "Save Document” icon in the main tool bar to store the new Location values.

You have now finished creating and defining all of the robot position data that will be needed for this
simple robot application.

Next, we wish to define some global motion Profile objects. These will be used to control the speed of
the robot during the various types of motions and will determine when the robot stops. You will be
creating three Profiles: one that slews the robot at high speed, a second that moves the robot at a
slower speed and stops, and a final value that moves the robot at a slow speed but doesn't stop at the
end of the motion.

» To create a new global Profile object, in the Motion Objects panel, click on the "Motion
Profile" icon and press the "Add" button. In the pop-up window that requests the Profile's
name, enter "fast_motion" and press "Ok".

» In the properties window, set the Speed, Accel and Decel to 100 for a high speed motion,
and set Speed?2 to O to ignore this secondary property for now.

» SetInRange to -1 to indicate that the robot does not have to stop at the end of the motion
and this motion should be smoothly blended with the next motion if possible.

With this data, the main editing display should look as follows:

36

GDE Programming Examples

1 GModule.gpo | 4b %
Muotion Objects
= ‘:‘: Moticn Location
tl. sate_poation
Tt pickup_posion
1'% placament_postion
- Maotion Profila
fa=t_mation

Bdd | = He

MetionProfile: fast_motion

g =
:-E |dintity
. Frofilahams fast_motion
1H Misc
AccelRamp 0.1
DecelRamp 01
InRange =1
Straight False
B Maotion
Foce] 100
Deceal 100
Spead 100
Spead?]
| Peak mobion speed for special axes specified as a percentage of their nomanal

» Repeat the process to create a second Profile object named "slow_and_stop". This
should have Speed, Accel and Decel set to 25, InRange set to 10, and Speed2 set to 0. This
InRange setting will force the robot to stop at the destination and delay until the final position is
roughly achieved.

» Repeat the process to create a third Profile object named "slow_and_go". This should
have Speed, Accel and Decel set to 25, InRange set to -1, and Speed2 set to 0. Like
fast_motion, the robot will not stop at the destination position.

» Press the "Save Document" icon in the main tool bar to store the new Profile values.

This completes the generation of the global data and we can now turn our attention to writing the GPL
program that will make use of this information.

» To bring up the main source code file for editing, in the Project Manager, in the
"Pick_and_place" Project folder, double click on the "Main.gpl" file.

» In the editor window, below the "Public Sub Main" statement, insert the following lines of
text. If you are reading this exercise in the Precise Documentation Library (the online help file),

37

Guidance Development Environment

this can be accomplished by copying and pasting if you wish to save yourself some typing.

Dimii As Integer
Const gripper_on As Integer = 20001 ' Gipper D O signal

Robot . Attached = 1 ' CGet control of the robot
Signal . Dl O(gri pper_on) = Fal se ' Turn of f gripper

Move. Loc(saf e_position, slow and_stop)

For ii =1 To 10

CGo get the part
Move. Appr oach(pi ckup_posi tion, fast_noti on)
Move. Loc(pi ckup_posi tion, slow and_stop)
Move. Wi t For EOM ' Synch with robot notion
Signal . Dl O(gri pper_on) = True

Go put the part down
Move. Appr oach(pi ckup_posi ti on, sl ow_and_go)
Move. Appr oach(pl acenent _posi tion, fast_noti on)
Move. Loc(pl acenent _posi ti on, sl ow_and_st op)
Move. Wi t For EOM ' Synch with robot notion
Signal . Dl O(gri pper_on) = Fal se

Move. Appr oach(pl acenent _posi tion, sl ow_and_go)
Next i i

Move. Loc(saf e_position, slow and_stop)

» Press the "Save Document" icon on the main tool bar to save your changes.

» To load your application, in the Project Manager, drag the "Pick_and_place" Project from

the PC to the top "Loaded Projects" panel and drop it.

You have now completed all of the software development and teaching for your Project. It's time to
execute it on the controller. Before we do that, we have to ensure that the controller is in the proper state

to run an automatic GPL program.

» Verify that the robot power is on and that the robot has been homed.

» Place the Virtual Manual Control Pendant back into "Computer" mode. This allows an

automatic program to take control of the robot.

At this time, the Robot Control Window should look as shown below. The System State should be "GPL

ready" indicating that power is enabled and a GPL program can take control of the robot.

38

GDE Programming Examples

x|
| =

<] _IJ
Clear | System Messages

Enable || GPL ready
Disable | System State:
e

/

0% Robot Speed 100%

» In the Robot Control Window, set the Robot Speed to approximately 5%. This will force your
Project to move the robot at 1/20th of the normal speed for this application.

» Either double click on the "Pick_and_place" Project in the Loaded Projects panel of the
Project Manager to select the project for execution or select the Project name in the top tool bar
in the Project box.

» This next action will move the robot automatically, so be prepared to hit the E-Stop
button or disable power if any problem occurs! In the top tool bar, press the "Compile and
Run" button (i.e. the green button with the right arrow).

Your Project should now be slowly moving the robot through its pick-and-place operation.
Congratulations! You've just successfully developed and executed your first GPL robot application.

If the robot is moving safely in the workspace, you can gradually increase the overall speed in the Robot
Control Window. If you wish to stop that Project at any time, you can press the yellow "Break" button in
the Debug toolbar. Also, using the web interface, you can view the state of digital signal 20001 on the
Soft Internal IO panel. You will see the simulated gripper signal turn on then off as the robot reaches its
pickup and placement positions, respectively.

As a final step, in preparation for executing this application in a standalone controller, i.e. with the
Guidance Development Environment disconnected, you should copy the Project to the controller's flash
disk.

» Independent of whether the robot is moving or stopped, to copy your application to the flash, in
the Project Manager, drag the "Pick_and_place" Project from the PC to over the "GPL Flash:
[flash/projects/" icon in the same panel and drop it.

39

Guidance Development Environment

With the Project in flash, you can now execute your application using only the web interface. For
detailed instructions on executing GPL Projects via the web Operator Interface, please see the “Guidance
System Setup and Operation, Quick Start Guide”™.

40

	The Guidance Development Environment
	Introduction and
	Reference Manual
	Guidance Development Environment
	GDE Introduction

	Installation and Startup
	Installing GDE/GDS on a PC
	Configuring the Controller for GPL Execution
	Activating GDS Components
	Connecting to the Controller

	GDE Windows and Tools
	GPL Projects Overview
	GDE Screen Layout
	Editor and Debugger Window
	Main Menu Bar
	Main Toolbar
	Debug Toolbar
	Project Manager Window
	Object Browser Window
	Robot Control Window
	GPL Output Window
	Threads Window
	Program Stack Window
	File Manager Window
	Console Window

	GDE Programming Examples
	Hello World Example
	Pick and Place Example

