
Guidance Programming Language
Dictionary

Part Number 609719 Revision A

GPL Dictionary
Part Number: 609719 Rev. A

Brooks Automation

Information provided within this document is subject to change without notice, and although believed to be accurate,
Brooks Automation assumes no responsibility for any errors, omissions, or inaccuracies.

AcuLigner™, Advan Tag™, AutoTeach™, ATR™, AXM™, BiSymmetrik™, CenterSmart™, Crate to Operate™,
CrossingConnect™, DARTS™, Enerta™, e-RMA™, e-Spares™, e-Volution™, Falcon™, FIXLOAD™, FrogLeg™,
GuardianPro™, Independent Twin Linear Exchange™, InCooler™, InLigner™, Isoport™, ITLX™, Jet™, Jet Engine™,
LEAP™, LeapFrog™, LowProfile™, LPT™, M2 Nano™, Marathon 2, Marathon Express, PASIV™, Pathway™,
PowerPak™, PowerTools™, PuroMaxx™, QuadraFly™, Radius™, Radient™, Radient Express™, Reliance™,
Reliance ATR™, RetroEase™, SCARA™, SmartPM™, SMIF-INX™, SMIF-LPT™, SPOTLevel™, The New Pathway
to Productivity™, Time Optimized Trajectory™, Time Optimal Trajectory™, Time Optimized Path™, TopCooler™,
TopLigner™, VacuTran™, VersaPort™, WaferEngine™, LEAP™, Pathway™, GIO, GSB, Guidance 6600, Guidance
6430, Guidance 6420, Guidance 6410, Guidance 6000, Guidance 3400, Guidance 3300, Guidance 3200, Guidance
2600, Guidance 2400, Guidance 2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance
0200 Slave Amplifier, Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment,
GDE, Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, Guidance
Programming Language, GPL, Guidance Slave Board, Guidance System, Guidance System D4/D6, PreciseFlex™
300, PreciseFlex™ 400, PreciseFlex™ 3400, PreciseFlex™ 1300, PreciseFlex™ 1400, PreciseFlex™ DD4,
PreciseFlex™ DD6, PreciseFlex™ DDR, PreciseFlex™G5400, PreciseFlex™G5600, PreciseFlex™G6400,
PreciseFlex™G6410, PreciseFlex™G6420, PreciseFlex™G6430, PreciseFlex™G6600, PreciseFlex™GSBP
Slave Amp, PreciseFlex™ PFD0, PrecisePlace 100, PrecisePlace 0120, PrecisePlace 0130, PrecisePlace 0140,
PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PrecisePower 300, PrecisePower
500, PrecisePower 1000, PrecisePower 2000, PreciseVision, and RIO logos are trademarks of Brooks Automation.

Fusion®, Guardian®, MagnaTran®, Marathon®, Razor®, Spartan®, Vision®, Zaris®, and the Brooks and design
logo are registered U.S. trademarks of Brooks Automation.

All other trademarks are properties of their respective owners.

© 2024 Brooks Automation. All rights reserved. The information included in this manual is proprietary information of
Brooks Automation, and is provided for the use of Brooks customers only and cannot be used for distribution,
reproduction, or sale without the express written permission of Brooks Automation.

This technology is subject to United States export Administration Regulations and authorized to the destination
only; diversion contrary to U.S. law is prohibited.

Brooks Automation
15 Elizabeth Drive
Chelmsford, MA
01824-2400
Tel: +1 978-262-2400
Fax: +1 978-262-2500

Brooks Automation, PreciseFlex Collaborative Robots
201 Lindbergh Avenue
Livermore, CA
94551
Tel: +1-408-224-2838

2 Copyright © 2024, Brooks Automation

Brooks Automation
Part Number: 609719 Rev. A

Worldwide Headquarters
15 Elizabeth Drive
Chelmsford, MA 01824 U.S.A.

Brooks Automation,
PreciseFlex Collaborative Robots
201 Lindbergh Avenue
Livermore, CA 94551 U.S.A

Technical Support

Location Contact Website

North America
+1-800-447-5007 (Toll-Free)
+1-978-262-2900 (Local)
+1-408-224-2838 (PreciseFlexTM)

http://www.brooks.com/

Europe support_preciseflex@brooksautomation.com

Japan +81 120-255-390 (Toll Free)
+81 45-330-9005 (Local)

China +86 21-5131-7066

Taiwan +886 080-003-5556 (Toll Free)
+886 3-5525258 (Local)

Korea 1800-5116 (Toll Free)

Singapore +65 1-800-4-276657 (Toll Free)
+65 6309 0701 (Local)

General Emails

Division Email Address

Sales sales_preciseflex@brooksautomation.com

Technical Support support_preciseflex@brooksautomation.com

Technical Publications Technical.Publications@brooksautomation.com

Copyright © 2024, Brooks Automation 3

http://www.brooks.com/
mailto:support_preciseflex@brooksautomation.com
mailto:sales_preciseflex@brooksautomation.com
mailto:support_preciseflex@brooksautomation.com
mailto:Technical.Publications@brooksautomation.com

GPL Dictionary
Part Number: 609719 Rev. A

Revision History
Revision ECO Date Actions Author

A EC147358 May 30,
2023

Released manual at Rev. A to follow standard
Brooks technical publication styles. M. Ashenfelder

4 Copyright © 2024, Brooks Automation

Brooks Automation
Part Number: 609719 Rev. A

Table of Contents

1. Safety 1
Safety Setup 1
Authorized Personnel Only 1
Explanation of Hazards and Alerts 2

Safety Text 2
Safety Icons 2
Signal Words and Color 2
Alert Example 3

General Safety Considerations 4
Mechanical Hazards 6
Electrical Hazards 7
Ergonomic Hazards 8
Emergency Stop Circuit (E-Stop) 10
Recycling and Hazardous Materials 10

2. GPL Dictionary Pages Summary 11
3. Array Class 13

Array Class Summary 13
array.GetUpperBound Property 14
array.Length Property 15
array.Rank Property 16

4. Console Class 17
Console Class Summary 17
Console.Write Method 18
Console.WriteLine Method 20

5. Controller Class 22
Controller Class Summary 22
Controller.Command Method 24
Controller.ErrorLog Property 26
Controller.Load Method 28
Controller.PDb Property 29
Controller.PDbNum Property 32
Controller.PowerEnabled Property 34
Controller.PowerState Property 36
Controller.RecordButton Property 39
Controller.ShowDialog Method - Basic Modes 40
Controller.ShowDialog Method - Advanced Mode 44
Controller.ShowDialogMCPMethod 49
Controller.SleepTick Method 53
Controller.SoftEStop Property 55
Controller.SystemMessage Method 56
Controller.SystemSpeed Property 57
Controller.Tick Property 58

Copyright © 2024, Brooks Automation 5

GPL Dictionary
Part Number: 609719 Rev. A

Controller.Unload Method 59
6. Exception Handling 60

Exception Handling Summary 60
Catch Statement 62
End Try Statement 63
Exit Try Statement 64
Finally Statement 65
Throw Statement 66
Try..Catch..Finally..End Try Statements 68
exception_object.Axis Property 73
exception_object.Clone Method 74
exception_object.ErrorCode Property 76
exception_object.Message Method 77
exception_object.Qualifier Property 78
exception_object.RobotError Property 79
exception_object.RobotNum Property 80
exception_object.UpdateErrorCode Method 81

7. File and Serial I/O Classes 83
File and Serial I/O Classes Summary 83
File.ComputeCRC Function 85
File.ComputeLength Function 86
File.Copy Method 87
File.CreateDirectory Method 89
File.DeleteDirectory Method 90
File.DeleteFile Method 91
File.GetDirectories Method 92
File.GetFiles Method 93
File.Length Function 94
New StreamReader Constructor 95
streamreader_object.Close Method 96
streamreader_object.Peek Method 97
streamreader_object.Read Method 98
streamreader_object.ReadLine Method 99
New StreamWriter Constructor 100
streamwriter_object.AutoFlush Property 102
streamwriter_object.Close Method 103
streamwriter_object.Flush Method 104
streamwriter_object.NewLine Property 105
streamwriter_object.Write Method 106
streamwriter_object.WriteLine Method 107

8. Functions 109
Function Summary 109
CBool Function 111
CByte Function 113
CDbl Function 115
CInt Function 117

6 Copyright © 2024, Brooks Automation

Brooks Automation
Part Number: 609719 Rev. A

CShort Function 119
CSng Function 121
CStr Function 123
Fix Function 125
Hex Function 127
Int Function 129
Rnd Function 131

9. Latch Class 133
Latch Class Summary 133
latch_object.Angle Property 135
Latch.Count Shared Property 136
latch_object.ErrorCode Property 137
Latch.Flush Shared Method 138
latch_object.Location Method 139
Latch.Result Shared Method 140
latch_object.Signal Property 142
Latch.ThreadEvent Shared Property 144
latch_object.Timestamp Property 146

10. Location Class 148
Location Class Summary 148
location_object.Angle Property 151
location_object.Angles Method 153
location_object.Clone Method 154
location_object.Config Property 155
location_object.ConveyorLimit Method 157
Location.Distance Method 159
location_object.Here Method 160
location_object.Here3 Method 162
location_object.Inverse Method 164
location_object.KineSol Method 166
location_object.Mul Method 169
location_object.Normalize Method 171
location_object.Pitch Property 172
location_object.Pos Property 174
location_object.PosWrtRef Property 177
location_object.RefFrame Property 179
location_object.Roll Property 180
location_object.Text Property 182
location_object.Type Property 183
location_object.X Property 185
location_object.XYZ Method 187
location_object.XYZInc Method 189
Location.XYZValue Method 191
location_object.Y Property 193
location_object.Yaw Property 195
location_object.Z Property 197

Copyright © 2024, Brooks Automation 7

GPL Dictionary
Part Number: 609719 Rev. A

location_object.ZClearance Property 199
location_object.ZWorld Property 201

11. Math Class 203
Math Class Summary 203
Math.Abs Method 205
Math.Acos Method 206
Math.Asin Method 207
Math.Atan Method 208
Math.Atan2 Method 210
Math.Ceiling Method 211
Math.Cos Method 212
Math.Cosh Method 213
Math.E Method 214
Math.Exp Method 215
Math.Floor Method 216
Math.Log Method 217
Math.Log10 Method 218
Math.Max Method 219
Math.Min Method 220
Math.PI Method 221
Math.Pow Method 222
Math.Sign Method 223
Math.Sin Method 224
Math.Sinh Method 225
Math.Sqrt Method 226
Math.Tan Method 227
Math.Tanh Method 228

12. Modbus Class 229
Modbus Class Summary 229
modbus_object.Close Method 231
modbus_object.ReadCoils Method 232
modbus_object.ReadDeviceID Method 234
modbus_object.ReadDiscreteInputs Method 236
modbus_object.ReadHoldingRegisters Method 238
modbus_object.ReadInputRegisters Method 240
modbus_object.Timeout Property 242
modbus_object.WriteMultipleCoils Method 243
modbus_object.WriteMultipleRegisters Method 244
modbus_object.WriteSingleCoil Method 246
modbus_object.WriteSingleRegister Method 247

13. Move Class 248
Move Class Summary 248
Move.Approach Method 250
Move.Arc Method 252
Move.Circle Method 255
Move.Delay Method 258

8 Copyright © 2024, Brooks Automation

Brooks Automation
Part Number: 609719 Rev. A

Move.Extra Method 259
Move.ForceOverlap Method 261
Move.Loc Method 266
Move.OneAxis Method 268
Move.Rel Method 270
Move.SetJogCommand Method 272
Move.SetRealTimeMod Method 275
Move.SetSpeeds Method 277
Move.SetTorques Method 279
Move.StartJogMode Method 281
Move.StartRealTimeMod Method 283
Move.StartSpeedDACMethod 292
Move.StartTorqueCntrl Method 296
Move.StartVelocityCntrl Method 299
Move.StopSpecialModes Method 302
Move.Trigger Method 303
Move.WaitForEOMMethod 307

14. Networking Classes 308
Networking Classes Summary 308
New IPEndPoint Constructor 311
ipendpoint_object.IPAddress Property 312
ipendpoint_object.Port Property 313
socket_object.Available Property 314
socket_object.Blocking Property 315
socket_object.Close Method 316
socket_object.Connect Method 317
socket_object.KeepAlive Property 318
socket_object.Receive Method 320
socket_object.ReceiveFromMethod 322
socket_object.ReceiveTimeout Property 324
socket_object.RemoteEndPoint Property 325
socket_object.Send Method 326
socket_object.SendTimeout Property 328
socket_object.SendTo Method 329
New TcpClient Constructor 331
tcpclient_object.Client Method 332
tcpclient_object.Close Method 333
New TcpListener Constructor 334
tcplistener_object.AcceptSocket Method 335
tcplistener_object.Close Method 336
tcplistener_object.Pending Property 337
tcplistener_object.Start Method 338
tcplistener_object.Stop Method 339
New UdpClient Constructor 340
udpclient_object.Client Method 341
udpclient_object.Close Method 342

Copyright © 2024, Brooks Automation 9

GPL Dictionary
Part Number: 609719 Rev. A

15. Profile Class 343
Profile Class Summary 343
profile_object.Accel Property 345
profile_object.AccelRamp Property 347
profile_object.Clone Method 349
profile_object.Decel Property 350
profile_object.DecelRamp Property 352
profile_object.InRange Property 354
profile_object.Speed Property 356
profile_object.Speed2 Property 358
profile_object.Straight Property 360
profile_object.Text Property 362

16. Reference Frame Class 363
RefFrame Class Summary 363
refframe_object.ConveyorOffset Property 366
refframe_object.ConveyorRobot Property 368
refframe_object.Loc Property 370
refframe_object.PalletIndex Property 372
refframe_object.PalletMaxIndex Property 374
refframe_object.PalletNextPos Method 376
refframe_object.PalletOrder Property 378
refframe_object.PalletPitch Property 380
refframe_object.PalletRowColLay Method 382
refframe_object.Pos Method 384
refframe_object.PosWrtRef Method 386
refframe_object.Text Property 388
refframe_object.Type Property 389

17. Robot Class 391
Robot Class Summary 391
Robot.Attached Property 394
Robot.Base Property 395
Robot.CartMode Property 397
Robot.Custom Property 399
Robot.DefLinComp Method 401
Robot.Dest Property 404
Robot.DestAngles Property 406
Robot.Home Method 408
Robot.HomeAll Method 409
Robot.JointToMotor Method 410
Robot.LastProfile Property 412
Robot.MotorTempStatus Property 413
Robot.MotorToJoint Method 415
Robot.Payload Property 417
Robot.RapidDecel Property 419
Robot.RealTimeModAcm Property 420
Robot.RestartBase Property 422

10 Copyright © 2024, Brooks Automation

Brooks Automation
Part Number: 609719 Rev. A

Robot.RestartTool Property 423
Robot.Selected Property 424
Robot.Source Property 425
Robot.SourceAngles Property 427
Robot.SpeedAngles Property 429
Robot.Tool Property 431
Robot.TrajState Property 433
Robot.Where Property 437
Robot.WhereAngles Property 439

18. Signal Class 441
Signal Class Summary 441
Signal.AIO Property 442
Signal.DIO Property 444

19. Statements 447
Statements Summary 447
Call Statement 449
Case, Case Else Statements 451
Class Statement 452
Const Statement 453
Delegate Statement 455
Dim Statement 458
Do...Loop Statements 460
Else, ElseIF Statements 463
End Statements 464
Exit Statements 465
For...Next Statements 466
Function Statement 469
Get Statement 472
GoTo Statement 473
If..Then...Else...End If Statements 475
Loop Statements 478
Module Statement 479
Next Statements 480
Property Statement 481
ReDim Statement 484
Return Statement 486
Select...Case...End Select Statements 487
Set Statement 490
Sub Statement 492
While...End While Statements 494

20. Strings 496
String Summary 496
String.Compare Method 498
string.IndexOf Method 500
string.Length Property 502
string.Split Method 503

Copyright © 2024, Brooks Automation 11

GPL Dictionary
Part Number: 609719 Rev. A

string.Substring Method 504
string.ToLower Method 505
string.ToUpper Method 506
string.Trim Method 507
string.TrimEnd Method 509
string.TrimStart Method 510
Asc Function 511
Chr Function 512
Format Function 513
FromBitString Function 516
Instr Function 519
LCase Function 521
Len Function 522
Mid Function 523
ToBitString Function 525
UCase Function 528

21. Thread Class 529
Thread Class Summary 529
New Thread Constructor 531
thread_object.Abort Method 533
thread_object.Argument Property 534
Thread.CurrentThread Shared Method 536
thread_object.Join Method 537
thread_object.Name Property 539
thread_object.Project Property 540
thread_object.Resume Method 541
Thread.Schedule Shared Method 542
thread_object.SendEvent Method 546
Thread.Sleep Shared Method 548
thread_object.Start Method 550
thread_object.StartProcedure Property 551
thread_object.Suspend Method 552
Thread.TestAndSet Shared Method 553
thread_object.ThreadState Property 555
Thread.WaitEvent Shared Method 557

22. Vision Classes 560
Vision Classes Summary 560
Vision_Object Disconnect Method 562
Vision_Object.ErrorCode Property 563
Vision_Object Instance Property 564
Vision_Object IPAddress Property 565
Vision_Object Process Method 566
Vision_Object Result Method 568
Vision_Object.ResultCount Method 570
vision_object.Status Property 572
Vision_Object ToolProperty Property 574

12 Copyright © 2024, Brooks Automation

Brooks Automation
Part Number: 609719 Rev. A

Visresult_Object ErrorCode Property 580
Visresult_Object Info Property 581
Visresult_Object InfoCount Property 582
Visresult_Object.InfoString Property 583
Visresult_Object InspectActual Property 584
Visresult_Object.InspectPassed Property 585
Visresult_Object Loc Property 587
Visresult_Object ProcessID Property 589
Visresult_Object Type Property 590

23. XMLClasses 591
XML Classes Summary 591
New XmlDoc Constructor 595
Xmldoc_Object CreateNode Method 596
XmlDoc.DecodeEntities Shared Method 598
Xmldoc_Object DocumentElement Method 600
XmlDoc.EncodeEntities Shared Method 601
Xmldoc_Object ErrorCode Property 603
XmlDoc.LoadFile Shared Method 604
XmlDoc.LoadString Shared Method 606
Xmldoc_Object.Message Property 608
Xmldoc_Object SaveFile Method 609
Xmldoc_Object SaveString Method 611
Xmlnode_Object AddAttribute Method 613
Xmlnode_Object.AddElement Method 614
Xmlnode_Object.AddElementNode Method 615
Xmlnode_Object.AppendChildMethod 617
Xmlnode_Object.ChildNodeCount Property 619
Xmlnode_Object Clone Method 620
Xmlnode_Object FirstChild Method 622
Xmlnode_Object GetAttribute Method 623
Xmlnode_Object GetAttributeNode Method 624
Xmlnode_Object GetElement Method 625
Xmlnode_Object GetElementNode Method 626
Xmlnode_Object HasAttribute Method 628
Xmlnode_Object HasChildNodes Property 629
Xmlnode_Object HasElement Method 630
Xmlnode_Object InsertAfter Method 631
Xmlnode_Object InsertBefore Method 633
Xmlnode_Object LastChild Method 635
Xmlnode_Object Name Property 636
Xmlnode_Object NextSibling Method 637
Xmlnode_Object OwnerDocument Method 638
Xmlnode_Object ParentNode Method 639
Xmlnode_Object PreviousSibling Method 640
Xmlnode_Object RemoveAttribute Method 641
Xmlnode_Object RemoveChild Method 642

Copyright © 2024, Brooks Automation 13

GPL Dictionary
Part Number: 609719 Rev. A

Xmlnode_Object RemoveElement Method 644
Xmlnode_Object ReplaceChild Method 645
Xmlnode_Object SetAttribute Method 647
Xmlnode_Object SetElement Method 648
Xmlnode_Object Type Property 649
Xmlnode_Object Value Property 651

14 Copyright © 2024, Brooks Automation

Brooks Automation 1. Safety
Part Number: 609719 Rev. A Safety Setup

1. Safety

Safety Setup

Brooks uses caution, warning, and danger labels to convey critical information required for the safe
and proper operation of the hardware and software. Read and comply with all labels to prevent
personal injury and damage to the equipment.

 Read the Safety Chapter

Failure to review the Safety chapter and follow the safety warnings can result in serious
injury or death.
l All personnel involved with the operation or maintenance of this product must read

and understand the information in this safety chapter.

l Follow all applicable safety codes of the facility as well as national and
international safety codes.

l Know the facility safety procedures, safety equipment, and contact information.

l Read and understand each procedure before performing it.

Authorized Personnel Only

This product is intended for use by trained and experienced personnel. Operators must comply with
applicable organizational operating procedures, industry standards, and all local, regional, national,
and international laws and regulations.

Copyright © 2024, Brooks Automation 1

1. Safety GPL Dictionary
Explanation of Hazards and Alerts Part Number: 609719 Rev. A

Explanation of Hazards and Alerts

This manual and this product use industry standard hazard alerts to notify the user of personal or
equipment safety hazards. Hazard alerts contain safety text, icons, signal words, and colors.

Safety Text

Hazard alert text follows a standard, fixed-order, three-part format.

l Identify the hazard

l State the consequences if the hazard is not avoided

l State how to avoid the hazard.

Safety Icons
l Hazard alerts contain safety icons that graphically identify the hazard.

l The safety icons in this manual conform to ISO 3864 and ANSI Z535 standards.

Signal Words and Color

Signal words inform of the level of hazard.

Danger indicates a hazardous situation which, if not avoided,will result
in serious injury or death.

The Danger signal word is white on a red background with an
exclamation point inside a yellow triangle with black border.

Warning indicates a hazardous situation which, if not avoided, could
result in serious injury or death.

The Warning signal word is black on an orange background with an
exclamation point inside a yellow triangle with black border.

Caution indicates a hazardous situation or unsafe practice which, if not
avoided,may result in minor or moderate personal injury.

The Caution signal word is black on a yellow background with an
exclamation point inside a yellow triangle with black border.

Notice indicates a situation or unsafe practice which, if not avoided,may
result in equipment damage.

The Notice signal word is white on blue background with no icon.

2 Copyright © 2024, Brooks Automation

Brooks Automation 1. Safety
Part Number: 609719 Rev. A Explanation of Hazards and Alerts

Alert Example

The following is an example of a Warning hazard alert.

Number Description

1. How to Avoid the Hazard

2. Source of Hazard and Severity

3. General Alert Icon

4. Signal Word

5. Type of Hazard

6. Hazard Symbol(s)

Copyright © 2024, Brooks Automation 3

1. Safety GPL Dictionary
General Safety Considerations Part Number: 609719 Rev. A

General Safety Considerations

 Software

Software is not safety rated. Unplanned motion can occur as long as power is
supplied to the motors. Maximum torque could be momentarily applied that may
cause equipment damage or personal injury.
l Only operate the robot with its covers installed.

l Guarantee that safety controller features are in place (for example, an
emergency stop button and protective stop).

l Regularly test safety components to prove that they function correctly.

 Robot Mounting

Before applying power, the robot must be mounted on a rigid test stand, secure
surface, or system application. Improperly mounted robots can cause
excessive vibration and uncontrolled movement that may cause equipment
damage or personal injury.
l Always mount the robot on a secure test stand, surface, or system before

applying power.

 Do Not Use Unauthorized Parts

Using parts with different inertial properties with the same robot application can
cause the robot’s performance to decrease and potentially cause unplanned
robot motion that could result in serious personal injury.
l Do not use unauthorized parts.

l Confirm that the correct robot application is being used.

4 Copyright © 2024, Brooks Automation

Brooks Automation 1. Safety
Part Number: 609719 Rev. A General Safety Considerations

 Magnetic Field Hazard

This product contains magnetic motors that can be hazardous to implanted
medical devices, such as pacemakers, and cause personal harm, severe injury,
or death.
l Maintain a safe working distance of 30 cm from the motor when with an

energized robot if you use a cardiac rhythmmanagement device.

 Unauthorized Service

Personal injury or damage to equipment may result if this product is operated or
serviced by untrained or unauthorized personnel.
l Only qualified personnel who have received certified training and have the proper

job qualifications are allowed to transport, assemble, operate, or maintain the
product.

 Damaged Components

The use of this product when components or cables appear to be damaged may cause
equipment malfunction or personal injury.
l Do not use this product if components or cables appear to be damaged.

l Place the product in a location where it will not get damaged.

l Route cables and tubing so that they do not become damaged and do not present
a personal safety hazard.

 Inappropriate Use

Use of this product in a manner or for purposes other than for what it is intended may
cause equipment damage or personal injury.
l Only use the product for its intended application.

l Do not modify this product beyond its original design.

l Always operate this product with the covers in place.

Copyright © 2024, Brooks Automation 5

1. Safety GPL Dictionary
Mechanical Hazards Part Number: 609719 Rev. A

 Seismic Restraint

The use of this product in an earthquake-prone environment may cause equipment
damage or personal injury.
l The user is responsible for determining whether the product is used in an

earthquake prone environment and installing the appropriate seismic restraints in
accordance with local regulations.

Mechanical Hazards

 Pinch Point

Moving parts of the product may cause squeezing or compression of fingers or hands
resulting in personal injury.
l Do not operate the product without the protective covers in place.

 Automatic Movement

Whenever power is applied to the product, there is the potential for automatic or
unplanned movement of the product or its components, which could result in personal
injury.
l Follow safe practices for working with energized products per the facility

requirements.

l Do not rely on the system software or process technology to prevent unexpected
product motion.

l Do not operate the product without its protective covers in place.

l While the collaborative robotics system is designed to be safe around personnel,
gravity and other factors may present hazards and should be considered.

6 Copyright © 2024, Brooks Automation

Brooks Automation 1. Safety
Part Number: 609719 Rev. A Electrical Hazards

 Vibration Hazard

As with any servo-based device, the robot can enter a vibratory state resulting in
mechanical and audible hazards. Vibration indicates a serious problem. Immediately
remove power.
l Before energizing, ensure the robot is bolted to a rigid metal chamber or stand.

Electrical Hazards

Refer to the specifications of the Guidance Controller Quick Start Guide for the electrical power.

 Electrical Shock Hazard

Contact with electrical power can cause personal harm and serious injury.
l To avoid electrical shock, disconnect the power before troubleshooting the

electrical components.

l Check the unit's specifications for the actual system power requirements and use
appropriate precautions.

l Never operate this product without its protection covers on.

 Electrical Burn

Improper electrical connection or connection to an improper electrical supply can result
in electrical burns resulting in equipment damage, serious injury, or death.

l Always provide the robot with the proper power supply connectors and ground that
are compliant with appropriate electrical codes.

Copyright © 2024, Brooks Automation 7

1. Safety GPL Dictionary
Ergonomic Hazards Part Number: 609719 Rev. A

 Electrical Fire Hazard

All energized electrical equipment poses the risk of fire, which may result in severe injury
or death. Fires in wiring, fuse boxes, energized electrical equipment, computers, and
other electrical sources require a Class C extinguisher.
l Use a fire extinguisher designed for electrical fires (Class C in the US and Class E

in Asia).

l It is the facility's responsibility to determine if any other fire extinguishers are
needed for the system that the robot is in.

Improper handling of the power source or connecting devices may cause component damage or equipment fire.
l Connect the system to an appropriate electrical supply.

l Turn off the power before servicing the unit.

l Turn off the power before disconnecting the cables.

Ergonomic Hazards

 Heavy Lift Hazard

Failure to take the proper precautions before moving the robot could result in back injury
and muscle strain.
l Use a lifting device and cart rated for the weight of the drive or arm.

l Only persons certified in operating the lifting device should be moving the product.

 Tipover Hazard

This product has a high center of gravity which may cause the product to tip over and
cause serious injury.
l Always properly restrain the product when moving it.

l Never operate the robot unless it is rigidly mounted.

8 Copyright © 2024, Brooks Automation

Brooks Automation 1. Safety
Part Number: 609719 Rev. A Ergonomic Hazards

 Trip Hazard

Cables for power and communication and facilities create trip hazards which may cause
serious injury.
l Always route the cables where they are not in the way of traffic.

Copyright © 2024, Brooks Automation 9

1. Safety GPL Dictionary
Emergency Stop Circuit (E-Stop) Part Number: 609719 Rev. A

Emergency Stop Circuit (E-Stop)

The integrator of the robot must provide an emergency stop switch.

 Emergency Stop Circuit

Using this product without an emergency stop circuit may cause personal injury.

l Customer is responsible for integrating an emergency stop circuit into their
system.

l Do not override or bypass the emergency stop circuit.

Recycling and Hazardous Materials

Brooks Automation complies with the EU Directive 2002/96/EUWaste Electrical and Electronic
Equipment (WEEE).

The end user must responsibly dispose of the product and its components when disposal is
required. The initial cost of the equipment does not include cost for disposal. For further information
and assistance in disposal, please email Brooks Automation Technical Support at support_
preciseflex@brooksautomation.com.

10 Copyright © 2024, Brooks Automation

mailto:support_preciseflex@brooksautomation.com
mailto:support_preciseflex@brooksautomation.com

Brooks Automation 2. GPL Dictionary Pages Summary
Part Number: 609719 Rev. A

2. GPL Dictionary Pages Summary

The Guidance Programming Language Dictionary Pages provide detailed information on each
instruction, keyword, function, and class property and method that is available in GPL. For
convenience, these descriptions are group either by their class or by their major function. Within
each group they are sorted alphabetically.

In general, instruction names, keywords, function names, group names, and property and method
names are indicated in bold. User specified variable names are indicated in italics. Sample GPL
program snippets are presented in the Courier font.

Table 2-1 summarizes each of the major groups of descriptions.

Group Description

Array Class Provides the properties of any type of variable array.

Console
Class Provides methods for performing output to the serial console or to the GDE console window.

Controller
Class

Provides access to general facilities provided by the motion control hardware such as power
control, timers, etc.

Exception
Handling

Includes statements for fielding execution exceptions and the Exception Class for storing
exception information.

File and
Serial I/O
Classes

Provides File, StreamReader and StreamWriter classes that implement file and serial line input
and output communications.

Functions Includes standard functions, such as conversion routines, that do not fall into a specific class.

Latch Class Provides access to the results of latch input events, including the time and robot position when the
latch occurred.

Location
Class Defines positions and orientations of the robot and objects.

Math Class Provides the standard arithmetic and trigonometric functions.

Modbus
Class

Permits programs to communicate with other intelligent devices using the MODBUS/TCP
Ethernet communication protocol.

Table 2-1: Groups Summary

Copyright © 2024, Brooks Automation 11

2. GPL Dictionary Pages Summary GPL Dictionary
Part Number: 609719 Rev. A

Group Description

Move Class Provides the basic methods for executing a motion between Locations using Profiles.

Networking
Classes

Classes for Ethernet network communications. Includes IPEndPoint Class for specifying IP and
port addresses; Socket Class that provides basis for networking I/O operations; TcpListener
Class for TCP server applications; TcpClient Class for TCP client applications; and UdpClient
Class for UDP server and client applications.

Profile Class Defines sets of parameters that specify the trajectory to be followed when moving between
Locations.

RefFrame
Class

Defines robot and part reference frames. Cartesian Locations and RefFrames can be defined
with respect to a RefFrame.

Robot Class Provides access to the attributes and properties of each robot such as their current position and
homing methods.

Signal Class Reads and writes digital, analog and other simple means of input and output.

Statements Includes control structures, user procedures and functions, and other common language
elements.

Strings Provides Stringmanipulation methods in anObject oriented fashion.

Thread Class Provides the means for starting, stopping, and monitoring the execution of independent threads.

Vision
Classes

Provides the means for interfacing to PreciseVision and easily generating vision-guided motion
applications.

XML Classes
Provides the ability to create, parse, and modify XML (eXtensible Markup Language) documents.
This facility enables structured data to be bi-directionally exchanged with a host computer using a
standard data format.

12 Copyright © 2024, Brooks Automation

Brooks Automation 3. Array Class
Part Number: 609719 Rev. A Array Class Summary

3. Array Class

Array Class Summary

The following pages provide detailed information on the properties and methods of the
Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the
built-in Array Class. You can use the properties of this class to determine the
properties of an array.

Table 3-1 summaries the properties and methods for this class, which are described in
greater detail in the sections that follow.

Member Type Description

array
.GetUpperBound

Get
Property

Returns the upper bound for a particular dimension of an array. The lower
bound is always 0, so the total number of elements in this dimension is one
greater than the upper bound.

array.Length Get
Property

Returns the total number of elements in the entire array, in all dimensions.

array.Rank Get
Property

Returns the array rank, which is the number of dimensions in an array.

Table 3-1: Array Class Properties & Methods Summary

Copyright © 2024, Brooks Automation 13

3. Array Class GPL Dictionary
array.GetUpperBound Property Part Number: 609719 Rev. A

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.

...array.GetUpperBound(dimension)

Prerequisites

None

Parameters

dimension

A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dim array(3,4) As Integer
Dim d1, d2 As Integer
d1 = array.GetUpperBound(0) ' Returns the value 3
d2 = array.GetUpperBound(1) ' Returns the value 4

See Also

Array Class |array.Length|Dim Statement |ReDim Statement

14 Copyright © 2024, Brooks Automation

Brooks Automation 3. Array Class
Part Number: 609719 Rev. A array.Length Property

array.Length Property

Returns the total number of elements in an entire array.

...array.Length

Prerequisites

None

Parameters

None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example,
if you declare: Dim sarray(3) AsString.

sarray.Length is the number of elements in the array, in this case 4
(from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0),
initially 0.

Examples

Dim array(3,4) As Integer
Dim length As Integer
length = array.Length ' Returns the value 20 =
(1+3)*(1+4)

See Also

Array Class |array.GetUpperBound|Dim Statement|ReDim Statement

Copyright © 2024, Brooks Automation 15

3. Array Class GPL Dictionary
array.Rank Property Part Number: 609719 Rev. A

array.Rank Property

Returns the total number of dimensions (the rank) in the array.

...array.Rank

Prerequisites

None

Parameters

None

Remarks

The Rank of an array is the number of dimensions in that array.

Examples

Dim array(3,4) As Integer
Dim array2(5) As Integer
Dim r1, r2 As Integer
r1 = array.Rank ' Returns 2
r2 = array2.Rank ' Returns 1

See Also

Array Class|Dim Statement|ReDim Statement

16 Copyright © 2024, Brooks Automation

Brooks Automation 4. Console Class
Part Number: 609719 Rev. A Console Class Summary

4. Console Class

Console Class Summary

The following pages provide detailed information on the methods of the global
Console Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch
on the Start console command. If -event is not present, console output is sent to the
first serial port named "/dev/com1". If -event is present, console output is sent to GDE
where it is displayed in the GPL Output window.

Table 4-1 summaries the properties and methods for this class, which are described in
greater detail in the sections that follow.

Member Type Description

Console.Write Shared
Method

Diagnostic method that writes a number or a string to the console.

Console.WriteLine Shared
Method

Diagnostic method that writes a number or a string to the console, followed
by a line feed (LF) character.

Table 4-1: Console Class Properties & Methods Summary

Copyright © 2024, Brooks Automation 17

4. Console Class GPL Dictionary
Console.Write Method Part Number: 609719 Rev. A

Console.Write Method

Diagnostic method that writes a numeric or string value to the GPL console with no
line terminator.

Console.Write (number)
-or-
Console.Write (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination for console output depends on how the currently executing
thread was started and whether or not the -event switch is present in the Start
console command. If a thread is started by another thread, the destination depends
on how the original thread was started. See Table 4-2.

18 Copyright © 2024, Brooks Automation

Brooks Automation 4. Console Class
Part Number: 609719 Rev. A Console.Write Method

Thread Start Source -event Specified Console Output Destination

Serial console on /dev/com1 No /dev/com1 serial port

Serial console on /dev/com1 Yes GDE GPL Output window

GDE N/A GDE GPL Output window

Operator Control Panel N/A /dev/com1 serial port

TELNET Yes GDE GPL Output window

TELNET (DataID 411=1) No /dev/com1 serial port

TELNET (DataID 411=2) No TELNET connection

Table 4-2: Thread & Output

Because the console output destination may vary, it is best to only use this method for
debugging. To always do output to the /dev/com1 serial port, use the
StreamWriterClassmethods specifying device /dev/com1. To send messages to the
system operator, use the Controller.SystemMessagemethod.

Examples

Console.Write("Test ") ' Produces the output: "Test
1"
Console.Write(1)

See Also

Console Class | Console.WriteLine | Controller.SystemMessage | CStr Function |
StreamWriter Class

Copyright © 2024, Brooks Automation 19

4. Console Class GPL Dictionary
Console.WriteLine Method Part Number: 609719 Rev. A

Console.WriteLine Method

Diagnostic method that writes a numeric or string value to the GPL console followed
by a line terminator.

Console.WriteLine (number)
-or-
Console.WriteLine (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console followed by a
line terminator. Subsequent output appears on the next line. For output that combines
both string and numeric values, use the CStr function.

The actual destination for console output depends on how the currently executing
thread was started and whether or not the -event switch is present in the Start
console command. If a thread is started by another thread, the destination depends
on how the original thread was started. See Table 4-3.

20 Copyright © 2024, Brooks Automation

Brooks Automation 4. Console Class
Part Number: 609719 Rev. A Console.WriteLine Method

Thread Start Source -event Specified Console Output Destination

Serial console on /dev/com1 No /dev/com1 serial port

Serial console on /dev/com1 Yes GDE GPL Output window

GDE N/A GDE GPL Output window

Operator Control Panel N/A /dev/com1 serial port

TELNET Yes GDE GPL Output window

TELNET (DataID 411=1) No /dev/com1 serial port

TELNET (DataID 411=2) No TELNET connection

Table 4-3: Thread & Destination

Because the console output destination may vary, it is best to only use this method for
debugging. To always do output to the /dev/com1 serial port, use the
StreamWriterClassmethods specifying device /dev/com1. To send messages to the
system operator, use the Controller.SystemMessagemethod.

Examples

Console.WriteLine("Test ") ' Produces the output: Test
Console.WriteLine(1) ' 1

Dim ii As Integer
For ii = 1 To 10

Console.WriteLine("The square of " & CStr(ii) _
& " is " & CStr(ii*ii))

Next ii

See Also

Console Class | Console.Write | Controller.SystemMessage| CStr Function | StreamWriter Class

Copyright © 2024, Brooks Automation 21

5. Controller Class GPL Dictionary
Controller Class Summary Part Number: 609719 Rev. A

5. Controller Class

Controller Class Summary

The following pages provide detailed information on the properties and methods of the
global Controller Class. This class provides access to the general facilities provided
by the Guidance Controller, e.g. high power control, E-Stop logic, configuration
database values, etc. As such, this class and all of its members are uniquely defined
for PreciseFlex™ controller products and do not conform to any other standards. In
the case of certain methods, such as the SleepTick, very similar functionality is
provided by other means within the Basic language. However, the members of this
class were selected based upon ease-of-use considerations or because they provide
some slightly different, but important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties
and methods of the Controller Class, it is not necessary to have different variations
of these members to deal with the different possible mixes of input parameter data
types. Also, as appropriate, the properties and methods generally produce results that
are formatted as Doubles. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so
long as numeric overflow does not occur.

Table 5-1 summarizes the properties and methods that are described in greater detail
in the following sections.

Member Type Description

Controller.Command Method Executes a console command and returns any output as a String value.

Controller.ErrorLog Property Returns an entry from the system Error Log as a String value or clears
the Error Log.

Controller.Load Method Loads a GPL project into memory and compiles it in preparation for
execution.

Controller.PDb Property Sets and gets any accessible value in the configuration parameter
database.

Table 5-1: Controller Class Properties & Methods

22 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller Class Summary

Member Type Description

Controller.PDbNum Property Optimized means to set and get a numeric value in the configuration
parameter database.

Controller.PowerEnabled Property Sends a request to either turn on or off high (motor) power to the amplifier.
Returns whether high power is on or off.

Controller.PowerState Property Gets the current state of the high power sequence.

Controller.RecordButton Property Sets and gets the latched Boolean value that indicates if the hardware
MCP RECORD button has been pressed.

Controller.ShowDialog -
Basic Method Displays a pop-up dialog box on the web Operator Control Panel.

Controller.ShowDialog -
Advanced Method Displays a pop-up dialog box on the web Operator Control Panel.

Controller.ShowDialogMCP Method Displays a pop-up dialog box on the LCD display of the PreciseFlex™
Hardware Manual Control Pendant.

Controller.SleepTick Method Delays further execution of a thread for a specified number of Trajectory
Generator periods.

Controller.SoftEStop Property Sets and gets the Boolean flag that triggers a Soft E-Stop.

Controller.SystemMessage Method Enters a message into the GPL systemmessage log that is displayed on
the web Operator Control Panel.

Controller.SystemSpeed Property Sets and gets the property that can reduce the speed of all robot motions.
Controller.Tick Property Gets the execution repetition period for the Trajectory Generator.
Controller.Timer Property Gets the value of the controller’s usec clock in units of seconds.
Controller.Unload Method Unloads an idle GPL project from memory.

Copyright © 2024, Brooks Automation 23

timer.htm

5. Controller Class GPL Dictionary
Controller.Command Method Part Number: 609719 Rev. A

Controller.Command Method

Executes a console command and returns the command output as a string.

... Controller.Command(command_string)

Prerequisites

None

Parameters

command_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. The value of the string is interpreted as a standard
Console Command.

Remarks

This method executes the Console Command defined by the command-_string
parameter. For a list of valid commands, please see the Console Command section of
the PreciseFlex Library.

If the command requires additional data, the command_string must contain the
command definition followed by an ASCII line-feed character (GPL constantGPL_LF,
numeric value 10), followed by the additional data. Multiple lines of data may be
supplied in the same manner.

This method returns a string value that contains any output generated by the
command, followed by the command status. Each line of output is terminated by an
ASCII line-feed character. The final line of output is always a status string, followed by
a line-feed. If the command generated no output, the string value contains only the
status followed by a line-feed.

The status string is an ASCII value that contains:

l A numeric status code. 0 means success, < 0 indicates a standard error code.

l A text string enclosed in quotes corresponding to the numeric status code.

24 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.Command Method

Be careful about issuing a command that could generate a large amount of output
such as a DataLog or Type command. Such a command could consume all available
free storage and cause your system to stop with "No memory available" errors.

Examples

Dim ss As String
ss = Controller.Command("directory")
Console.WriteLine(ss)

Displays the output:

dev
ROMDISK
flash
GPL
0,"Success"

ss = Controller.Command("directory xyz")
Console.WriteLine(ss)

Displays the output:

-508,"*File not found*"

See Also

Controller Class

Copyright © 2024, Brooks Automation 25

5. Controller Class GPL Dictionary
Controller.ErrorLog Property Part Number: 609719 Rev. A

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
-or-
... Controller.ErrorLog(entry)

Prerequisites

None

Parameters

entry

A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.

Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or
from the motion control system. In addition, GPL applications can enter items into the
log using the Controller.SystemMessagemethod.

The entries in the Error Log are displayed on the web based Operator Control Panel
and can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a
time. Each returned value contains the time stamp, marker indicating the thread that
generated the error, the numeric error code and the text error message. A example of
a typical returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

26 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ErrorLog Property

If this property is assigned a non-zero value as indicated above, rather than retrieving
an entry, all entries are deleted from the Error Log.

Examples

Dim err As String
Dim ii As Integer
For ii = 1 To 100

err = Controller.ErrorLog(ii) ' Retrieve all
entries from log

If (err <> "") Then
Console.WriteLine(err) ' Display all

errors
Else

Exit For ' No more entries
in the log

End If
Next
Controller.ErrorLog = 1 ' Clear all
entries in the log

See Also

Controller Class | Controller.SystemMessage

Copyright © 2024, Brooks Automation 27

5. Controller Class GPL Dictionary
Controller.Load Method Part Number: 609719 Rev. A

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that
the project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. It describes the
remaining files within the project. The project must not be currently loaded.

Parameters

project_folder_path

A required string expression for the name of the folder containing the
project to be loaded. Normally the folder is on the "/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. The project is then compiled so that the loaded
procedures are ready to be executed. No compilation errors are displayed on the
console. Examine the file /GPL/project_name/Compile.log for a listing of compiler
messages. This method will throw an exception if the project cannot be loaded, if it is
already loaded, or if compilation errors occur.

Examples

Dim th As Thread
Controller.Load("/flash/projects/Test")
th = New Thread("Main", "Test", "Thread2")
th.Start()

See Also

Controller Class | Controller.Unload | Thread.Start

28 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.PDb Property

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index, key) = <new_string_value>
-or-
... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites

None

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number
for the parameter to be accessed. For many parameters, e.g. the
Controller, only a single unit exists. For parameters that refer to devices
with multiple possible units, e.g. multiple robots driven by a single
controller, this parameter ranges from 1 to n. If not specified, this value
defaults to 1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just
defaulted to 1.

array_index

Copyright © 2024, Brooks Automation 29

5. Controller Class GPL Dictionary
Controller.PDb Property Part Number: 609719 Rev. A

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

key

An optional numeric expression that specifies an Integer key code to
override robot configuration protection and set a protected DataID
value.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified
parameter database. Controller.PDb can be used to read or write all accessible
values in the parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric
values, the values are represented as text numbers separated by commas (in the
case of numeric arrays). If the parameter contains a single string value, the value is
read into or read from a GPL String without delimiting quotation marks. If the
parameter contains an array of strings, each string is delimited by double quotes and
sequential values are separated by commas.

As a convenient for developing custom web pages, the parameter database contains
a series of "GPL program strings" (DataID's 1800-1819) and "GPL program variable's"
(DataID's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

While database values can be freely read, care should be taken when
writing to general database parameters. Unintentionally altering some
values may cause the system to not operate properly..

Examples

30 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.PDb Property

Dim stg As String

Controller.PDb(541) = """Label1"",""Label2""" ' Sets
first two DOUT labels

stg = Controller.PDb(100) ' stg set
to "Brooks Automation"

See Also

Controller Class | Controller.PDbNum

Copyright © 2024, Brooks Automation 31

5. Controller Class GPL Dictionary
Controller.PDbNum Property Part Number: 609719 Rev. A

Controller.PDbNum Property

Optimized means for setting and getting a numeric value in the configuration
parameter database.

Controller.PDbNum(dataid, unit, unit2, array_index, key) = <new_value>
-or-
... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites

Can only access numeric parameter database values.

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression for an Integer unit number for the
parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, value defaults to 1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. Using the sub unit number is
not common and this parameter is usually defaulted to 1.

array_index

32 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.PDbNum Property

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

key

Optional numeric expression specifying an Integer key code to override
robot configuration protection and set a protected DataID value.

Remarks

All key variables for configuring and monitoring the operation of the system are stored
in a unified parameter database. Controller.PDbNum is a variation of
Controller.PDb, optimized to efficiently read and write numeric values stored in this
database. Controller.PDbNum operates quickly when reading and writing the "GPL
program variable's" (DataID's 1850-1869). These database elements have been
created to allow GPL projects to interface to custom web pages. Custom web pages
can read and write these values via ASP operations. Once the controller is restarted,
the operating system does not alter any of these variable values.

While database values can be freely read, care should be taken when
writing to general database parameters. Unintentionally altering some
values may cause the system to not operate properly..

Examples

Dim limit As Single
limit = Controller.PDbNum(16077,,,2) ' Sets limit
equal to the maximum

' allowable range
of travel for jt 2

See Also

Controller Class | Controller.PDb

Copyright © 2024, Brooks Automation 33

5. Controller Class GPL Dictionary
Controller.PowerEnabled Property Part Number: 609719 Rev. A

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>
-or-
Controller.PowerEnabled(timeout) = <boolean_value>
-or-
... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 (CAT-3)
safe systems. For Category 3 (CAT-3) systems, a momentary contact, hardware
“Enable Power” button must be manually pressed.

Parameters

timeout

An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.

Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 (CAT-3) safe systems, high
power will be enabled only if a number of safety conditions are satisfied (e.g. no Hard
E-Stop signal is asserted, no fatal system error exists, etc.). This property waits until
the power actually comes on, with a time limit determined by the timeout parameter. If
this parameter is positive and the power does not come on within the time limit, this
property throws an exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but
the property does not wait until power is actually off. Unlike the Hard E-Stop signal
that delays for a fixed period of time before disabling power, turning off
PowerEnabled forces all moving robots to completely decelerate to a stop and allows
time for the brakes to be set before power to the amplifiers is disabled. Therefore,

34 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.PowerEnabled Property

setting PowerEnabled False allows for a more orderly stopping of motion than does a
Hard E-Stop but this operation is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power
is disabled by any means and is automatically set to True if High Power is enabled.

Examples

Dim bState As Boolean
Controller.PowerEnabled = True ' Requests high
power be enabled
Controller.PowerEnabled(5) = True ' Requests high
power be enabled

' and waits for up
to 5 seconds

bState = Controller.PowerEnabled ' bState will be
set True if power is

' enabled, else
will be set False.

See Also

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

Copyright © 2024, Brooks Automation 35

5. Controller Class GPL Dictionary
Controller.PowerState Property Part Number: 609719 Rev. A

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier
high power sequencing.

... Controller.PowerState(mode)

Prerequisites

None

Parameters

mode

An optional numeric expression that is 0 if only the power sequencing
state is to be returned or 1 if a combined power state, hard-stop indicator
and Automatic Execution Mode indicator is to be returned. By default,
this value is 0.

Remarks

In order to enable high power to the amplifiers, the systemmust transition in an orderly
fashion through several states to ensure that safety and hardware requirements are
satisfied. The PowerState property indicates the current state of the power
sequencing.

If mode is 0, the possible values returned by this property and their interpretation are
presented in Table 5-2 (this is equivalent to "Power state" DataID 230):

PowerState Description (mode = 0)

0 System initially starting up

1 Power off, fatal error has occurred

2 Power off, power sequence restarting

3 Power being turned off, no fault condition has occurred

Table 5-2: Mode = 0, Power State Values

36 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.PowerState Property

PowerState Description (mode = 0)

4 Power being turned off, a fault condition has occurred

5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned off

7 Power is off, waiting for enable power signal to be asserted

8 Power is coming up, enabling amplifiers

9 Power is on, performing motor commutation

10 Power is coming up, enabling servos and releasing brakes

11 Power is on, waiting to execute thread or Auto Execution task

12 Power is on, executing Auto Execution task

If mode is 1, the possible values returned by this property and their interpretation are
presented in Table 5-3 (this is equivalent to "Power/Auto execute state" DataID 234):

PowerState Description (mode = 1)

0 System initially starting up

1 Power off, fatal error has occurred

2 Power off, power sequence restarting

3 Power being turned off, no fault condition has occurred

4 Power being turned off, a fault condition has occurred

5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned off

7 Power is off, waiting for enable power signal to be asserted

8 Power is coming up, enabling amplifiers

9 Power is on, performing motor commutation

10 Power is coming up, enabling servos and releasing brakes

11 Power is on, waiting to execute thread or Auto Execution task

12 Power is on, executing Auto Execution task

15 Power is off, a Hard E-Stop is being asserted

16 Power being turned on. Safety diagnostics are running

20 Power is on, ready for a GPL project to execute and attach the robot

21 Power is on, a GPL project is executing and has attached the robot

Table 5-3: Mode = 1, Power State Values

Copyright © 2024, Brooks Automation 37

5. Controller Class GPL Dictionary
Controller.PowerState Property Part Number: 609719 Rev. A

PowerState Description (mode = 1)

22 Power is on, DIO MotionBlocks is executing

23 Power is on, Automatic Analog Input Velocity mode is executing

24 Power is on, Automatic Analog Input Torque mode is executing

25 Power is on, Automatic Master/slave mode is executing (not implemented)

26 Power is on, CANopen via CAN net is executing (not implemented)

27 Power is on, CANopen via serial line is executing (not implemented)

28 Power is on, robots are being homed

29 Power is on, Virtual MCP Jog Mode has control of the robot

30 Power is on, External Trajectory mode is executing

31 Power is on, Hardware MCP Jog Mode has control of the robot

Examples

Dim state As Integer
state = Controller.PowerState ' Sets state to one of
the values listed above

See Also

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDecel

38 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.RecordButton Property

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
-or-
... Controller.RecordButton

Prerequisites

None

Parameters

None

Remarks

Whenever the RECORD key on the Precise Hardware Manual Control Pendant
(MCP) is pressed, the value of this property is set to True. This property value
remains True until it is manually set to False. The RECORD key on the MCP and this
property provide a convenient means for GPL projects to receive a command from the
operator to record key data, typically taught robot locations. The value of this property
can also be accessed via the Parameter Database as the "MCP Record button
pressed" (DataID 632) value.

Examples

Dim taught_loc As New Location
If (Controller.RecordButton) Then

taught_loc.Here ' Save current robot
location

Controller.RecordButton = False
End if

See Also

Controller Class

Copyright © 2024, Brooks Automation 39

5. Controller Class GPL Dictionary
Controller.ShowDialog Method - Basic
Modes Part Number: 609719 Rev. A

Controller.ShowDialog Method - Basic Modes

Displays a pop-up dialog box on the web interface Operator Control Panel (basic
modes).

Controller.ShowDialog(button_labels, message, button_index)
-or-
Controller.ShowDialog(button_labels, message, button_index, text_field)

Prerequisites

None

Parameters

button_labels

A required String expression containing the button labels to be
displayed. Up to 4 buttons can be specified, separated by commas. If
the button labels contain blanks or commas, they should be enclosed in
quotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. 1 for the first button, 2 for the second, etc.

text_field

(2nd formof this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its
initial value is shown as the default value of the text field. The string

40 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ShowDialog Method - Basic Modes

must not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator without creating a custom web page. When ShowDialog is called, its
operation is as follows:

1. Waits if another thread is already displaying a dialog box.

2. Posts the dialog box for display and waits for the user to open the Operator Control

Panel on the web interface and press a button.

3. Un-displays the dialog box.

4. Returns the button index and optional text field to the user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage
return and line feed, include "
" within the text. To have a section of text left
justified, precede it with "<p align=left>" and terminate it with "</p>". The total number
of characters available for defining the dialog box including all formatting is
approximately 998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Advanced " for other forms of this method.

In the simplest (1st) form, the pop-up displays only the message text and labeled
buttons. When the user clicks on one of the buttons, the index of the button clicked is
returned in the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value
of the text field is returned in the text_field variable, and the index of the button clicked
is returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim bi As Integer
Controller.ShowDialog("Okay", "Ready to begin process", bi)

Copyright © 2024, Brooks Automation 41

5. Controller Class GPL Dictionary
Controller.ShowDialog Method - Basic
Modes Part Number: 609719 Rev. A

Public Sub Test1
Dim bi As Integer
Dim reply As String

reply = "Part_1" ' Default is Part_1
Controller.ShowDialog("Okay, Cancel", _

"Enter part name", bi, reply)
If bi = 1 Then

… ' Okay selected
Else

… ' Cancel selected
End If

Console.WriteLine("You entered: " & reply)
End Sub

42 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ShowDialog Method - Basic Modes

See Also

Controller Class | Controller.ShowDialog - Advanced| Controller.ShowDialogMCP |
Controller.SystemMessage

Copyright © 2024, Brooks Automation 43

5. Controller Class GPL Dictionary
Controller.ShowDialog Method - Advanced
Mode Part Number: 609719 Rev. A

Controller.ShowDialog Method - Advanced Mode

Displays a pop-up dialog box on the web interface Operator Control Panel (Advanced
Mode).

Controller.ShowDialog(mode, button_labels, message, button_index, field_labels,
field_values)

Prerequisites

None

Parameters

mode

A required numeric expression that specifies the display mode.

If mode = 1, displays a vertical list of data fields that can be
filled in by the user.
If mode = 2, displays a vertical list of up to 12 labeled
buttons.

button_labels

A required String expression. The string must not contain the vertical
bar "|" character.

If mode = 1, defines the button labels that are displayed
along the bottom of the dialog box. Up to 4 buttons can be
specified, separated by commas. If the button labels
contain blanks or commas, the labels should be enclosed
in quotes.
If mode = 2, this string is ignored and can be set to "".

message

44 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ShowDialog Method - Advanced Mode

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

field_labels

A required 1-dimensional String array. Each String array element
contains a separate label. Up to 12 elements are permitted. The strings
must not contain the vertical bar "|" .

If mode = 1, the array elements define labels that are
displayed preceding each data field in the dialog box. The
number of elements in this array determines the number of
displayed fields.
If mode = 2, the array elements define labels for the
vertical list of buttons. The number of elements in this
array determines the number of displayed buttons.

field_values

A required 1-dimensional String array.

If mode = 1, this array receives the values of any text
entered into the dialog box text fields. The initial values of
this array are displayed as the default values of the text
fields. The Stringsmust not contain the vertical bar "|"
character.
If mode = 2, this array is ignored and may be empty.

Remarks

This method provides a way for a GPL procedure to communicate with the operator without creating
a custom web page. When ShowDialog is called, its operation is as follows:

Copyright © 2024, Brooks Automation 45

5. Controller Class GPL Dictionary
Controller.ShowDialog Method - Advanced
Mode Part Number: 609719 Rev. A

1. Waits if another thread is already displaying a dialog box.

2. Posts the dialog box for display and waits for the user to open the Operator Control Panel on the web

interface and click on a button.

3. Un-displays the dialog box.

4. Returns the button index and optional text field information to the user.

Since this method generates a dialog box within a browser, any special text formatting must
be defined as standard HTML specifications. In particular, to add a carriage return and line feed,
include "
" within the text. To have a section of text left justified, precede it with "<p align=left>"
and terminate it with "</p>". The total number of characters available for defining the dialog box
including all formatting is approximately 998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog - Basic" for other
forms of this method.

In this form, the dialog box allows different displays based on the mode parameter value.

If mode = 1, multiple fields may be entered and multiple values are returned. When the
user clicks on one of the buttons, the values of all the fields are returned in the field_
values array, and the index of the button clicked is returned in the button_index
variable.

If mode = 2, a vertical array of buttons is displayed, with the field_labels text values
displayed next to each button. The index of the button clicked is returned in the
button_index variable. The field_values parameter is not used.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-displayed
immediately.

Examples

Public Sub Test2
Dim Buttons As String = "Okay, Cancel"

Dim Text As String = "Enter the field values"
Dim Label(2) As String
Dim Field(2) As String
Dim Index As Integer

Label(0) = "X value"
Label(1) = "Y value"
Label(2) = "Z value"

Field(0) = "100.0"

46 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ShowDialog Method - Advanced Mode

Field(1) = "100.0"
Field(2) = "0.0"

Controller.ShowDialog(1, Buttons, Text, Index, Label, Field)

Console.WriteLine("Button: " & CStr(Index))
Console.WriteLine("Field 0: " & Field(0))
Console.WriteLine("Field 1: " & Field(1))
Console.WriteLine("Field 2: " & Field(2))

End Sub

Public Sub Test3
Dim Text As String = "Select operation to perform."

Dim Label(2) As String
Dim Nop() As String
Dim Index As Integer

Label(0) = "Start"
Label(1) = "Stop"
Label(2) = "Exit"

Controller.ShowDialog(2, "", Text, Index, Label, Nop)

Console.WriteLine("Button: " & CStr(Index))
End Sub

Copyright © 2024, Brooks Automation 47

5. Controller Class GPL Dictionary
Controller.ShowDialog Method - Advanced
Mode Part Number: 609719 Rev. A

See Also

Controller Class | Controller.ShowDialog - Basic | Controller.ShowDialogMCP |
Controller.SystemMessage

48 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ShowDialogMCP Method

Controller.ShowDialogMCP Method

Displays a pop-up dialog box on the LCD display of the Precise Hardware Manual
Control Pendant.

Controller.ShowDialogMCP(button_mask, message, button_return)
-or-
Controller.ShowDialogMCP(button_mask, message, button_return, text_field)

Prerequisites

Precise Hardware Manual Control Pendant must be connected to the controller.

Parameters

button_mask

A required Integer expression whose bits specify the MCP key presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String expression containing the message to be displayed
on the LCD display. If a text_field is specified, the message must
include a substring ('##...##') that defines where the characters of the
text_field are output in the MCP display. The number of pound signs (#)
defines the width of the input field.

button_return

A required ByRef Integer variable that receives the bit flag that
indicates the button that was pressed to terminate the dialog operation.

text_field

Copyright © 2024, Brooks Automation 49

5. Controller Class GPL Dictionary
Controller.ShowDialogMCP Method Part Number: 609719 Rev. A

An optional ByRef String variable that receives the value of any text
entered into the dialog box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator via the Precise Hardware Manual Control Pendant. (Note: If you wish to
develop a more sophisticated interface, please refer to the /dev/mcp communication
device.)

When ShowDialogMCP is called, its operation is as follows:

1. Waits if another thread is already displaying a MCP dialog box.

2. Replaces the standard MCP display with the contents of the message and the

optional embedded text_field, and lights the LED on the APP key.

3. If the optional text_field is defined, accepts presses of the 0-9, ., +, - or DEL keys and

presents the results in the LCD display.

4. If the display and keypad are switched back to their standard mode due to a manual

control operation or error message, blinks the APP key LED until the APP key is

pressed to re-display the dialog.

5. When one of the specified termination keys is pressed, un-displays the dialog box.

6. Returns the termination key button bit flag and the optional text field value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed
in Table 5-4 together with their associated button_mask and button_return values.

Key Label button_mask& button_return

Enter &H000001

Record &H000002

Yes &H000004

No &H000008

Table 5-4: Keypad Buttons, Button Mask, & Button Return Values

50 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.ShowDialogMCP Method

Key Label button_mask& button_return

Quit &H000010

Prev &H000020

Next &H000040

F1 &H010000

F2 &H020000

F3 &H040000

F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert
the operator. The beeping operation can be suppressed by resetting the "Beep MCP
when APP mode started" (DataID 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim but As Integer
Dim ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Ready to begin" & CRLF & CRLF _

& " <Yes> or <No>"
Controller.ShowDialogMCP(&H4+&H8, ss, but)

Dim but As Integer
Dim reply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Enter part number:" & CRLF _

& " '#########'" & CRLF & CRLF _
& " <Enter> or <Quit>"

reply = "12" ' Default reply value
Controller.ShowDialogMCP(&H1+&H10, ss, but, reply)
If but = &H10 Then

Console.Writeline("Request cancelled")
Else

Console.WriteLine("You entered: " & reply)
End If

Copyright © 2024, Brooks Automation 51

5. Controller Class GPL Dictionary
Controller.ShowDialogMCP Method Part Number: 609719 Rev. A

See Also

Controller Class | Controller.ShowDialog | Controller.SystemMessage | /dev/mcp Device

52 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.SleepTick Method

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
-or-
Controller.SleepTick

Prerequisites

None

Parameters

ticks

An optional numeric expression that specifies an Integer number of
Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.

Remarks

Often times, a programmust poll input data values periodically. While it is possible to
use a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or other
GPL threads. The SleepTickmethod allows a thread to relinquish control of the CPU
for a specified period of time and then resume execution at the next sequential
statement.

Since many operations are synchronized to the operation of the Trajectory Generator,
the delay time for this method is specified in units of Trajectory Generator execution
periods.

Please note that other programming languages like Basic typically have other means
for putting a thread to sleep for a specified period of time.

Examples

Copyright © 2024, Brooks Automation 53

5. Controller Class GPL Dictionary
Controller.SleepTick Method Part Number: 609719 Rev. A

Controller.SleepTick ' Delays
thread execution until

' after the
start of the next

' trajectory
cycle
Controller.SleepTick (2/Controller.Tick) ' Delays
thread execution for

' approx-
imately 2 seconds

See Also

Controller Class | Controller.Tick | Controller.Timer

54 Copyright © 2024, Brooks Automation

timer.htm

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.SoftEStop Property

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
-or-
... Controller.SoftEStop

Prerequisites

None

Parameters

None

Remarks

A Soft E-Stop initiates a rapid deceleration of all robots currently in motion and
generates an error condition for all GPL programs that are attached to a robot. This
property can be used to quickly halt all robot motions in a controlled fashion when an
error is detected. This function is similar to a Hard E-Stop except that Soft E-Stop
leaves High Power enabled to the amplifiers and is therefore used for less severe
error conditions. Leaving power enabled is beneficial in that it prevents the robot axes
from sagging and does not require high power to be manually re-enabled before
program execution and robot motions are resumed. This function is also similar to a
Rapid Deceleration feature except that a Rapid Deceleration only affects a single
robot and no program error is generated. If set, the SoftEStop property is
automatically cleared by the system if High Power is disabled and re-enabled.

Examples

Dim bState As Boolean
Controller.SoftEStop = True ' Triggers a Soft E-Stop condition
bState = Controller.SoftEStop ' bState will be set True since a

' Soft E-Stop has been asserted

See Also

Controller Class | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

Copyright © 2024, Brooks Automation 55

5. Controller Class GPL Dictionary
Controller.SystemMessage Method Part Number: 609719 Rev. A

Controller.SystemMessage Method

Enters a message into the GPL system message log that is displayed on the web
Operator Control Panel.

Controller.SystemMessage(message)

Prerequisites

None

Parameters

message

A required String expression containing the message to be entered into
the message log.

Remarks

This method enters a line into the system message log with other system messages
and error message entries. The system message log is kept sorted in time order. This
log is displayed by the Operator Control Panel in the SystemMessages box.

Examples

Controller.SystemMessage("Cycle time: " & CStr(now-
saved))

Controller.SystemMessage("Operation complete")

See Also

Controller Class | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

56 Copyright © 2024, Brooks Automation

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.SystemSpeed Property

Controller.SystemSpeed Property

Sets and gets the property that can reduce the speed of all robot motions.

Controller.SystemSpeed = <new_%_value>
-or-
... Controller.SystemSpeed

Prerequisites

None

Parameters

None

Remarks

The SystemSpeed property permits all position and velocity controlled motions for all
robots to be operated at a reduced speed without altering the path that each follows.
This property is provided as a debugging tool to permit all motions to be executed
slowly and then gradually increased to full speed.

This value is specified as a percentage from 1 to 100 where 100 represents full speed
as defined in the motion program being executed. This parameter can also be
modified via the web Operator Control Panel as well as the "System wide test speed in
%" (DataID 601).

When a new value is specified, the change in the motion speeds is gradually put into
effect based upon the setting of the "Rate of change of test speed in %/sec" (DataID
602) to avoid excessive accelerations.

Examples

Controller.SystemSpeed = 50 ' All motions at half
speed

See Also

Controller Class

Copyright © 2024, Brooks Automation 57

5. Controller Class GPL Dictionary
Controller.Tick Property Part Number: 609719 Rev. A

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in
seconds.

...Controller.Tick

Prerequisites

None

Parameters

None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates
the series of individual commands to move each joint of each robot along its
designated path. To accomplish this task, the Trajectory Generator executes at a
configurable repetition rate. The Tick property returns the period of the repetition rate
in seconds. Typically this will be set to a value of 0.002 or 0.004 seconds.

Examples

Dim period As Double
period = Controller.Tick ' Sets period equal to the
Trajectory

' Generator execution
period, e.g. 0.004

' seconds

See Also

Controller Class | Controller.SleepTick | Controller.Timer

58 Copyright © 2024, Brooks Automation

timer.htm

Brooks Automation 5. Controller Class
Part Number: 609719 Rev. A Controller.Unload Method

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.

Controller.Unload(project_name)

Prerequisites

No procedures in this project can be currently executing.

Parameters

project_name

A required string expression containing the name of the project to be
unloaded.

Remarks

This method unloads a project by removing all of its associated data from the
controller's memory and removing associated files from the GPL project memory
area. This method throws an exception if any procedure in this project is executing.
No exceptions are thrown if the project is not currently loaded or does not exist.

Examples

Dim th As Thread
Controller.Load("/flash/projects/Test")
th = New Thread("Main", "Test", "Thread2")
th.Start()
th.Join(0) ' Wait for thread to com-
plete
Controller.Unload("Test")

See Also

Controller Class | Controller.Load | Thread.Join

Copyright © 2024, Brooks Automation 59

6. Exception Handling GPL Dictionary
Exception Handling Summary Part Number: 609719 Rev. A

6. Exception Handling

Exception Handling Summary

The following pages provide detail information on the exception handling instructions
and the properties and methods of the Exception Class. The exception handling
statements provide a structured means for a procedure to detect and respond to
program execution exceptions that would otherwise cause the procedure to halt
execution. When an exception occurs, information on the cause of the exception can
be automatically saved in an Exception Object and execution can be branched to a
block of code designed to service the exception.

Exception Objects have two basic forms: a general Exception and a robot
Exception. Both forms store a numerical code that indicates the type of exception. In
addition, the robot Exception includes the number of the robot and the axes that are
associated with the exception. The general form of the Exception includes a
Qualifier value that can provide addition information on the nature of the exception.

Table 6-1 briefly summarizes the exception handling statements that are described in
greater detail in the following pages.

Statement Description

Catch Used within a Try...Catch...Finally...End Try series of statements to mark the start of
the block of instructions executed when an exception occurs.

End Try Marks the end of the exception handling structure.

Exit Try Terminates the execution of a Try or Catch block of instructions.

Finally
Used within a Try...Catch...Finally...End Try series of statements to mark the start of
the block of instructions that is always executed at the completion of the Try or Catch
blocks.

Throw Generates a program execution exception.

Try...Catch...Finally... Exception handling structure that captures execution exceptions within a block of
instructions and executes statements to field the exception if necessary.

Table 6-1: Exception Handling Statements Summary

60 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A Exception Handling Summary

Table 6-2 summarizes the properties and methods of the Exception Class that are
described in greater detail in the following pages.

Member Type Description

exception_obj.Axis Property Sets and gets a bit mask indicating the robot axes associated with a
robot Exception.

exception_obj.Clone Method Method that returns a copy of the exception_obj.

exception_obj.ErrorCode Property Sets and gets the number of the error message.

exception_obj.Message Method Returns the full text string that is generated based upon the exception_
obj properties.

exception_obj.Qualifier Property Sets and gets the error message qualifier for a general Exception.

exception_obj.RobotError Property Sets and gets the Boolean that indicates if an Exception is a robot or
general type.

exception_obj.RobotNum Property Sets and gets the number of the robot associated with a robot
Exception.

exception_
obj.UpdateErrorCode Method Updates a general (vague) Exception error code with a more specific

error code.

Table 6-2: Exception Class Summary

Copyright © 2024, Brooks Automation 61

6. Exception Handling GPL Dictionary
Catch Statement Part Number: 609719 Rev. A

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of
the block of instructions executed when an exception occurs.

Catchexception_object

Prerequisites

Must always follow a Try statement block. Either a Catch or Finally statement or one
of each must appear in a Try structure.

Parameters

exception_object

Required Exception Object. The exception_object must already have
a data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate theObject.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions.
If the Catch block is triggered, the information on the execution exception is
automatically stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves
contained within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try. See the documentation on the Try...Catch...Finally...End Try
Statements for further information.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

62 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A End Try Statement

End Try Statement

This statement marks the end of the exception handling structure.

End Try

Prerequisites

Must always follow a Catch or Finally statement block.

Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

Copyright © 2024, Brooks Automation 63

6. Exception Handling GPL Dictionary
Exit Try Statement Part Number: 609719 Rev. A

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of
instructions.

Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this
instruction is illegal within a Finally block.

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement
execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
information on the general format of the exception handling structure.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

64 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A Finally Statement

Finally Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of
the block of instructions that is always executed at the completion of the Try or Catch
blocks.

Finally

Prerequisites

Must always follow a Try or Catch statement block. Either a Catch or Finally
statement or one of each must appear in a Try structure.

Remarks

The Finally statement marks the start of the block of instructions that is always
executed after the successful execution of a Try series of statements or at the
completion of the Catch series of statements. This allows a program to specify a
series of statements that are guaranteed to be executed before execution continues
following the End Try statement.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

Copyright © 2024, Brooks Automation 65

6. Exception Handling GPL Dictionary
Throw Statement Part Number: 609719 Rev. A

Throw Statement

Generates a program execution exception.

Throwexception_object

Prerequisites

None

Parameters

exception_object

Required Exception Object. The Exception can contain either a
general or a robot formatted error.

Remarks

This statement can be included in any procedure and need not be contained within a
Try...Catch...Finally...End Try structure. Whenever it is executed, a program
exception is immediately signaled. If this statement is not executed within a Try block,
execution of the thread is terminated and the error contained within the exception_
object is reported to the operator.

The Throw statement is often used within a Catch block. If the Exception captured
by the Catch is not to be processed by the Catch block, the Exception can be
reissued by a Throw statement. This allows Exceptions that are not to be serviced
by a Catch to be passed to a higher-level Catch or to halt thread execution.

To allow application programs to generate their own special Exceptions, two error
codes exist that are never automatically generated by the controller:

(-786) *Project generated error*
(-1038) *Project generated robot error*

These error codes can be emitted by the Throw instruction to alert the operator to
special exception conditions not normally detected by GPL.

66 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A Throw Statement

If the ErrorCode property of the Exception Object parameter is not a negative value,
the error -807 "Invalid exception" is thrown. If you have just created the object, the
value of ErrorCode is zero by default, so you must explicitly set it to avoid this error.

Examples

Dim exc1 As New Exception
Try

retry:
Move.Loc(loc1, profile1)
Move.WaitForEOM

Catch exc1
If (exc1.ErrorCode = -153) Then ' Soft envelope

error?
profile1.Speed *= .9 ' Yes, reduce speed
GoTo retry

End If
Throw exc1 ' Emit unknown error

End Try

See Also

Exception Handling

Copyright © 2024, Brooks Automation 67

6. Exception Handling GPL Dictionary
Try..Catch..Finally..End Try Statements Part Number: 609719 Rev. A

Try..Catch..Finally..End Try Statements

Exception handling structure that captures execution exceptions within a block of
instructions and, if necessary, executes statements to field the exception.

Try
[try_statements]
[Catchexception_object
[catch_statements]]
[Finally
[finally_statements]]
End Try

Prerequisites

If "Break on exception code" (DataID 307) is set or if an application is started in GDE
with "Break on exception" enabled, any active Try...Catch structures are ignored.
These features are provided as debugging and diagnostic aids.

Parameters

try_statements

Optional statement or list of statements whose exceptions, if any, will be
handled by another block of code rather than immediately resulting in
the termination of thread execution.

exception_object

Exception Object, required if the Catch statement is defined. When an
exception occurs during the execution of the try_statements, the
exception description is automatically stored in the exception_object
prior to the execution of the catch_statements. The exception_object
must already have a data section allocated prior to the execution of the
Catch, i.e. the New qualifier should have been previously used in a Dim
statement to instantiate theObject.

catch_statements

68 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A Try..Catch..Finally..End Try Statements

Optional statement or list of statements that are executed if an exception
occurs during the execution of the try_statements.

finally_statements

Optional statement or list of statements that are always executed at the
successful completion of the try_statements or the completion of the
catch_statements.

Remarks

If an exception of any type occurs when the try_statements are executed, rather than
halting execution and reporting the error, the system automatically stores the
exception information in the exception_object and branches execution to the start of
the catch_statements. The catch_statements can test the exception_object to
determine the nature of the exception and then perform whatever corrective action is
necessary. If the try_statements complete execution without an error or when the
catch_statements complete execution after an exception, the finally_statements are
always executed to perform any required cleanup. At the completion of the finally_
statements, regular instruction execution continues at the first statement following the
End Try.

A Try structure must contain either a single Catch statement or a single Finally
statement or one of each type of statement. If a Catch statement is specified, it must
always include an exception_object.

Try structures can be nested within each other to an arbitrary depth. For example, a
Try structure can be contained within the catch_statements of another, higher-level
Try structure. Also, procedure calls can be contained within any of the statement
blocks including the try_statements.

If an exception occurs within a procedure that is invoked within a Try structure with a
Catch, the execution of the procedure is immediately terminated and execution will
continue at the first instruction in the catch_statements in the calling procedure. This
feature allows a single Try Catch to be placed at a very high-level and capture any
exceptions in any lower level routines. This case is illustrated in Example #1 below.

Alternately, if the called procedure generates an exception within a Try structure with
a Catch, the catch_statements within the called routine will service the exception.
However, if an exception occurs in a called procedure within a Try without a Catch but
with a Finally, the finally_statements in the called routine will be executed first, then
execution of the called procedure will be terminated, after which execution will
continue in the catch_statements of the calling procedure. This case is illustrated in
Example #2 below.

Copyright © 2024, Brooks Automation 69

6. Exception Handling GPL Dictionary
Try..Catch..Finally..End Try Statements Part Number: 609719 Rev. A

There are special limitations on the use ofGoTo instructions in connection with Try
structures. AGoTo contained in the catch_statements can branch execution into the
corresponding try_statements. Also,GoTo's can be contained in the try_statements,
catch_statements, and the finally_statements so long as the branch is to an
instruction within the same block of statements. All other branching into and out of the
Try statement blocks and the main code is not permitted, e.g. you cannot branch from
outside of a Try structure into the try_statements or out of the try_statements into the
finally_statements. These special limitations are illustrated in Example #3 below.

Lastly, an Exit Try statement is provided for prematurely terminating a series of try_
statements or catch_statements. When this instruction is executed in either the try_
statements or the catch_statements, execution branches and continues at the first
statement in the finally_statements. Exit Try instructions are not permitted in the
finally_statements.

Examples

Example #1

Public Sub MAIN
Dim exc1 As New Exception
Try

test()
Console.WriteLine("Test completed") ' Never

gets here
Catch exc1

Console.WriteLine("Exception!") ' Is
executed

End Try
End Sub

Public Sub test()
Dim ii As Integer
ii = 1 / 0 ' Generates

exception
Console.WriteLine("Inside Test") ' Never

gets here
End Sub

Example #2

70 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A Try..Catch..Finally..End Try Statements

Public Sub MAIN
Dim exc1 As New Exception
Try

test()
Console.WriteLine("Test completed") ' Never

gets here
Catch exc1

Console.WriteLine("Exception!") ' Is
executed

End Try
End Sub

Public Sub test()
Dim ii As Integer
Try

ii = 1 / 0 ' Generates
exception

Console.WriteLine("Inside Test") ' Never
gets here

Finally
Console.WriteLine("Finally in Test") ' Is

executed
End Try
Console.WriteLine("Test done") ' Never

gets here
End Sub

Example #3

Dim exc1 As New Exception
Dim index As Integer
Robot.Attached = 1
Try

retry:
Move.Loc(loc1, profile1)
Move.WaitForEOM

Catch exc1
Controller.SystemMessage(exc1.Message)
Controller.ShowDialog

Copyright © 2024, Brooks Automation 71

6. Exception Handling GPL Dictionary
Try..Catch..Finally..End Try Statements Part Number: 609719 Rev. A

("Ok,Cancel","Retry?",index)
If index = 1 Then

If Robot.Attached = 0 Then
Controller.PowerEnabled = True
Robot.Attached = 1

End If
GoTo retry ' LEGAL

BRANCH
End If
GoTo bad_jump ' ILLEGAL

BRANCH!!!
End Try

bad_jump:

See Also

Exception Handling | Exit TryStatement | ThrowStatement

72 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A exception_object.Axis Property

exception_object.Axis Property

Sets and gets a bit mask indicating the robot axes associated with a robot Exception.

exception_object.Axis =<new_bitmask_value>
-or-
...exception_object.Axis

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

For robot Exceptions, this property specifies the robot axes or motors associated with
the error condition. This value is a bit mask where the least significant bit (&H1)
represents the first axis or motor. Up to 12 bits can be set; multiple bits can be set at
the same time. E.g., when the error code is -1012 (Joint out-of-range), the Axis
property bits indicate which axes violated their software ranges of motion. When a
New Exception is created, it defaults to a general Exception not a robot. When an
Exception is set to a robot type, the Axis bits are initially all set to 0.

Examples

Dim excl As New Exception ' Create new general exception

excl.RobotError = True ' Indicate it's a robot error

excl.ErrorCode = -1012 ' *Joint out-of-range*

excl.Axis = &HA ' Specify axes 2 and 4

Console.WriteLine(excl.Message) ' *Joint out-of-range* Robot 1: 2 4

See Also

Exception Handling | exception_object.RobotError | exception_object.RobotNum

Copyright © 2024, Brooks Automation 73

6. Exception Handling GPL Dictionary
exception_object.Clone Method Part Number: 609719 Rev. A

exception_object.Clone Method

Method that returns a copy of the exception_object.

...exception_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1points to the same data as object_2. Any subsequent
change of a property in either object_1 or object_2 affects the data associated with
both objects.

If you wish to make an independent copy of an object, the Clonemethod is the
standard means for performing this operation:

object_1 = object_2.Clone

Examples

Dim exc1 As New Exception ' Create new exception
with data
Dim exc2 As Exception ' Create new exception
with no data
exc1.ErrorCode = -1002 ' *Invalid axis* error

74 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A exception_object.Clone Method

code
exc1.RobotError = True
exc2 = exc1.Clone ' Makes a copy of exc1
data
exc2.Axis = &HC ' Does not affect exc1
data
Console.WriteLine(exc1.Message) ' *Invalid axis* Robot 1
Console.WriteLine(exc2.Message) ' *Invalid axis* Robot
1: 3 4

See Also

Exception Handling

Copyright © 2024, Brooks Automation 75

6. Exception Handling GPL Dictionary
exception_object.ErrorCode Property Part Number: 609719 Rev. A

exception_object.ErrorCode Property

Sets and gets the number of the error message.

exception_object.ErrorCode =<new_value>
-or-
...exception_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

The ErrorCode property of an Exception is the primary value that indicates the type
of exception that is represented by the exception_object. This value can range from
4095 to -4095 and each utilized value has a text string associated with it for display
purposes. In most cases, the ErrorCode is further qualified by additional information
such as a robot number, axis number or other information. To facilitate the
interpretation of the ErrorCodes, positive values indicate success or warning
conditions and negative numbers indicate an error of some type. A value of 0 is the
general success code. For a full listing of the defined ErrorCode values, please see
the "System Error Codes" section of the PreciseFlex Library. When a New Exception
is created, it defaults to a general Exception with an ErrorCode value of 0 (success).

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.ErrorCode = -786 ' *Project generated error*
exc1.Qualifier = 8 ' Specify the qualifier
Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Also

Exception Handling

76 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A exception_object.Message Method

exception_object.Message Method

Returns the full text string that is generated based upon the exception_obj properties.

...exception_object.Message

Prerequisites

None

Parameters

None

Remarks

Given any exception_object, this method interprets the ErrorCode and any defined
refinement information such as the RobotNum, Axis, orQualifier properties as
appropriate and returns the equivalent text string that is normally output to indicate
this exception.

Examples

Dim exc1 As New Exception ' Create new general
exception
exc1.RobotError = True ' Indicate its a robot
error
exc1.ErrorCode = -1012 ' *Joint out-of-range*
exc1.Axis = &HA ' Specify axes 2 and 4
Console.WriteLine(exc1.Message) ' *Joint out-of-range*
Robot 1: 2 4

See Also

Exception Handling

Copyright © 2024, Brooks Automation 77

6. Exception Handling GPL Dictionary
exception_object.Qualifier Property Part Number: 609719 Rev. A

exception_object.Qualifier Property

Sets and gets the error message qualifier for a general Exception.

exception_object.Qualifier =<new_value>
-or-
...exception_object.Qualifier

Prerequisites

Only valid for general Exceptions. Not valid for robot Exceptions.

Parameters

None

Remarks

For general Exceptions, theQualifier property specifies an additional number that
can be used to further refine the meaning of an error condition. This value is stored as
a 16-bit unsigned number and can range from 0 to 65535. E.g, when the error code is
-786 (Project generated error), theQualifier property can be used by the Project to
convey which of several different special error conditions was detected. When a New
Exception is created, it defaults to a general Exception with aQualifier property of 0.
When an Exception is changed from a robot to a general type, theQualifier value is
reset to 0.

Examples

Dim excl As New Exception ' Create new general exception

excl.ErrorCode = -786 ' *Project generated error*

excl.Qualifier = 8 ' Specify the qualifier

Console.WriteLine(excl.Message) ' *Project generated error*: 8

See Also

Exception Handling | exception_object.RobotError

78 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A exception_object.RobotError Property

exception_object.RobotError Property

Sets and gets the Boolean that indicates if an Exception is a robot or general type.

exception_object.RobotError =<boolean_value>
-or-
...exception_object.RobotError

Prerequisites

None

Parameters

None

Remarks

Setting the RobotError property of an exception_object to True indicates that it is a
robot Exception and therefore has a RobotNum and an Axis property. Otherwise,
setting RobotError to False indicates that the exception_object is a general
Exception and has aQualifier property. Both robot and general Exceptions have
the same effect in terms of halting thread execution and disabling robot power. The
only difference between the two types of Exceptions is which additional properties
exist to further refine the interpretation of the error code. When a New Exception is
created, it defaults to a general Exception. To switch between robot and general
Exception types, the RobotError property should be set as needed.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling

Copyright © 2024, Brooks Automation 79

6. Exception Handling GPL Dictionary
exception_object.RobotNum Property Part Number: 609719 Rev. A

exception_object.RobotNum Property

Sets and gets the number of the robot associated with a robot Exception.

exception_object.RobotNum =<new_value>
-or-
...exception_object.RobotNum

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

For robot Exceptions, the RobotNum property specifies the number of the robot
associated with the error condition. This value can range from 0 to 16. A value of 0
indicates that it is a conveyor belt and values from 1 to 16 specify regular robot
numbers. For example, when the error code is -1006 (Robot already attached), the
RobotNum property indicates which robot was being accessed when this error was
generatedWhen a New Exception is created, it defaults to a general Exception not a
robot. When an Exception is set to a robot type, the RobotNum value is initially set
to 1.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling | exception_object.RobotError | exception_object.Axis

80 Copyright © 2024, Brooks Automation

Brooks Automation 6. Exception Handling
Part Number: 609719 Rev. A exception_object.UpdateErrorCode Method

exception_object.UpdateErrorCode Method

Updates a general (vague) Exception error code with a more specific error code.
Replaces error codes -1029, -1030, or -1043, if possible.

...exception_object.UpdateErrorCode

Prerequisites

None

Parameters

None

Remarks

Because GPL responds as quickly as possible to error conditions and contains many
independent threads, when an exception is thrown, a user thread may not
immediately know the exact reason for the exception. In this case, GPL reports one of
three generic error codes:

1. -1029: Asynchronous error

2. -1030: Fatal asynchronous error

3. -1043: Asynchronous soft error

Several milliseconds later, the specific error code is normally available, but the system
does not wait for this information before initiating a reaction, such as decelerating the
robot. The UpdateErrorCodemethod checks an Exception object’s error code to
see if it matches one of the generic error code values listed above. If so, by analyzing
error message timestamps, it replaces the generic error code with any more specific
error code that has become available. This is a convenience method that eliminates
the need to develop software to utilize the Controller.ErrorLog property to scan
posted errors for more specific error information.

Examples

Copyright © 2024, Brooks Automation 81

6. Exception Handling GPL Dictionary
exception_object.UpdateErrorCode Method Part Number: 609719 Rev. A

Dim exc As Exception
Dim my_loc As Location
Dim my_prof As Profile
Try

Move.Loc(my_loc, my_prof)

Catch exc ' Perform time-critical exception handling here

Console.WriteLine(exc.ErrorCode) ' Show initial error

Thread.Sleep(10) ' Wait for errors to propagate

exc.UpdateErrorCode

Console.WriteLine(exc.ErrorCode) ' Show final error

End Try

See Also

Exception Handling | Controller.ErrorLog

82 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A File and Serial I/O Classes Summary

7. File and Serial I/O Classes

File and Serial I/O Classes Summary

The following pages provide detailed information on the properties and methods for
the various classes that implement both file and serial port input and output
communications.

The File Class is designed specifically for managing disk files and disk file directories.
The StreamReader and StreamWriter Classes apply to both file and serial
communications.

Table 7-1, Table 7-2, and Table 7-3 summarize the properties and methods for each
Class, which are described in greater detail in the following sections.

File Class
Member Type Description

File.ComputeCRC Shared
Function

Returns a CRC check code computed by reading though a file. Used to
verify that a file has not been corrupted.

File.ComputeLength Shared
Function

Returns the length of a file computed by reading through a file and counting
the bytes. Used to verify that a file has not been corrupted.

File.Copy Shared
Method Copies a single file on devices like the flash disk and ROMDISK.

File.CreateDirectory Shared
Method Creates a file directory and the path to the directory.

File.DeleteDirectory Shared
Method Deletes a single, empty file directory.

File.DeleteFile Shared
Method Deletes a single file.

File.GetDirectories Shared
Method

Returns an array of strings containing the names of directories in a
directory.

Table 7-1: File and Serial I/O Classes Properties & Methods, 1

Copyright © 2024, Brooks Automation 83

7. File and Serial I/O Classes GPL Dictionary
File and Serial I/O Classes Summary Part Number: 609719 Rev. A

File Class
Member Type Description

File.GetFiles Shared
Method Returns an array of strings containing the names of files in a directory.

File.Length Shared
Function Efficiently returns the length of a file based on its directory entry.

StreamReader
Member Type Description

New StreamReader Constructor
Method Opens a file or serial port device for reading.

streamreader_obj.Close Method Closes the file or device associated with a StreamReader Object.

streamreader_obj.Peek Method Returns the next byte from an input stream without removing it from
the stream.

streamreader_obj.Read Method Returns the next byte from an input stream and removes it from the
stream.

streamreader_
obj.ReadLine Method Reads a line from the input stream terminated by LF, CR, or CR-

LF.

Table 7-2: File and Serial I/O Classes Properties & Methods, 2

StreamWriter
Member Type Description

New StreamWriter Constructor
Method Opens a file or serial port device for writing.

streamwriter_
obj.AutoFlush Property Sets or gets the property that controls whether or not output is buffered.

streamwriter_
obj.Close Method Closes the file or device associated with a StreamWriter Object.

streamwriter_
obj.Flush Method Immediately writes any buffered data for a StreamWriter Object.

streamwriter_
obj.NewLine Property Sets or gets the property that controls how lines are terminated by the

WriteLinemethod.

streamwriter_
obj.Write Method Writes a number or a String to an output device or file.

streamwriter_
obj.WriteLine Method Writes a number or a String to an output device or file, followed by the

NewLine line terminator.

Table 7-3: File and Serial I/O Classes Properties & Methods, 3

84 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A File.ComputeCRC Function

File.ComputeCRC Function

Reads a file and computes the Cyclic Redundancy Check (CRC) value for all the data
in the file.

<integer_variable>= File.ComputeCRC (path)

Prerequisites

None

Parameters

path

A required String expression that contains the path to the file that is to
be read.

Remarks

This function permits a GPL program to detect if a file has been changed or corrupted
by computing the CRC based on all the data in the file. If the CRC value is the same
as a value that was previously computed for a file, it is highly unlikely that the file data
is corrupted or has been modified.

Examples

Dim crc As Integer
crc = File.ComputeCRC(path)
Console.Writeline("Computed CRC is " & Hex(crc))

See Also

File and Serial I/O | File.ComputeLength| File.Length

Copyright © 2024, Brooks Automation 85

7. File and Serial I/O Classes GPL Dictionary
File.ComputeLength Function Part Number: 609719 Rev. A

File.ComputeLength Function

Reads a file and computes the length of a file by reading through all the data in the file.

<integer_variable>= File.ComputeLength (path)

Prerequisites

None

Parameters

path

A required String expression that contains the path to the file that is to
be read.

Remarks

This function permits a GPL program to detect if a file has been changed or corrupted
by computing its length so that it can be compared with the length in the file directory.

If the lengths match, the disk file allocation table is likely valid, but there is no
guarantee that the actual data is unmodified.

Examples

Dim len As Integer
len = File.ComputeLength(path)
Console.Writeline("Computed length is " & CStr(len))

See Also

File and Serial I/O | File.ComputeCRC | File.Length

86 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A File.Copy Method

File.Copy Method

Copies a single file on devices like the flash disk and ROMDISK.

File.Copy (source_file, destination_file, overwrite)

Prerequisites

None

Parameters

source_file

A required String expression. Contains the fully specified path and file
name of an existing file to be copied.

destination_file

A required String expression. Contains the fully specified path and file
name of the destination file.

overwrite

An optional numeric expression. If zero (False), the destination file is not
overwritten if it already exists. If non-zero, the destination file is
overwritten if it already exists.

Remarks

This method copies a single file stored on a device like the flash disk or ROMDISK. A
wild card specification of multiple files is not permitted.

The complete path must be specified for both the source and destination. There are
no defaults for any fields.

Copyright © 2024, Brooks Automation 87

7. File and Serial I/O Classes GPL Dictionary
File.Copy Method Part Number: 609719 Rev. A

If a directory in the destination path does not exist, the directory is not created and the
copy fails with an error.

Examples

File.Copy("/flash/projects/Hello/Main.gpl", _
"/flash/Test.gpl", True)

File.Copy("/flash/projects/Hello/Main.gpl", _
"/ROMDISK/Test.gpl", False)

See Also

File and Serial I/O

88 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A File.CreateDirectory Method

File.CreateDirectory Method

Creates a file directory and the path to the directory.

File.CreateDirectory (path)

Prerequisites

Directories can only be created on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A String that contains the path for the directory to create, beginning with
the device name and ending with the new directory name.

Remarks

This method creates a directory in the location specified by the path parameter. If any
intermediate directories in the path are undefined, they are automatically created.

An error occurs if the final directory already exists.

If any error occurs, this method throws an Exception.

Examples

File.CreateDirectory("/ROMDISK/temp/new_directory") '
Create "new_directory"

' Also cre-
ates "temp" if needed

See Also

File and Serial I/O | File.DeleteDirectory

Copyright © 2024, Brooks Automation 89

7. File and Serial I/O Classes GPL Dictionary
File.DeleteDirectory Method Part Number: 609719 Rev. A

File.DeleteDirectory Method

Deletes a single, empty file directory.

File.DeleteDirectory (path)

Prerequisites

The directory must be empty.

Parameters

path

A String that contains the path for the directory to delete, beginning with
the device name and ending with the new directory name.

Remarks

This method deletes a single directory in the location specified by the path parameter,
provided that the directory is empty. If any files or sub-directories exist within the
directory, an error occurs.

An error also occurs if the final directory does not exist.

If any error occurs, this method throws an Exception.

Examples

File.DeleteDirectory("/ROMDISK/temp/new_directory") '
Delete "new_directory"

' if
empty

See Also

File and Serial I/O | File.CreateDirectory | File.DeleteFile

90 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A File.DeleteFile Method

File.DeleteFile Method

Deletes a single file.

File.DeleteFile (path)

Prerequisites

The file cannot be open for read or write.

Parameters

path

A String that contains the path to the file to delete, beginning with the
device name and ending with the file name.

Remarks

This method deletes a single file in the location specified by the path parameter.

An error occurs if the file does not exist.

If any error occurs, this method throws an Exception.

Examples

File.DeleteFile("/ROMDISK/myfile.txt") ' Delete
"myfile.txt"

See Also

File and Serial I/O | File.DeleteDirectory

Copyright © 2024, Brooks Automation 91

7. File and Serial I/O Classes GPL Dictionary
File.GetDirectories Method Part Number: 609719 Rev. A

File.GetDirectories Method

Reads a directory, gets the names of all sub-directories, and returns them in an array
of Strings.
<string_array> =File.GetDirectories (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of sub-directories within a
directory. If the specified directory path does not exist, this method throws an
exception. One sub-directory name is returned per array element. The length of the
returned String array indicates how many sub-directories were discovered. The sub-
directory names are relative to the specified path. If sub-directories are being actively
created or deleted when this method is invoked, some existing sub-directories may be
missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetDirectories(path)
Console.Writeline(CStr(files.Length) & " directories seen")
For ii = 1 To files.Length

Console.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O | File.GetFiles

92 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A File.GetFiles Method

File.GetFiles Method

Reads a directory, gets the names of all non-directory files, and returns them in an
array of Strings.

<string_array> =File.GetFiles (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of files within a directory. If
the specified directory path does not exist, this method throws an exception. One file
name is returned per array element. The length of the returned String array indicates
how many files were detected. The file names are relative to the specified path. If files
are being actively created or deleted when this method is invoked, some existing files
may be missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetFiles(path)
Console.Writeline(CStr(files.Length) & " files seen")
For ii = 1 To files.Length
---Console.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O | File.GetDirectories

Copyright © 2024, Brooks Automation 93

7. File and Serial I/O Classes GPL Dictionary
File.Length Function Part Number: 609719 Rev. A

File.Length Function

Returns the length of a file recorded in the directory.

<integer_variable>= File.Length (path)

Prerequisites

None

Parameters

path

A required String expression that contains the path to the file whose
length is returned.

Remarks

This function permits a GPL program to efficiently determine the length of a file by
reading this value from a directory.

Examples

Dim len As Integer
len = File.Length(path)
Console.Writeline("Length is " & CStr(len))

See Also

File and Serial I/O | File.ComputeCRC | File.ComputeLength

94 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A New StreamReader Constructor

New StreamReader Constructor

For creating a StreamReader Object. Also opens a file or device for reading.

New StreamReader (path)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Local serial
ports are devices named "/dev/com1", "/dev/com2", etc. Remote serial
ports are named "/dev/comrxy" where "x" is the number of the remote
device and "y" is the number of the serial port on the remote device.
Temporary files may be placed on device "/ROMDISK" and permanent
files may be placed on "/flash".

Remarks

This opens a file or device and associates it with a new StreamReader Object. If any
error occurs, this constructor throws an Exception.

Examples

Dim com1 As New StreamReader("/dev/com1") '
Open serial port #1
Dim tfile As New StreamReader("/ROMDISK/test.tmp") '
Open temporary file
Dim pfile As New StreamReader("/flash/save.txt") '
Open permanent file

See Also

File and Serial I/O | New StreamWriter

Copyright © 2024, Brooks Automation 95

7. File and Serial I/O Classes GPL Dictionary
streamreader_object.Close Method Part Number: 609719 Rev. A

streamreader_object.Close Method

Closes the file or device associated with a StreamReader Object.

steamreader_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamReader Object.
If any I/O error occurs, it throws an Exception. No error occurs if the file or device is
not currently open.

Examples

streamreader_object.Close()

See Also

File and Serial I/O | New StreamReader

96 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A streamreader_object.Peek Method

streamreader_object.Peek Method

Returns the next byte from an input stream without removing it from the stream.

...steamreader_object.Peek()

Prerequisites

The input streammust have been opened using a New to create the streamreader_
object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an Integer, but it does not
remove the byte from the stream. The next input method call will still return this byte.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method does not block, but immediately returns -1 if no bytes
are available to read.

If no device or file is open, this method throws an Exception.

Examples

Dim com1 As New StreamReader("/dev/com1")
Dim c As Integer
c = com1.Peek()

See Also

File and Serial I/O | streamreader_object.Read

Copyright © 2024, Brooks Automation 97

7. File and Serial I/O Classes GPL Dictionary
streamreader_object.Read Method Part Number: 609719 Rev. A

streamreader_object.Read Method

Returns the next byte from an input stream and removes it from the stream.

...steamreader_object.Read()

Prerequisites

The input streammust have been opened using a New to create the streamreader_
object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an integer. The byte is
removed from the stream so that subsequent calls do not return it.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method blocks if no bytes are available to read.

Be careful when using this method to read data from a serial port since it blocks until a
byte is available. If for some reason the byte is lost due to an error, this method will
continue blocking and hang your procedure.

If no device or file is open, this method throws an Exception.

Examples

Dim com1 As New StreamReader("/dev/com1")
Dim c As Integer
c = com1.Read()

See Also

File and Serial I/O | streamreader_object.Peek | streamreader_object.ReadLine

98 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A streamreader_object.ReadLine Method

streamreader_object.ReadLine Method

Reads a line from the input stream terminated by LF, CR, or CR-LF.

...steamreader_object.ReadLine()

Prerequisites

The input streammust have been opened using a New to create the streamreader_
object.

Parameters

None

Remarks

This method returns a String containing the next bytes in the input stream up to the
next LF character (decimal value 10,GPL_LF) or CR character (decimal 13,GPL_
CR). It blocks until the data followed by these line terminators is received or the end-
of-file is seen. Any LF, CR, or CR-LF pair is removed from the end of the string. Note
that the StreamWriterNewLine property does not have any effect on how ReadLine
interprets the end of line. Be careful when using this method to read data from a serial
port since it blocks until a line terminator is seen. If for some reason the line terminator
is lost or corrupted due to an error, this method will continue blocking and hang your
procedure.

If some other I/O error occurs, this method throws an Exception.

Examples

Dim file As New StreamReader("/flash/data.txt")
Dim line As String
line = file.ReadLine()

See Also

File and Serial I/O | streamreader_object.Read

Copyright © 2024, Brooks Automation 99

7. File and Serial I/O Classes GPL Dictionary
New StreamWriter Constructor Part Number: 609719 Rev. A

New StreamWriter Constructor

Constructor for creating a StreamWriter Object. Also opens a file or device for
writing.

New StreamWriter (path)
-or-
New StreamWriter(path, append)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Serial ports
are devices named "/dev/com1", "/dev/com2", etc. Remote serial ports
are named "/dev/comrxy" where "x" is the number of the remote device
and "y" is the number of the serial port on the remote device. Temporary
files may be placed on device "/ROMDISK" and permanent files may be
placed on "/flash".

append

A Boolean value that determines whether or not new data should be
appended to the end of an existing file. If append is False, a new file is
always created, overwriting any existing file with the same name.

Remarks

This method opens a file or device and associates it with a new StreamWriter Object.

By default, AutoFlush is enabled for serial ports and the /NVRAM device but not for
files on other devices.

If any error occurs, this method throws an Exception.

100 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A New StreamWriter Constructor

Examples

Dim com1 As New StreamWriter("/dev/com1") '
Open serial port #1
Dim tfile As New StreamWriter("/ROMDISK/test.tmp") '
Open temporary file
Dim pfile As New StreamWriter("/flash/save.txt") '
Open permanent file

See Also

File and Serial I/O | New StreamReader | streamwriter_object.AutoFlush

Copyright © 2024, Brooks Automation 101

7. File and Serial I/O Classes GPL Dictionary
streamwriter_object.AutoFlush Property Part Number: 609719 Rev. A

streamwriter_object.AutoFlush Property

Sets or gets the AutoFlush property that controls whether or not output is buffered.

steamwriter_object.AutoFlush = <boolean_value>
-or-
...steamwriter_object.AutoFlush

Prerequisites

None

Parameters

None

Remarks

Setting this property to True causes output requests to immediately write data to the
file or device. Setting it to False buffers the output and lets the system decide when to
write it. Buffered output is always immediately written when a Flush or Closemethod
is executed.

Setting AutoFlush to True for files may significantly slow down any write operations.

By default, AutoFlush is set to True for serial ports and the /NVRAM device and set to
False for files on other devices.

Examples

Dim pfile As New StreamWriter("/flash/save.txt") '
Open permanent file
pfile.AutoFlush = True

See Also

File and Serial I/O | streamwriter_object.Flush

102 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A streamwriter_object.Close Method

streamwriter_object.Close Method

Closes the file or device associated with a StreamWriter Object.

steamwriter_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamWriter Object.
Any pending buffered output is written before the close completes.

If buffered output is being written, this method blocks until the output is complete.

If any I/O error occurs, this method throws an Exception. No error occurs if the file or
device is not currently open.

Examples

streamwriter_object.Close()

See Also

File and Serial I/O | New StreamWriter

Copyright © 2024, Brooks Automation 103

7. File and Serial I/O Classes GPL Dictionary
streamwriter_object.Flush Method Part Number: 609719 Rev. A

streamwriter_object.Flush Method

Immediately writes any buffered data for a StreamWriter Object.

steamwriter_object.Flush

Prerequisites

The output streammust have been opened using a New to create the streamwriter_
object.

Parameters

None

Remarks

This method immediately writes any buffered data to the output device or file. When
output is performed, this method blocks until it is complete. Calling the Flushmethod
is redundant if the AutoFlush property is set to True. Explicit flush operations are
more efficient than setting AutoFlush to True if you are performing a number of small
write requests. If AutoFlush is True, each small write request causes output to occur.
If AutoFlush is False, the small write requests can be buffered and the entire buffer is
written by a single Flush. A Flush equivalent is always performed by the Close
method. If any I/O error occurs, this method throws an Exception.

Examples

Dim com As New StreamWriter("/dev/com1")
com.AutoFlush = False ' Disable automatic flush
com.Write("Write")
com.Write(" a short ")
com.WriteLine("message")
com.Flush

See Also

File and Serial I/O | streamwriter_object.AutoFlush

104 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A streamwriter_object.NewLine Property

streamwriter_object.NewLine Property

Sets or gets the NewLine property that controls how lines are terminated by the
WriteLinemethod.

steamwriter_object.NewLine = <newline_string>
-or-
...steamwriter_object.NewLIne

Prerequisites

None

Parameters

None

Remarks

This property is a string of 0, 1 or 2 bytes that is appended to the end of any output
performed by the streamwriter_object.WriteLinemethod. By default the NewLine
value is a 2-byte string containing an ASCII CR character (decimal 13,GPL_CR)
followed by an LF character (decimal value 10,GPL_LF). Typical settings for this
property are CR, LF, or CR-LF. If set to an empty string, no terminator is added to the
end of lines.

Examples

Dim pfile As New StreamWriter("/dev/com1") ' Open serial port 1
pfile.NewLine = Chr(GPL_LF) ' Set terminator to LF (10)

.

.

.
pfile.NewLine = Chr(GPL_CR) ' Set terminator to CR (13)

See Also

File and Serial I/O | streamwriter_object.WriteLine

Copyright © 2024, Brooks Automation 105

7. File and Serial I/O Classes GPL Dictionary
streamwriter_object.Write Method Part Number: 609719 Rev. A

streamwriter_object.Write Method

Writes a number or a String to an output device or file.
steamwriter_object.Write(number)
-or-
steamwriter_object.Write(string_value)

Prerequisites

Open the output stream using a New to create the streamwriter_object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the Stringmay be an
arbitrary 8-bit value.

Remarks

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output. Buffering of
data is determined by the setting of the AutoFlush property. When output is actually
performed, this method blocks until it is complete. If any I/O error occurs, this method
throws an Exception.

Examples

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
tfile.Write("Test ") ' Writes "Test "
tfile.Write(3.14) ' Writes "3.14" on the same line as "Test "

See Also

File and Serial I/O | streamwriter_object.WriteLine

106 Copyright © 2024, Brooks Automation

Brooks Automation 7. File and Serial I/O Classes
Part Number: 609719 Rev. A streamwriter_object.WriteLine Method

streamwriter_object.WriteLine Method

Writes a number or a String to an output device or file, followed by the NewLine line
terminator.

steamwriter_object.WriteLine(number)
-or-
steamwriter_object.WriteLine(string_value)

Prerequisites

The output streammust have been opened using a New to create the streamwriter_
object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the Stringmay be an
arbitrary 8-bit value.

Remarks

This method is the same as theWritemethod with the addition that it appends the
value of the NewLine property to any output requests.

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output
is actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Copyright © 2024, Brooks Automation 107

7. File and Serial I/O Classes GPL Dictionary
streamwriter_object.WriteLine Method Part Number: 609719 Rev. A

Examples

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
tfile.WriteLine("Test") ' Writes "Test"
tfile.WriteLine(3.14) ' Writes "3.14" on the
line following "Test"

See Also

File and Serial I/O | streamwriter_object.NewLine | streamwriter_object.Write

108 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A Function Summary

8. Functions

Function Summary

The following sections present detailed information on the standard functions that are
supported by GPL. These functions are not grouped into a specific Class and are
provided in this manner to be compatible with other Basic Language systems. As is
standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not
necessary to have different variations on these functions to deal with the different
possible mixes of input parameter data types. Also, these functions generally produce
results that are formatted as Double’s. These results will automatically be converted
to smaller data types as necessary, e.g. Double -> Integer, and will not generate an
error so long as numeric overflow does not occur. Table 8-1 summarizes the system
functions that are described in greater detail in the following sections.

Function Description

CBool
(expression) Converts any numeric type or String to Boolean

CByte
(expression) Converts any numeric type or String to Byte.

CDbl (expression) Converts any numeric type or String to Double.

CInt (expression) Converts any numeric type or String to Integer.

CShort
(expression) Converts any numeric type or String to Short.

CSng (expression) Converts any numeric type or String to Single.

CStr (expression) Converts any numeric type to String.

Fix (number) Truncates towards zero any numeric type returning only the integer portion of the number.

Hex (expression) Converts an Integer value to String in Hexadecimal format.

Table 8-1: System Functions

Copyright © 2024, Brooks Automation 109

8. Functions GPL Dictionary
Function Summary Part Number: 609719 Rev. A

Function Description

Int (number) Truncates towards negative infinity any numeric type returning only the integer portion of the
number.

Rnd (seed) Returns a pseudo random number.

110 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CBool Function

CBool Function

Converts any numeric type or String to a Boolean value.

...CBool (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-2 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-2: Conversion Functions

Copyright © 2024, Brooks Automation 111

8. Functions GPL Dictionary
CBool Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

112 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CByte Function

CByte Function

Converts any numeric type or String to a Byte value.

...CByte (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-3 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-3: Conversion Functions

Copyright © 2024, Brooks Automation 113

8. Functions GPL Dictionary
CByte Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

114 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CDbl Function

CDbl Function

Converts any numeric type or String to a Double value.

...CDbl (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-4 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-4: Conversion Functions

Copyright © 2024, Brooks Automation 115

8. Functions GPL Dictionary
CDbl Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

116 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CInt Function

CInt Function

Converts any numeric type or String to an Integer value.

...CInt (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-5 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-5: Conversion Functions

Copyright © 2024, Brooks Automation 117

8. Functions GPL Dictionary
CInt Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

118 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CShort Function

CShort Function

Converts any numeric type or String to a Short value.

...CShort (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-6 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-6: Conversion Functions

Copyright © 2024, Brooks Automation 119

8. Functions GPL Dictionary
CShort Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

120 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CSng Function

CSng Function

Converts any numeric type or String to a Single value.

...CSng (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-7 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-7: Conversion Functions

Copyright © 2024, Brooks Automation 121

8. Functions GPL Dictionary
CSng Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

122 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A CStr Function

CStr Function

Converts any numeric type to a String value.

...CStr (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-8 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-8: Conversion Functions

Copyright © 2024, Brooks Automation 123

8. Functions GPL Dictionary
CStr Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim stg As String
stg = CStr(3.14159) ' Sets stg equal to "3.14159"

See Also

Functions | Fix Function| Format Function | Int Function

124 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A Fix Function

Fix Function

Returns the integer portion of any number by truncating towards zero.

...Fix (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the
first negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their
values rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1

Copyright © 2024, Brooks Automation 125

8. Functions GPL Dictionary
Fix Function Part Number: 609719 Rev. A

s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the
returned value is within the range of a specific data type. The Int and Fix routines
simply eliminate the fraction portion of any number and perform no range testing.

Examples

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3

See Also

Functions | Int Function

126 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A Hex Function

Hex Function

Converts an Integer value to a String value in Hexadecimal format.

...Hex (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single,
however, the value is converted to Integer prior to conversion to a String
value.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion
tests that the converted value falls within the proper range of values for the returned
data type. If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real
numbers to integers by rounding rather than truncation.

Table 8-9 summarizes all of the conversion functions.

Function Returned
Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

Table 8-9: Conversion Functions

Copyright © 2024, Brooks Automation 127

8. Functions GPL Dictionary
Hex Function Part Number: 609719 Rev. A

Function Returned
Data Type Range of Valid Expression Values

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Dim stg As String
Dim ii As Integer
ii = CInt("&H1234") ' Sets ii equal to 4660
stg = Hex(ii) ' Sets stg equal to "1234"

See Also

Functions | Fix Function | Format Function | Int Function

128 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A Int Function

Int Function

Returns the integer portion of any number by truncating towards negative infinity.

...Int (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the
first negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their
values rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1

Copyright © 2024, Brooks Automation 129

8. Functions GPL Dictionary
Int Function Part Number: 609719 Rev. A

s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the
returned value is within the range of a specific data type. The Int and Fix routines
simply eliminate the fraction portion of any number and perform no range testing.

Examples

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3

s_val = Int(3.99999) ' Sets s_val equal to 3

See Also

Functions | Fix Function

130 Copyright © 2024, Brooks Automation

Brooks Automation 8. Functions
Part Number: 609719 Rev. A Rnd Function

Rnd Function

Returns a pseudo random number.

...Rnd (seed)

Prerequisites

None

Parameters

seed

An optional expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a pseudo random number whose value is greater than or equal to 0 and less
than 1.0.

The returned value is only pseudo random because the returned numbers are part of
an extremely long sequence of values that only repeat after 2^32 numbers are
generated. Each time that the controller is restarted, the starting point or seed in the
sequence is determined by the system clock calendar. So, the sequence of values
produced by this function appears quite random for normal testing purposes.

If it is desired to force the sequence of numbers to restart at a fixed value, thereby
allowing a test to be exactly repeated, the optional seed parameter can be used as
shown in Table 8-10.

seed Effect on function

<0 The specified seed value is taken as the starting point for the pseudo random sequence and the
sequence will be continued from this value. The number returned by this execution of the Rnd will
always be the same.

Table 8-10: Seed Parameters

Copyright © 2024, Brooks Automation 131

8. Functions GPL Dictionary
Rnd Function Part Number: 609719 Rev. A

seed Effect on function

=0 The last value returned by the Rnd function will be returned again.

>0 The next number in the pseudo random sequence will be returned.

Not
specified

Same as specifying a seed value >0.

Examples

Dim r_val As Single
r_val = Rnd() ' Sets r_val to some random value
r_val = Rnd(-1) ' Forces seed to –1, will return
same number

' each time.
r_val = Rnd() ' Returns next value after seed
r_val = Rnd(0) ' Returns same value as last line
above

See Also

Functions

132 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A Latch Class Summary

9. Latch Class

Latch Class Summary

The following pages provide detailed information on the properties and methods of the
Latch Class. This class, and its Latch Object instances, provide a means for GPL
procedures to receive the results of latch events generated by digital input signals
configured as latch inputs. These results allow a robot or belt position to be captured
with high accuracy when a digital input value changes.

The Latch Class defines Latch Objects that contain the time when the latch
occurred and the robot axis positions at that time. This class also includes methods
and properties for accessing the queue of latch results, and for accessing the results
themselves.

When a latch occurs, as specified by the Latch Input configuration, a Latch Object is
created and placed in a queue. Each robot has an independent queue, kept in order of
time, with the oldest objects first. All the axes of a robot are latched simultaneously, so
the entire position and orientation of the robot is available.

Belts are a special case of robots and are normally configured as "encoder only"
robots. Multiple belts or robots, or any combination of the two, may be latched
simultaneously by a single latch input or independently by separate latch inputs. Each
belt or robot may be latched by up to 12 different latch inputs.

The Latch Class allows a latch queue to be associated with a system thread event
(see Thread Class, methodWaitEvent) so that an event is sent to a thread whenever
a new latch is placed in the queue. By waiting for events, a GPL thread may efficiently
wait for latches to occur.

For a general discussion of Latches, please see the Controller Software >
Introduction To The Software > Communications > Digital Inputs and Outputs
> Latch Inputs section of the PreciseFlex™ PreciseFlex Library.

Table 9-1 summarizes the methods and properties that are described in greater detail
in the following sections.

Copyright © 2024, Brooks Automation 133

9. Latch Class GPL Dictionary
Latch Class Summary Part Number: 609719 Rev. A

Member Type Description

latch_object.Angle Property Returns the latched value of the specified axis angle. Avoids creating a Location
object.

Latch.Count Shared
Property

Returns the number of latch results pending for a robot or conveyor belt.

latch_
object.ErrorCode Property Returns the error code from a latch object. 0 means no error.

Latch.Flush Shared
Method

Flushes all latch results pending for a robot or conveyor belt.

latch_
object.Location Method Returns a Location object containing the latched position, as a Cartesian value or

a set of angles.

Latch.Result Shared
Method

Removes the next latch result from the queue for a robot or belt and returns it as a
Latch object. Returns Nothing if the queue is empty. Throws an exception if a
result was lost due to an overflow.

latch_object.Signal Property Returns the number of the digital input signal that generated the latch.

Latch.ThreadEvent SharedProperty
Associates a thread event with a robot or belt. The thread event gets set if the latch
queue contains latch results or when new latch results are added.

latch_
object.Timestamp Property Returns the timestamp when the latch occurred as a Double value, consistent with

the Controller.Timer property.

Table 9-1: Latch Class, Methods & Properties

134 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A latch_object.Angle Property

latch_object.Angle Property

Read-only property that returns the latched value of the specified axis angle. Avoids
creating a location object.

…latch_object.Angle(axis)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

axis

An optional numeric expression that specifies the angle whose value is
returned. If not specified, a default value of 1 is assumed.

Remarks

This property returns the specified angle from a Latch object. It is more efficient than
using latch_object.Location(1).Angle(1) since it does not require the creation of an
intermediate Location object.

Examples

Dim lat As Latch
lat = Latch.Result(1) ' Get next latched
value
Console.WriteLine("Latched angle 1: " & CStr(lat.Angle
(1)))

See Also

Latch Class|latch_object.Location|location_object.Angle

Copyright © 2024, Brooks Automation 135

9. Latch Class GPL Dictionary
Latch.Count Shared Property Part Number: 609719 Rev. A

Latch.Count Shared Property

Read-only shared property that returns the number of Latch objects pending in the
queue for a robot.

…Latch.Count(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property returns the number of Latch objects pending in the Latch queue for a
specified robot.

Examples

Console.WriteLine("Pending latch results: " & CStr(
Latch.Count))

See Also

Latch Class

136 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A latch_object.ErrorCode Property

latch_object.ErrorCode Property

Read-only property. Returns the numeric error code associated with the latch object.

…latch_object.ErrorCode

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

None

Remarks

This property returns the number of any error associated with a latch object. A value of
0 indicates no error. A value < 0 indicates that an error occurred during latching. This
read-only property is only meaningful if the optional no_exception parameter was set
to True when the Latch.Resultmethod was called to return the latch object. If no_
exception was set to False, the returned object will always have a zero ErrorCode
value. For a full listing of the defined ErrorCode values, please see the "System Error
Codes" section of the PreciseFlex Library. For specific information on the most likely
error codes, please see the documentation on Latch.Result.

Examples

Dim lat1 As Latch
lat1 = Latch.Result(1, True) ' Get latch event
If lat1.ErrorCode < 0 Then
 Console.WriteLine("Latch error: " & CStr
(lat1.ErrorCode))
End If

See Also
Latch Class | Latch.Result

Copyright © 2024, Brooks Automation 137

9. Latch Class GPL Dictionary
Latch.Flush Shared Method Part Number: 609719 Rev. A

Latch.Flush Shared Method

Removes all pending results from the Latch queue for a specified robot.

Latch.Flush(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property removes all Latch result objects from the specified robot queue. It also
resets any pending overflow errors for that queue. After calling this method, the
Latch.Count property for the queue will be 0, until new latches occur.

Examples

Latch.Flush(1)
Console.WriteLine("Latch results: " & CStr(Latch.Count
(1)))

' Displays value of 0

See Also

Latch Class

138 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A latch_object.Location Method

latch_object.Location Method

Returns a Location object that contains the latched position of a robot.
…latch_object.Location(type)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

type

A required numeric expression that specifies the type of Location object
to be returned. A 0 value indicates the Location, contains Cartesian
position and orientation information. l indicates the Location and
contains a set of axis position values. Consistent with the location_
object.Type property.

Remarks

Returns the latched robot position and orientation as a new Location object of the
specified type. This Location object may then be used like any other Location object.
All the axes of the robot are latched simultaneously, so the total robot position at the
time of the latch is consistent. If a single latched angle is of interest, the latch_
object.Angle property is more efficient since it does not create a Location.

Examples

Dim lat As Latch
Dim lpos As Location
lat = Latch.Result(1) ' Get next latched value
lpos = lat.Location(0) ' Cartesian Location
Console.WriteLine("Latched X: " & CStr(lpos.X))

See Also

Latch Class|latch_object.Angle|location_object.Angle

Copyright © 2024, Brooks Automation 139

9. Latch Class GPL Dictionary
Latch.Result Shared Method Part Number: 609719 Rev. A

Latch.Result Shared Method

Returns a Latch object containing the next result from a latch queue. Returns
Nothing if the queue is empty.

…Latch.Result(robot, no_exception)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

no_exception

An optional numeric expression that determines whether or not this
method will throw an exception if a latch related error occurs. If zero or
omitted, latch related errors throw exceptions. If non-zero, no
exceptions are thrown.

Remarks

This method removes the next latched result from the latch queue associated with the
specified robot. A new Latch object is returned. This object contains the latch result
information. If the latch queue is empty, this method returns a Nothing value, so the
caller should test for Nothing unless it is known that the queue is not empty. Latch
results are returned by the Latch.Resultmethod in the order that they were received,
with the oldest results returned first. If a latch related error is encountered, and the no_
exception parameter is 0 or omitted, this method throws an exception. If this
parameter is non-zero, no exception is thrown and a latch object is returned with its
ErrorCode property set to the appropriate negative error number. If no error occurs or
if no_exception is 0 or omitted, the ErrorCode property is always set to zero.

140 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A Latch.Result Shared Method

Table 9-2 shows latch related errors that may be generated: .

Code Text Description

-203 Fifo
overflowed

Latch events were generated faster than the GPL program removed them from the
FIFO using this method. You can increase the FIFO size by increasing the value of
DataID 16101, (Latch queue max).

-525 Latch input
overrun

The hardware latch circuit has detected that edges in the latch input signal are
occurring too quickly to be processed. One or more latch edges have been lost. The
latch circuit cannot handle duplicate latch edges in the same direction more often
than once every 1.2 milliseconds. There may be noise on the latch input signal.

-526 Latch data
overrun

Latch events are occurring too quickly for the Precise Controller to service them. If a
continuous stream of latch events occurs at a rapid rate, the controller may run out of
time to process them. This error is more likely to occur in a servo network system.
Reduce the rate of latch events or reduce the number of latch signals being used.

Table 9-2: Latch-Related Errors

Examples

Dim lat As Latch
lat = Latch.Result(1)
While Not lat Is Nothing

Console.WriteLine(CStr(lat.Signal) & ": " & _
CStr(lat.Timestamp) & ", " & _
CStr(lat.Angle(1)))

lat = Latch.Result(1)
End While

lat = Latch.Result(1, True)
If (Not lat Is Nothing) Then

If (lat.ErrorCode < 0) Then
Console.WriteLine("Error " & CStr

(lat.ErrorCode))
End If

End If

See Also

Latch Class | latch_object.ErrorCode

Copyright © 2024, Brooks Automation 141

9. Latch Class GPL Dictionary
latch_object.Signal Property Part Number: 609719 Rev. A

latch_object.Signal Property

Returns the number of the digital input signal that generated a latch result.

…latch_object.Signal

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

None

Remarks

Latch results are created when a digital input signal changes from low to high or high
to low, depending on the latching configuration.

This property returns the number of the digital input signal that triggered the latching.
If the signal number is positive, the input changed from low to high. If the signal
number is negative, the input changed from high to low.

The possible signal numbers are shown in Table 9-3.

Signal
Number Type Description

10001 -
10002

Local hardware latching, if
available.

Signals are monitored by hardware for high-accuracy
latching. Position errors as low as 4µm are possible when an
axis is traveling at 1 meter/second depending on sensors.

If hardware signal 10001 is bi-directional (i.e. both upward
and downward transitions trigger latching), signal 10002 may
not be used for latching.

Table 9-3: Possible Signals

142 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A latch_object.Signal Property

Signal
Number Type Description

10001 -
10012

Local software latching. Inputs
used for hardware latching may
not be used for software
latching.

Signals are monitored by software. Position errors as low as
1mm are possible when an axis is traveling at 1
meter/second.

10033 -
10040

ZIO board input software
latching.

Signals are monitored by software. Position errors as low as
4mm are possible when an axis is traveling at 1
meter/second.

n10001 -
n10002

Remote hardware latching, if
available, for Ethernet servo
network node n.

Signals are monitored by hardware on remote servo boards in
the Ethernet servo network. Position errors as low as 20µm
are possible when an axis is traveling at 1 meter/second.

If hardware signal n10001 is bi-directional (i.e. both upward
and downward transitions trigger latching), signal n10002
may not be used for latching.

n10001 -
n10012

Remote software latching for
Ethernet servo network node n.

Signals are monitored by software. Position errors as low as
1mm are possible when an axis is traveling at 1
meter/second.

n10001 -
n10003
n10001 -
n10008

Remote software latching for
Serial servo network node n.
(GSB or GIO).

Signals are monitored by software at 16KHz. Position errors
as low as 62.5µm are possible when an axis is traveling at 1
meter/second.

Examples

Dim lat As Latch
lat = Latch.Result(1)
Console.WriteLine("Signal: " & CStr(lat.Signal))

See Also

Latch Class

Copyright © 2024, Brooks Automation 143

9. Latch Class GPL Dictionary
Latch.ThreadEvent Shared Property Part Number: 609719 Rev. A

Latch.ThreadEvent Shared Property

Associates a thread event with a latch result queue.

Latch.ThreadEvent(robot) = event_mask
-or-
…Latch.ThreadEvent(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property associates an event for the current thread with the latch result queue
specified by the robot parameter. Setting a value of zero cancels any event
assignment in effect. Only one thread may have events associated with a specific
latch result queue. The last thread to set this property gets the assignment.

The get property returns the mask for any current event assignment. A value of zero
indicates no assignment is in effect.

The event_mask is described in the dictionary page for the thread_object.SendEvent
method.

When an event mask is defined, an event is sent to the thread that set the
Latch.ThreadEvent property whenever:

1. The ThreadEvent property is set, and the latch queue is not empty.

2. A new latch result is added to the latch queue.

144 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A Latch.ThreadEvent Shared Property

A thread can efficiently wait for latch results by using the Thread.WaitEventmethod.

It is possible for more than one latch result to be placed in the queue when an event is
set. It is also possible for a thread event to be sent even when no items are placed in
the queue. It should not be assumed that there is a single latch result ready just
because an event is received. Verify that a latch result is present by using the
Latch.Count property or checking if the Latch.Result returns Nothing.

Examples

Dim lat As Latch
Latch.ThreadEvent(1) = 1 ' Send event 1 to current
thread
While True

Thread.WaitEvent(1, -1) ' Wait for event 1
lat = Latch.Result(1)
While Not lat Is Nothing

Console.WriteLine(CStr(lat.Signal) & ": " & _
CStr(lat.Timestamp) & ", " & _
CStr(lat.Angle(1)))

lat = Latch.Result(1)
End While

End While

See Also

Latch Class|thread_object.SendEvent | Thread.WaitEvent

Copyright © 2024, Brooks Automation 145

9. Latch Class GPL Dictionary
latch_object.Timestamp Property Part Number: 609719 Rev. A

latch_object.Timestamp Property

Read-only property that returns the time when an encoder latch occurred.

…latch_object.Timestamp(select)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking
License be installed on the controller.

Parameters

select

An optional numeric value that selects the reference time for the value
returned. Set to 0 to return the seconds since January 1, 1988
according to the time-of-day setting. Set to 1 to return the seconds since
this controller was booted. If omitted, the value 0 is assumed.

Remarks

This read-only property returns the timestamp that indicates when the latch_object's
encoder position latch was triggered. This timestamp is a Double value, consistent
with the Controller.Timer(select) property.

Timestamp(0) values are the number of seconds since January 1, 1988 and are
accurate to within 1 µsec. Given the number of significant bits in a Double value, this
time value will not lose accuracy until the year 2124. If you change the time-of-day
(using the Date command, the web interface, or DataID 121) this time value will be
modified. So, Timestamp(0) may be inaccurate if the time-of-day is changed while
latch operations are occurring and is therefore not recommended.

Timestamp(1) values are the number of seconds since the controller was booted.
Changing the time-of-day does not affect this value. This is the preferred method for
retrieving encoder latch times.

Latch results are returned by the Latch.Resultmethod in the order that they were
received, with the oldest results returned first. The Timestamp property can be used
to determine the order of latch results received from different queues, or to compute

146 Copyright © 2024, Brooks Automation

Brooks Automation 9. Latch Class
Part Number: 609719 Rev. A latch_object.Timestamp Property

the elapsed time between latches. However, Timestamp(0) may be inaccurate or the
order may appear wrong if the time-of-day is changed while latch operations are
occurring.

The accuracy of the Timestamp depends on the type of digital input signal that
triggered the latching. For information on the accuracy and latencies for each type of
digital input signal, please refer to the PreciseFlex Library > Controller Software >
Introduction to the Software > Communications > Digital Inputs and Outputs >
Latch Input > Latch Timing.

Examples

Dim lat1, lat2 As Latch
Dim difference As Double
lat1 = Latch.Result(1) ' First latch
lat2 = Latch.Result(1) ' Second latch
difference = lat2.Timestamp(1) - lat1.Timestamp(1)
Console.WriteLine("Difference: " & CStr(difference))

See Also

Latch Class|Controller.Timer

Copyright © 2024, Brooks Automation 147

timer.htm

10. Location Class GPL Dictionary
Location Class Summary Part Number: 609719 Rev. A

10. Location Class

Location Class Summary

The following pages provide detailed information on the properties and methods of the
Location Class. This class and its Location Object instances provide the
fundamental means for representing robot and part positions and orientations within
GPL. Location Objects and Profile Objects (which define motion performance
parameters) are the standard arguments required by mostMovemethods for defining
how to drive the robot along a path to a destination specified by a Location.

Each Location Object contains data that defines: a Type indicator; a position and
orientation; clearance information that is used to safely approach the Location; and
robot configuration specific information that pertains to the target robot.

There are two Type’s of Location Objects: Angles and Cartesian. The Angles
Locations store robot positions as an array of axes positions. When we refer to the
“position” or “total position” of an Angles Location, we are referring to the array of
axes positions. The more general Type is called a Cartesian Location. Cartesian
Locations contain a Cartesian position and orientation that is displayed as an X, Y, Z
displacement and a set of three Euler Angles: Yaw, Pitch, and Roll. In addition to this
position and orientation, each Cartesian Location contains an optional pointer to a
reference frame object. The X, Y, Z, Yaw, Pitch, and Roll values define the
Location’s “position with respect to the reference frame” (PosWrtRef). When we
refer to the “position” or “total position” of a Cartesian Location, we are discussing the
combined effect of the “position with respect to the reference frame” and any specified
reference frames.

Since flexible automation must alter a robot’s actions in order to accommodate to
variations in a material handling, assembly or other type of operation, extensive
methods are provided for mathematically manipulating the position and orientation of
Locations. Table 10-1 summarizes the properties and methods that are described in
greater detail in the following sections.

148 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A Location Class Summary

Member Type Description

location_obj.Angle Property Sets and gets a single axis position for an Angles Location.

location_obj.Angles Method Changes all of the axes positions values in an Angles Location.

location_obj.Clone Method Returns a copy of the location_obj.

location_obj.Config Property Sets and gets the bit flags that specify special robot specific location
attributes.

location_
obj.ConveyorLimit Method Returns the distance that a Location, which is defined relative to a conveyor

reference frame, is from the operating limits of the conveyor.

Location.Distance Method Returns the distance between the XYZ positions of two Cartesian
Locations.

location_obj.Here Method Modifies the “total position” of the location_obj to be equal to the current
location of a robot.

location_obj.Here3 Method Defines the "total position" of location_obj based upon the XYZ coordinates
of three specified locations.

location_obj.Inverse Method Returns the inverse of the “total position” of the Cartesian location_obj.

location_obj.Kinesol Method Returns a Cartesian Location equivalent to an Angles Location for a
specific kinematic model or vise versa.

location_obj.Mul Method Returns the result of combining the “total position” of location_obj with the
“total position” of another Cartesian Location.

location_
obj.Normalize Method Corrects the value of the PosWrtRef of a Cartesian Location for any

mathematical inconsistencies in the value.

location_obj.Pitch Property Sets and gets the Pitch angle of the PosWrtRef of a Cartesian Location.

location_obj.Pos Property Sets and gets the “total position” of the location_obj.

location_
obj.PosWrtRef Property Sets and gets the PosWrtRef of a Cartesian Location.

location_
obj.RefFrame Property Sets and gets a pointer to the reference frame object that the location_object

is defined relative to.

location_obj.Roll Property Sets and gets the Roll angle of the PosWrtRef of a Cartesian Location.

location_obj.Text Property Sets and gets a String value not used by GPL. Available for general use by
applications.

location_obj.Type Property Sets and gets the Type specification.

location_obj.X Property Sets and gets the X position value of the PosWrtRef of a Cartesian
Location.

location_obj.XYZ Method Changes the X, Y, Z, Yaw, Pitch, and Roll values of the PosWrtRef of a
Cartesian Location.

location_obj.XYZInc Method Increments the X, Y, and Z values of the PosWrtRef of a Cartesian
Location.

Location.XYZValue Method Returns a Cartesian Location with a "total position" equal to specified X, Y,
Z, Yaw, Pitch, and Roll coordinates.

Table 10-1: Location Class Properties & Methods

Copyright © 2024, Brooks Automation 149

10. Location Class GPL Dictionary
Location Class Summary Part Number: 609719 Rev. A

Member Type Description

location_obj.Y Property Sets and gets the Y position value of the PosWrtRef of a Cartesian
Location.

location_obj.Yaw Property Sets and gets the Yaw angle of the PosWrtRef of a Cartesian Location.

location_obj.Z Property Sets and gets the Z position value of the PosWrtRef of a Cartesian
Location.

location_
obj.ZClearance Property Sets and gets the distance along the Z-axis that defines the safe approach

position to the Location.

location_obj.ZWorld Property Sets and gets the flag that indicates if the approach distance is measured
along the Tool or World Z coordinate axis.

150 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Angle Property

location_object.Angle Property

Sets and gets the position of a single robot axis, in units of millimeters or degrees, to
and from an Angles Location Object.

location_object.Angle(axis) =<new_numeric_value>
-or-
...location_object.Angle(axis)

Prerequisites

The location_object must be an Angles Location Object.

Parameters

axis

A required numeric expression that specifies the number of the axis to
be accessed. This value can range from 1 for the first axis up to a
maximum value of 12.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured
for the robot.

The Angle property allows a program to access and manipulate individual axis
position values. To set all of the axes positions at one time, the Anglesmethod should
be utilized.

If the location_object is not of the Angles type, accessing the Angle property will
generate an error.

Examples

Copyright © 2024, Brooks Automation 151

10. Location Class GPL Dictionary
location_object.Angle Property Part Number: 609719 Rev. A

Dim loc1 As New Location ' Create new Location set
to default values
Dim ang As Double
loc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type
and define position
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will
be 46.4

See Also

Location Class | location_object.Angles

152 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Angles Method

location_object.Angles Method

Changes all of the axes positions values stored in an Angles Location Object.
location_object.Angles(axis_1, ..., axis_12)

Prerequisites

None

Parameters

axis_1,…,axis_12

Up to 12 optional numeric expressions that specifies the new position
value for each of the robot axes. If an expression is not specified, the
corresponding axis position will default to a value of 0. Each value is in
units of millimeters or degrees as appropriate for the axes.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured
for the robot. The Anglesmethod sets the values of all of the axes positions in the
location_object. Any unspecified positions are set to 0. To read or write individual axis
positions, the Angle property should be utilized. As a convenience, independent of
the initial Type of the location_object, at the conclusion of this operation, the location_
objectType will be set to indicate it is an Angles Location Object.

Examples

Dim loc1 As New Location ' Create new Location with default values
Dim ang As Double
loc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type and define
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angle

Copyright © 2024, Brooks Automation 153

10. Location Class GPL Dictionary
location_object.Clone Method Part Number: 609719 Rev. A

location_object.Clone Method

Method that returns a copy of the location_object.
...location_object. Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent
change of a property in either object_1 or object_2 affects the data associated with
both objects. To make an independent copy of an object, the Clonemethod is the
standard means for performing this operation:

object_1 = object_2.Clone

Examples

Dim loc1 As New Location ' Create new location set to default
values
Dim loc2 As Location ' Create new location with no data
allocated
loc1.X = 10.2 ' Set X position in loc1.
loc2 = loc1.Clone ' Makes a copy of loc1 data
loc2.Y = -27.1 ' Doesn't affect loc1 data

See Also

Location Class

154 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Config Property

location_object.Config Property

Sets and gets an Integer bit mask that specifies how the Cartesian position of a
Location Object is to be converted to a set of axes position values.

location_object.Config = <new_Integer_value>
-or-
...location_object.Config

Prerequisites

None

Parameters

None

Remarks

For some robots, there are multiple sets of axes positions that will position the robot’s
tool or gripper at the same position and orientation. For simple robots, this can occur if
a wrist axis can rotate more than 360 degrees. For more complex geometries, the
alternate sets of axes positions might correspond to what is termed “right” and “left”
shoulder configurations. GPL’s optional kinematic modules include methods for
automatically selecting among different sets of positions in some instances. For
example, if the final wrist axis of a robot can rotate a total of 720 degrees, GPL can
automatically select which revolution of this axis should be selected as the destination
for a motion to a Cartesian end point. Normally, GPL will rotate the wrist to the closest
position that satisfies the Cartesian specification. However, if this would violate a wrist
joint limit stop, GPL will rotate the wrist in the opposite direction.

In other cases, GPL cannot automatically select the best set of joint angles to be used.
In these cases, GPL will generally try to maintain the robot in the same configuration
unless instructed otherwise. For example, if a position can be reached in both a "right"
and a"left" shouldered configurations, GPL will maintain the same shoulder
configuration unless explicitly directed to change. This is done to prevent large,
unexpected motions that can occur when switching the shoulder configuration. To
both indicate the current geometric configuration and to specify a change in
configuration, the Config property provides a series of bit flags that instruct GPL how
it is to convert Cartesian Locations into joint angles. When a Cartesian destination is
specified with one or more of these bits set, the next motion to this Location will try to

Copyright © 2024, Brooks Automation 155

10. Location Class GPL Dictionary
location_object.Config Property Part Number: 609719 Rev. A

put the robot into the specified configuration. If bits are not set, GPL assumes that the
robot should be instructed to stay in its current configuration.

While some configuration changes can be implemented during either a Cartesian or
joint-interpolated motion, other changes can only be performed during joint-
interpolated motions. For example, you cannot change from a right- to a left-
shouldered configuration and simultaneously move the tool tip along a Cartesian
straight-line path. If a configuration bit is specified which is not compatible with the
specified motion type, the configuration bit is ignored and no error is generated. The
bits currently defined for the Config property are described in Table 10-2. As a
programming convenience, these bits also have GPL constants defined.

Config
Bit Mask

GPL
Constant

Legal During
Cartesian Motion Description

 &H01 GPL_Righty No Change robot to a right shouldered configuration.

 &H02 GPL_Lefty No Change robot to a left shouldered configuration.

 &H04 GPL_Above No Change robot to have the elbow above the wrist.

 &H08 GPL_Below No Change robot to have the elbow below the wrist.

 &H10 GPL_Flip No Change robot to have the wrist pitched up.

 &H20 GPL_NoFlip No Change robot to have the wrist pitched down.

 &H1000 GPL_Single Yes Restrict the wrist axis to be within +/- 180 degrees
rather than use its full range of motion.

Table 10-2: Config Property Bits

Since the robot configuration options are a function of the robot's geometry, please
see the documentation in the Kinematics Library for which bits apply to your robot.

Examples

Dim loc1 As New Location ' Create new Cartesian Location
loc1.Config = GPL_Righty+GPL_Single

' Set mask word to force robot to right
' shouldered and limit wrist rotation

See Also

Location Class | Robot.Dest | Robot.Where

156 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.ConveyorLimit Method

location_object.ConveyorLimit Method

Returns the distance that a Location, which is defined relative to a conveyor
reference frame, is from the operating limits of the conveyor belt.

...location_object.ConveyorLimit(mode)

Prerequisites

l location_object must be a Cartesian Location Object that is defined with respect to a conveyor
RefFrame.

l The Conveyor Tracking software license must be installed on the controller.

Parameters

mode

An optional numeric expression that defines the specific test to be
performed. If not specified, this value defaults to 0.

Remarks

This method is utilized in conveyor tracking applications to determine if a position is
currently within a conveyor belt's operating limits and, if so, by how much. It is often
used to sort the positions of multiple parts to select the part that is best to pick and to
reject parts that are already too far downstream.

Table 10-3 describes the returned value based upon the setting of the mode
argument. All distances are in units of mm.

Mode Returned Value

0 Returns 0 if the Location is within the upstream and downstream limits, else <0 indicates distance
upstream of the upstream limit or >0 indicates distance downstream of the downstream limit.

1 Returns <0 to indicate the distance upstream of the upstream limit and =>0 the distance downstream of
the upstream limit

2 Returns <0 to indicate the distance upstream of the downstream limit and =>0 the distance downstream
of the downstream limit.

Table 10-3: Mode Argument Return Values

Examples

Copyright © 2024, Brooks Automation 157

10. Location Class GPL Dictionary
location_object.ConveyorLimit Method Part Number: 609719 Rev. A

Dim belt1 As New RefFrame
Dim loc1 As New Location
belt1.Type = 2 ' Conveyor reference
frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.RefFrame = belt1 ' Zero encoder
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then

Console.WriteLine("Out of range")
End If

See Also

Location Class| refframe_object.ConveyorOffset | refframe_object.ConveyorRobot

158 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A Location.Distance Method

Location.Distance Method

Returns the distance between the XYZ positions of two Cartesian Location Objects.

...Location.Distance(location_object1, location_object2)

Prerequisites

location_object1 and location_object2 must both be Cartesian Location Objects.

Parameters

location_object1

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

Computes the distance between the positions of two Cartesian Location Objects and
returns the result as a Double. The result is always a positive number.

Examples

Dim a As New Location ' Create Locations and allocate
Dim b As New Location
Dim dist As Double
a.XYZ(10,23,-17,0,0,90) ' Define A, orientation doesn't matter
b.XYZ(21,8,12) ' Define B
dist = Location.Distance(a,b) ' dist set equal to 34.45287

See Also

Location Class

Copyright © 2024, Brooks Automation 159

10. Location Class GPL Dictionary
location_object.Here Method Part Number: 609719 Rev. A

location_object.Here Method

Sets the “total position” of a Location Object equal to the current position and
orientation of the Selected robot.

location_object.Here

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

None

Remarks

The Heremethod provides a very convenient means for defining or updating the “total
position” of a location_object by moving the robot to the desired position and then
executing this method to record the position and orientation.

This method works properly for both Cartesian and Angles Locations. If the location_
object is an Angles type, the values of the location_object’s axes positions are set
equal to the current axes positions of the Selected robot. For Cartesian types, the
“total position” is set equal to the current Cartesian position and orientation of the
Selected robot and its Config properties are updated. If the location_object does not
have an associated reference frame, the PosWrtRef is set equal to the current
Cartesian location of the robot. If the location_object has a reference frame, the
PosWrtRef is set such that the combination of the new PosWrtRef and the reference
frame will be equal to the current location of the robot.

While the Heremethod is similar to assigning a location_object to the value of the
Robot.Where() method, it is important to understand the differences. The statement:

location_object = Robot.Where() ' Works okay

assigns a new block of data to the location_object. While it does save the current
robot location in the location_object, the values previously set for ZClearance,
ZWorld, and RefFrame are effectively lost. On the other hand, the statement:

160 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Here Method

location_object.Here ' Even better

alters the PosWrtRef and Config values in the location_object with less overhead
while still preserving the values for ZClearance,ZWorld, and RefFrame. So, in most
situations, the Heremethod produces the expected results and should be employed
instead of an assignment statement with Robot.Where().

Examples

Dim loc1 As New Location ' Create new Location set to
default values
loc1.Here ' Sets "total position" of
loc1 to present

' location of Selected robot.

See Also

Location Class | location_object.Here3 | location_object.Inverse |location_object.Mul |
Robot.Selected | Robot.Where | Robot.WhereAngles

Copyright © 2024, Brooks Automation 161

10. Location Class GPL Dictionary
location_object.Here3 Method Part Number: 609719 Rev. A

location_object.Here3 Method

Defines the "total position" of a Location Object based upon the XYZ coordinates of
three specified Locations.

location_object.Here3(location_0, location_x, location_y)

Prerequisites

location_0, location_x and location_y must be Cartesian Location Objects.

Parameters

location_0

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_x

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_y

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method is utilized for setting the "total position" of location_object based upon the XYZ position
coordinates of three Locations. This is convenient if you wish to define the orientation and position
of a Location or reference frame by teaching three Locations.

The total position of the location_object is computed as follows:

l The XYZ coordinates of the location_object are set equal to the XYZ coordinates of the total position of
location_0. That is, the XYZ coordinates of location_0 define the 0,0,0 position of the coordinate system
defined by the new value of location_object.

162 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Here3 Method

l The direction of the x-axis of location_object is defined to be parallel to the vector from the XYZ
coordinate of location_0 to the XYZ coordinate of location_x. That is, if the XYZ position of location_0 is
equivalent to the 0,0,0 position of the coordinate frame defined by the new value of location_object, then
the XYZ position of location_x will be a point on the x-axis of the coordinate system defined by the new
value of location_object.

l The XY plane of the new location_object value is defined by the XYZ coordinates of location_0,
location_x, and location_y. Normally, location_y is defined such that its XYZ position will be a point on
the y-axis of the coordinate system defined by the new value of location_object.

At the completion of this method, the PosWrtRef value of the location_object will be set such that
the total position of location_object corresponds to the position and orientation defined by three
points represented by the three Location arguments. Also, as a convenience, the Type of the
location_object is always set to indicate it is a Cartesian Location Object.

Examples

Dim loc1 As New Location ' Define position of this
Location
Dim loc0 As New Location
Dim locx As New Location
Dim locy As New Location
loc0.XYZ(10,20,30) ' Define 0,0,0
locx.XYZ(10,25,30) ' Define point on X-axis
locy.XYZ(5,20,30) ' Define point on Y-axis
loc1.Here3(loc0,locx,locy) ' Will define loc1 to same
as

' loc1.XYZ(10,20,30,0,0,90)

See Also

Location Class |location_object.Here|location_object.XYZ

Copyright © 2024, Brooks Automation 163

10. Location Class GPL Dictionary
location_object.Inverse Method Part Number: 609719 Rev. A

location_object.Inverse Method

Returns the inverse of the “total position” of the Cartesian location_object.

...location_object.Inverse

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This method evaluates the “total position” of the location_object and then inverts the
value. As defined in the description of GPL, the “total position” is the combination of
the location_object’sPosWrtRef with the “total position” of any reference frame(s)
associated with the location_object.

As an example, if the “total position” of the location_object represents the position and
orientation of part B with respect to part A, then the Inverse will give the position and
orientation of A with respect to B. As another way to think about this operation, if the
location_object defines how to get from A to B then the Inverse will define how to get
from B to A.

Assuming that the location_object is a Cartesian type, the Inversemethod returns a
Location Object with the properties in Table 10-4.

Property Returned Location Object Value

Type Cartesian Location

PosWrtRef Inverse of the “total position” of the location_object

RefFrame Null

All other properties Same as location_object

Table 10-4: Returned Location Object Value Properties

Examples

164 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Inverse Method

Dim loc1 As New Location ' Create new Location
set to defaults
Dim loc2, loc3 As Location
Dim dy As Double
loc1.XYZ(11, -23, 45, 0, 180, 42) ' Define "position" of
loc1
loc2 = loc1.Inverse
loc3 = loc2.Inverse ' loc3 will have same
"position" as loc1
dy = loc3.Y ' dy will be equal to
-23

See Also

Location Class|location_object.Pos |location_object.Mul |location_object.PosWrtRef

Copyright © 2024, Brooks Automation 165

10. Location Class GPL Dictionary
location_object.KineSol Method Part Number: 609719 Rev. A

location_object.KineSol Method

Returns a Cartesian Location Object equivalent to an Angles Location Object for a
specific kinematic model or vise versa.

...location_object.KineSol(mode, location)

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

mode

An optional numeric expression that defines the operational mode for
this function. If this value is 1, any conversion errors (e.g. joint out-of-
range, position too far/close) are ignored. If this value is 0, these errors
will generate a program exception. If not specified, this value defaults to
0.

location

An optional locations expression that must produce a Joints type
location value. If specified, this is passed to the reverse kinematics
routine that converts a Cartesian Location value into an equivalent
Joints Location value. These values are used by the conversion routine
as a starting point for computing the joint angles. If a rotary axis can turn
more than 360 degrees, the conversion routine will try to keep the final
angle within +/- 180 degrees of the passed in angle. For "extra"
independent axes such as servo grippers and linear rails, the passed in
position is returned as the axis position. This argument is not currently
used by the kinematics routines that convert Joint Locations to
Cartesian Locations.

Remarks

166 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.KineSol Method

This method converts a set of axes positions to an equivalent Cartesian position and
orientation or converts a Cartesian position and orientation to an equivalent set of
axes positions based upon the Selected robot’s geometry (kinematics). These
operations are typically called the “forward and reverse kinematic solutions” and
require an optional kinematic module.

Specifically, if the location_object is an Angles type, the KineSolmethod returns a
Location Object with the properties in Table 10-5.

Property Returned Location Object Value

Type Cartesian Location

PosWrtRef Equivalent to location_objectAngles values

Config Appropriate for location_objectAngles values

RefFrame Null

All other properties Same as location_object

Table 10-5: location_object Angles Type, Location Object Properties

Alternatively, if the location_object is a Cartesian type, the KineSolmethod returns a
Location Object with the properties in Table 10-6.

Property Returned Location Object Value

Type Angles Location

Angles Equivalent to location_object’s“total position”

Config 0

RefFrame Null

All other properties Same as location_object

Table 10-6: location_object Cartesan Type, Location Object Properties

If Uncertified Safety Zones are defined and the "mode" is 0, both the input Cartesian
location and the Cartesian location generated as a result of a conversion will be tested
to verify that no uncertified Safety Zones have been violated.

Examples

Copyright © 2024, Brooks Automation 167

10. Location Class GPL Dictionary
location_object.KineSol Method Part Number: 609719 Rev. A

Dim loc1 As New Location ' Create new Location set
to default values
Dim loc2, loc3 As Location
Dim axis2 As Double
loc1.Angles(12, 42, 17) ' Assume these values
legal values for robot
loc2 = loc1.KineSol ' Set loc2 to equivalent
Cartesian Location
loc3 = loc2.KineSol ' Regenerate Angles Loca-
tion
axis2 = loc3.Angle(2) ' axis2 should be 42 as in
loc1

See Also

Location Class | location_object.Inverse |location_object.Mul | Robot.Selected

168 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Mul Method

location_object.Mul Method

Returns the combination of the position and orientation of a Cartesian location_object
with another Cartesian Location Object.

...location_object.Mul(location_object2)

Prerequisites

location_object and location_object2 must both be Cartesian Location Objects.

Parameters

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method combines the “total position” of location_object and the “total position” of
location_object2. As described in the Introduction to GPL, the “total position” of a
Location Object is the combination of the Location Object’sPosWrtRef with the
“total position” of any reference frame(s) associated with the Location Object.

More specifically, theMulmethod returns the result of evaluating the “total position” of
location_object2 with respect to the PosWrtRef value of the location_object. If
defined, the reference frame pointer for the location_object is copied to the returned
Location and is not included in the mathematic operation. This is done to preserve
the explicit reference frame relationship of the location_object.

For example, let’s consider the simple case without rotations where the location_
object has an X, Y, Z value of (10,25,-40) and location_object2 has an X, Y, Z value of
(0,5,0). If we now combined the values, location_object2’s incremental displacement
of 5 mm along the Y-axis would be interpreted with respect to location_object’s prior
translations and the combined result would be (10,30,-40). Now, we can see what
happens if we change location_object so it includes a 90-degree rotation about the Z-
axis (10,25,-40,0,0,90). In this case, when we combine the two values, location_
object2’s Y-axis has been rotated to point along location_object’s negative X-axis. So,
the resulting combination would be (5, 25,-40,0,0,90).

Copyright © 2024, Brooks Automation 169

10. Location Class GPL Dictionary
location_object.Mul Method Part Number: 609719 Rev. A

Assuming that location_object and location_object2 are both Cartesian Locations,
theMulmethod returns a Location Object with the properties in Table 10-7.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef “total position” of the location_object2 evaluated with respect to the PosWrtRef of the location_
object. In terms of matrix operations, this could be written as:

returned.PosWrtRef = [location_object.PosWrtRef]
*[location_object2.RefFrame]
*[location_object2.PosWrtRef]

RefFrame Same as location_object

All other
properties

Same as location_object

Table 10-7: Location Object Properties

Examples

Dim a As New Location ' Create new Location set to
default values
Dim b As New Location
Dim c As Location
Dim dx, dy As Double
a.XYZ(10,25,-40,0,0,90) ' Define A
b.XYZ(0,5,0) ' Define B
c = a.Mul(b)
dx = c.X ' dx will be 5
dy = c.Y ' dy will be equal to 25

See Also

Location Class |location_object.Inverse |location_object.Pos |location_object.PosWrtRef

170 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Normalize Method

location_object.Normalize Method

Corrects the PosWrtRef value of a Cartesian Location Object for any mathematical
inconsistencies in the value.

location_object.Normalize

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

After many sequential mathematics operations (e.g. Inverse, Mul) have been
performed on a Cartesian Location Object, it is possible for the homogeneous
transformation that is used to internally store the PosWrtRef value to suffer from
mathematical inconsistencies. For example, certain rows and columns of the 4x4
matrix are vectors that must have unit values and be orthogonal to other vectors in the
matrix. Given that all of the elements of a transformation are stored as double
precision floating-point numbers, this problem is not very likely to occur. Nonetheless,
as a convenience, the Normalizemethod can be executed on a Cartesian location_
object and it will correct any mathematic errors that may have accumulated in the
PosWrtRef value.

Examples

Dim loc1 As New Location ' Create new Location set to default
values
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
loc1.Normalize ' Won't alter loc1 since it is already
correct

See Also

Location Class | location_object.Inverse |location_object.Mul

Copyright © 2024, Brooks Automation 171

10. Location Class GPL Dictionary
location_object.Pitch Property Part Number: 609719 Rev. A

location_object.Pitch Property

Sets and gets the Pitch angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Pitch = <new_value>
-or-
...location_object.Pitch

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are converted to X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if
you wish to set multiple angles, it is more efficient to utilize the XYZmethod.

When a “New” Cartesian Location Object is created, all six components are initially
set to 0.

172 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Pitch Property

Examples

Dim loc1 As New Location ' Create new Location set
to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will
now be 30 deg.

See Also

Location Class | location_object.X |location_object.Y |location_object.Z |location_object.Yaw
|location_object.Roll |location_object.XYZ

Copyright © 2024, Brooks Automation 173

10. Location Class GPL Dictionary
location_object.Pos Property Part Number: 609719 Rev. A

location_object.Pos Property

Sets and gets the “total position” of the location_object.

location_object.Pos = <specified_location_value>
-or-
...location_object.Pos

Prerequisites

None

Parameters

None

Remarks

The Pos operation accesses the “total position” of both Cartesian and Angles
Location Objects. For Cartesian Locations without reference frames, the “total
position” is equal to the PosWrtRef value stored as a Cartesian position and
orientation in the location_object. For Cartesian Locations with reference frames, the
“total position” is equal to the PosWrtRef value of the location_object evaluated with
respect to the “total position” of its reference frames. For Angles Locations, the “total
value” is the equal to the set of axes positions stored in the location_object.

The Pos set operation works properly on all varieties of Locations. However, the type
of the <specified_location_value> must match the type of the location_object, i.e. they
must both either be Cartesian or Angles.

For Cartesian Locations, the “total position” of the location_object is set equal to the
“total position” of the <specified_location_value>. If the location_object does not have
an associated reference frame, the PosWrtRef value is set equal to the “total position”
of the <specified_location_value>. If the location_object has a reference frame, the
PosWrtRef value of the location_object is set such that the combination of the new
PosWrtRef value of the location_object and its reference frame will be equal to the
“total position” of the <specified_location_value>. If the location_object is an Angles
type, the value of the location_object’s axes positions are set equal to the axes
positions of the <specified_location_value>.

174 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Pos Property

While the Posmethod is similar to assigning a location_object to the value of another
Location Object, it is important to understand the differences. The statement:

location_object = location_object2

assigns a pointer to location_object2’s data to the location_object. Not only does this
operation supercede any reference frame you may have assigned to location_object,
it also supercedes any other data assigned, such as its ZClearance information.
Furthermore, if you subsequently make a change to the data of either location_object
or location_object2, the data for both objects will be effected. Alternatively, you could
use the following assignment statement:

location_object = location_object2.Clone

This statement makes a copy of location_object2’s value before assigning it to
location_object. This statement does eliminate the potential problem of having two
variables inadvertently referencing the same data. However, this operation still
supercedes location_object's original reference frame specification and other data.
Also, one additional downside of this operation is that creating a copy of an object’s
value does incur a certain amount of system overhead.

On the other hand, the statement:

location_object.Pos= location_object2

alters the PosWrtRef or Angles values of location_object with low overhead and
preserves all of the other properties of the location_object.

If the goal of a statement is simply to update the existing “total position” or PosWrtRef
value of a Location without regard to the reference frame, you should normally make
use of either the Pos or PosWrtRef set properties.

Regarding the Pos get operation, this property returns a Location Object that
contains only the “total position” of the location_object with no reference frame or
other data. Please note that if the location_object is a Cartesian type with a reference
frame, the position and orientation of the PosWrtRef value and the “total position” of
the reference frame are combined and returned as the PosWrtRef value of the
returnedObject.

For all cases the value of the returnedObject from the Pos get operation is as follows
in Table 10-8:

Copyright © 2024, Brooks Automation 175

10. Location Class GPL Dictionary
location_object.Pos Property Part Number: 609719 Rev. A

Property Returned Location Object value

Type Cartesian or Angles Location as appropriate

PosWrtRef or Angles “total position” of the location_object

RefFrame Always NULL

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 10-8: Pos Property

Examples

Dim loc1 As New Location ' Create new Location
set to defaults
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ(10,20,30,0,180,23) ' Define PosWrtRef value
for loc2
loc1.Pos = loc2 ' Use same "total pos-
ition" for loc1

See Also

Location Class | location_object.Inverse |location_object.Mul |location_object.PosWrtRef

176 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.PosWrtRef Property

location_object.PosWrtRef Property

Sets and gets the “position with respect to the reference frame” value of a Cartesian
Location Object while ignoring the reference frame.

location_object.PosWrtRef = <specified_location_value>
-or-
...location_object.PosWrtRef

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This property accesses the “position with respect to the reference frame” of a
Cartesian Location Object. Normally, the PosWrtRef value is evaluated in
combination with the reference frame to compute the “total position” of a Location.
However, this property accesses the “position with respect to the reference frame”
data ignoring any specified reference frame data.

The PosWrtRef set operation allows a statement to assign a new value to the
“position with respect to the reference frame” of the location_object without affecting
or considering the value of any reference frame or any other data of the location_
object. The new value is set equal to the “total position” of the <specified_location_
value> on the right hand side of the equal sign.

The PosWrtRef get operation returns a Cartesian Location Object that contains only
the “position with respect to the reference frame” of the location_object with no
reference frame or other data. In particular, the value of the returnedObject is as
follows in Table 10-9:

Copyright © 2024, Brooks Automation 177

10. Location Class GPL Dictionary
location_object.PosWrtRef Property Part Number: 609719 Rev. A

Property Returned Location Object value

Type Cartesian Location

PosWrtRef PosWrtRef of the location_object

RefFrame Always NULL

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 10-9: PosWrtRef Property

Examples

Dim loc1 As New Location ' Create new Location
set to default values
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ(10,20,30,0,180,23) ' Define position for
loc2
loc1.PosWrtRef = loc2.PosWrtRef ' Use same PosWrtRef
for loc1

See Also

Location Class | location_object.Inverse |location_object.Mul |location_object.Pos

178 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.RefFrame Property

location_object.RefFrame Property

Sets and gets a pointer to the reference frame object that the location_object is
defined relative to.

location_object.RefFrame= <reference_frame_object>
-or-
… location_object.RefFrame

Prerequisites

The location_object must be a Cartesian Location.

Parameters

None

Remarks

Sets or gets the pointer to a reference frame object that the location_object’s position
and orientation is to be defined relative to. Whenever the location_object’s total
position and orientation are computed, the position and orientation of the RefFrame
are automatically taken into consideration. When a new Location Object is defined,
its pointer to a reference frame object is zeroed by default.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
loc1.RefFrame = ref1 ' Define loc1 wrt ref1
loc1.XYZ(10,0,0,0,180,0) ' Define loc1 poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07
Console.Writeline(loc1.Pos.Y) ' Displays 97.07
Console.Writeline(loc1.Pos.Z) ' Displays -80

See Also

Location Class | RefFrame Class

Copyright © 2024, Brooks Automation 179

10. Location Class GPL Dictionary
location_object.Roll Property Part Number: 609719 Rev. A

location_object.Roll Property

Sets and gets the Roll angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Roll = <new_value>
-or-
...location_object.Roll

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are converted to X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if
you wish to set multiple angles, it is more efficient to utilize the XYZmethod.

When a “New” Cartesian Location Object is created, all six components are initially
set to 0.

180 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Roll Property

Examples

Dim loc1 As New Location ' Create new Location set
to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will
now be 30 deg.

See Also

Location Class | location_object.X |location_object.Y |location_object.Z |location_object.Yaw
|location_object.Pitch |location_object.XYZ

Copyright © 2024, Brooks Automation 181

10. Location Class GPL Dictionary
location_object.Text Property Part Number: 609719 Rev. A

location_object.Text Property

Sets and gets a String associated with a Location Object. This field is not used by
GPL and is provided for use by application programs.

location_object.Text = <string_value>
-or-
...location_object.Text

Prerequisites

None

Parameters

None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a Location object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently
displayed when the object is accessed or taught.

Examples

Dim loc1 As New Location ' Create new Cartesian Loca-
tion
loc1.Text = "This is my location"
Console.WriteLine(loc1.Text)

See Also

Location Class |profile_object.Text|refframe_object.Text

182 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Type Property

location_object.Type Property

Sets and gets the Integer Type of a Location Object, which indicates if the Location
Object holds Cartesian or Angles data.

location_object.Type = <new_Integer_value>
-or-
...location_object.Type

Prerequisites

None

Parameters

None

Remarks

The Type property indicates if the location_object contains Cartesian or Angles
position and orientation data. The possible values for this property are as follows in
Table 10-10:

Type Value Description

0 Location contains Cartesian position and orientation data.

1 Location contains a set of axes position values (“Angles”).

Table 10-10: Type Property

Many of the other Location Object properties and methods will generate an error if
you attempt to access values that are not meaningful for the current Type of the
location_object.

As a convenience, some methods, e.g. Angles and XYZ, automatically set the Type
of a Location Object.

When a “New” Cartesian Location is created, its Type is automatically set to
Cartesian.

Copyright © 2024, Brooks Automation 183

10. Location Class GPL Dictionary
location_object.Type Property Part Number: 609719 Rev. A

Examples

Dim loc1 As New Location ' Create new Cartesian Loca-
tion
Dim iType As Integer
iType =loc1.Type ' iType will be set to 0
loc1.Angles(10.2,-3.2) ' Will automatically set
Type to 1

See Also

Location Class

184 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.X Property

location_object.X Property

Sets and gets the displacement along the X-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.X = <new_value>
-or-
...location_object.X

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are converted to X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if
you wish to set multiple angles, it is more efficient to utilize the XYZmethod.

When a “New” Cartesian Location Object is created, all six components are initially
set to 0.

Copyright © 2024, Brooks Automation 185

10. Location Class GPL Dictionary
location_object.X Property Part Number: 609719 Rev. A

Examples

Dim loc1 As New Location ' Create new Location
set to default values
Dim dx As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
dx = loc1.X ' dx will be set to 10
loc1.X -= 2 ' loc1's X value will
now be 8

See Also

Location Class | location_object.Y |location_object.Z |location_object.Yaw |location_object.Pitch
|location_object.Roll |location_object.XYZ

186 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.XYZ Method

location_object.XYZ Method

Changes all six components of the PosWrtRef value of a Cartesian Location Object
to a specified set of values.

location_object.XYZ(x,y,z,yaw,pitch.roll)

Prerequisites

None

Parameters

x

An optional numeric expression that specifies the X-axis displacement.
If this value is not specified, a default value of 0 is assumed.

y

An optional numeric expression that specifies the Y-axis displacement.
If this value is not specified, a default value of 0 is assumed.

z

An optional numeric expression that specifies the Z-axis displacement.
If this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

Copyright © 2024, Brooks Automation 187

10. Location Class GPL Dictionary
location_object.XYZ Method Part Number: 609719 Rev. A

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the 3
positional degrees-of-freedom and the 3 rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are entered as X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The XYZmethod sets all six Cartesian components of the location_object’s
PosWrtRef value in a single operation. Any unspecified values are set to 0. This
operation is much more efficient than using the X, Y, Z, Yaw, Pitch, and Roll
properties to individually set the component values. As a convenience, independent of
the initial Type of the location_object, at the conclusion of this operation, the Type will
be set to indicate it is a Cartesian Location Object.

Examples

Dim loc1 As New Location ' Create new Location set to default
values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will now be 27

See Also

Location Class | location_object.X |location_object.Y |location_object.Z |location_object.Yaw
|location_object.Pitch |location_object.Roll |location_object.XYZInc | Location.XYZValue

188 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.XYZInc Method

location_object.XYZInc Method

Increments the X/Y/Z components of the PosWrtRef value of a Cartesian Location
Object by specified amounts.

location_object.XYZInc(x,y,z)

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

x

An optional numeric expression that specifies the amount by which the
X value is incremented. If this value is not specified, a default value of 0
is assumed.

y

An optional numeric expression that specifies the amount by which the
Y value is incremented. If this value is not specified, a default value of 0
is assumed.

z

An optional numeric expression that specifies the amount by which the Z
value is incremented. If this value is not specified, a default value of 0 is
assumed.

Remarks

This method increments the X, Y, and Z Cartesian displacement components of the
location_object’s PosWrtRef value in a single operation. Any unspecified increments
leave the corresponding displacement values unchanged.

Copyright © 2024, Brooks Automation 189

10. Location Class GPL Dictionary
location_object.XYZInc Method Part Number: 609719 Rev. A

Examples

Dim loc1 As New Location ' Create new Location set
to default values
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
loc1.XYZInc(-3,,2) ' Changes X to 7 and Z to
32

See Also

Location Class | location_object.X|location_object.Y|location_object.Z|location_object.Yaw |
Location.XYZValue

190 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A Location.XYZValue Method

Location.XYZValue Method

Returns a Cartesian Location with a "total position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

...Location.XYZValue(x,y,z,yaw,pitch,roll)

Prerequisites

None

Parameters

x

An optional numeric expression that specifies the X-axis displacement.
If this value is not specified, a default value of 0 is assumed.

y

An optional numeric expression that specifies the Y-axis displacement.
If this value is not specified, a default value of 0 is assumed.

z

An optional numeric expression that specifies the Z-axis displacement.
If this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

Copyright © 2024, Brooks Automation 191

10. Location Class GPL Dictionary
Location.XYZValue Method Part Number: 609719 Rev. A

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

The XYZValuemethod computes and returns a Cartesian Location Object that has a
"total position" value whose displacement and orientation is equivalent to that
specified by the x, y, z, yaw, pitch, and roll arguments. This method is provided as a
convenience for constructing Location expressions. If you wish to set the PosWrtRef
value of a Cartesian Location Object equal to a set of displacement and orientation
values, it is more efficient to utilize the XYZmethod instead of XYZValue. Table 10-11
describes the data returned in the Location Object.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to the displacement and orientation defined by x, y, z, yaw, pitch, and roll
arguments.

RefFrame Always Null

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 10-11: XYZValue Method

Examples

Dim loc1 As Location ' Locations default to Cartesian
loc1.PosWrtRef = Location.XYZValue(10,20,30,0,180,25)

' Equivalent to "loc1.XYZ
(10,20,30,0,180,25)"

See Also

Location Class | location_object.XYZ

192 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Y Property

location_object.Y Property

Sets and gets the displacement along the Y-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Y = <new_value>
-or-
...location_object.Y

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are converted to X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if
you wish to set multiple angles, it is more efficient to utilize the XYZmethod.

When a “New” Cartesian Location Object is created, all six components are initially
set to 0.

Copyright © 2024, Brooks Automation 193

10. Location Class GPL Dictionary
location_object.Y Property Part Number: 609719 Rev. A

Examples

Dim loc1 As New Location ' Create new Location
set to default values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will
now be 27

See Also

Location Class | location_object.X |location_object.Z |location_object.Yaw |location_object.Pitch
|location_object.Roll |location_object.XYZ

194 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Yaw Property

location_object.Yaw Property

Sets and gets the Yaw angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Yaw = <new_value>
-or-
...location_object.Yaw

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are converted to X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if
you wish to set multiple angles, it is more efficient to utilize the XYZmethod.

When a “New” Cartesian Location Object is created, all six components are initially
set to 0.

Copyright © 2024, Brooks Automation 195

10. Location Class GPL Dictionary
location_object.Yaw Property Part Number: 609719 Rev. A

Examples

Dim loc1 As New Location ' Create new Location set
to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will
now be 30 deg.

See Also

Location Class | location_object.X |location_object.Y |location_object.Z |location_object.Pitch
|location_object.Roll |location_object.XYZ

196 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.Z Property

location_object.Z Property

Sets and gets the displacement along the Z-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Z = <new_value>
-or-
...location_object.Z

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse
4 by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This
internal representation has several computational advantages. However, entering the
values for the elements of a homogeneous transformation is not very convenient. To
simplify data entry, transformation values are converted to X, Y, and Z position
displacement components and three Euler angles. The three Euler angles consist of a
rotation about the Z-axis, followed by a rotation about the new Y-axis, followed by a
rotation about the new Z-axis. This set of displacements and angles is often referred
to as X, Y, Z, Yaw, Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if
you wish to set multiple angles, it is more efficient to utilize the XYZmethod.

When a “New” Cartesian Location Object is created, all six components are initially
set to 0.

Copyright © 2024, Brooks Automation 197

10. Location Class GPL Dictionary
location_object.Z Property Part Number: 609719 Rev. A

Examples

Dim loc1 As New Location ' Create new Location set
to default values
Dim dz As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of
loc1
dz = loc1.z ' dz will be set to 30
loc1.z += 7 ' loc1's Z value will now
be 37

See Also

Location Class | location_object.X |location_object.Y |location_object.Yaw |location_object.Pitch
|location_object.Roll |location_object.XYZ

198 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.ZClearance Property

location_object.ZClearance Property

Sets and gets the distance in millimeters along a Z-axis that defines the safe approach
position to a Location Object.

location_object.ZClearance = <new_value>
-or-
...location_object.ZClearance

Prerequisites

None

Parameters

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate
position that allows the robot and part to avoid obstacles. Likewise, after picking up a
part, it is typically required that the part be retracted a small distance to avoid dragging
the part across the mating surface. To implement these motions to and from a final
destination, GPL includes aMove.Approachmethod. Instead of moving to the “total
position” of the location_object, this method moves the robot to a clearance position
that is relative to the location_object.

To simplify the specification of the “approach” or “clearance” position, each location_
object includes a ZClearance distance. This specifies the distance along a Z-axis for
the approach position.

If the ZWorld property of the location_object is True, the clearance position is
interpreted as being directly above (or below) the “total position” of the location_object
in the world coordinate system at the Z value specified by ZClearance. For example, if
the “total position” of the location_object is at an X, Y, Z value of (10,20,30) and
ZClearance is 52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box
and the robot must clear the edge of the box independent of how far into the box it
must reach.

Copyright © 2024, Brooks Automation 199

10. Location Class GPL Dictionary
location_object.ZClearance Property Part Number: 609719 Rev. A

If the ZWorld property of the location_object is False, the clearance position is a
relative distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis
of its tool or gripper. For example, if the “total position” of the location_object is at an X,
Y, Z value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s
tool is pointed along the positive world X-axis, the approach position would be (-
42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each
machine before moving to the next Location.

By making use of GPL’s robot kinematics option, Cartesian approach specifications
can be automatically applied to both Cartesian and Angles location_objects.

Examples

Dim loc1 As New Location ' Create new Location set
to default values
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to
False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile to
move to (10,20,52.3)

See Also

Location Class | location_object.ZWorld | Move.Approach

200 Copyright © 2024, Brooks Automation

Brooks Automation 10. Location Class
Part Number: 609719 Rev. A location_object.ZWorld Property

location_object.ZWorld Property

Sets and gets the Boolean flag that indicates if the ZClearance distance is
interpreted as being along the world or tool Z-axis of a Location Object.

location_object.ZWorld = <new_Boolean_value>
-or-
...location_object.ZWorld

Prerequisites

None

Parameters

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate
position that allows the robot and part to avoid obstacles. Likewise, after picking up a
part, it is typically required that the part be retracted a small distance to avoid dragging
the part across the mating surface. To implement these motions to and from a final
destination, GPL includes aMove.Approachmethod. Instead of moving to the “total
position” of the location_object, this method moves the robot to a clearance position
that is relative to the location_object.

To simplify the specification of the “approach” or “clearance” position, each location_
object includes a ZClearance distance. This specifies the distance along a Z-axis for
the approach position.

If the ZWorld property of the location_object is True, the clearance position is
interpreted as being directly above (or below) the “total position” of the location_object
in the world coordinate system at the Z value specified by ZClearance. For example, if
the “total position” of the location_object is at an X, Y, Z value of (10,20,30) and
ZClearance is 52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box
and the robot must clear the edge of the box independent of how far into the box it
must reach.

Copyright © 2024, Brooks Automation 201

10. Location Class GPL Dictionary
location_object.ZWorld Property Part Number: 609719 Rev. A

If the ZWorld property of the location_object is False, the clearance position is a
relative distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis
of its tool or gripper. For example, if the “total position” of the location_object is at an X,
Y, Z value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s
tool is pointed along the positive world X-axis, the approach position would be (-
42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each
machine before moving to the next Location.

By making use of GPL’s robot kinematics option, Cartesian approach specifications
can be automatically applied to both Cartesian and Angles location_objects.

Examples

Dim loc1 As New Location ' Create new Location set
to defaults
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to
False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile, move
to (10,20,52.3)

See Also

Location Class | location_object.ZClearance | Move.Approach

202 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math Class Summary

11. Math Class

Math Class Summary

The following sections present detailed information on the standard arithmetic and
trigonometric operations that are built into GPL. As a convenience during editing, all of
these operations are provided as methods to theMathClass. This allows
programmers to display a pick list of theMathmethods and easily see all of
operations that are available.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not
necessary to have different variations on these methods to deal with the different
possible mixes of input parameter data types. Also, these methods generally produce
results that are formatted as Double’s. These results will automatically be converted
to smaller data types as necessary, e.g. Double -> Integer, and will not generate an
error so long as numeric overflow does not occur.

Table 11-1 briefly summarizes the methods that are described in greater detail in the
following sections.

Method Description

Math.Abs (expression) Returns the absolute value of any arithmetic expression.

Math.Acos(cosine) Returns the angle that corresponds to a specified cosine value.

Math.Asin(sine) Returns the angle that corresponds to a specified sine value.

Math.Atan(tangent) Returns the angle that corresponds to a specified tangent value.

Math.Atan2(sine_factor, cosine_
factor) Returns the angle that corresponds to the quotient of two values.

Math.Ceiling (value) Returns the smallest integer number that is greater than or equal to a
value.

Math.Cos(angle) Returns the cosine of a specified angle.

Table 11-1: Math Class Methods

Copyright © 2024, Brooks Automation 203

11. Math Class GPL Dictionary
Math Class Summary Part Number: 609719 Rev. A

Method Description

Math.Cosh(angle) Returns the hyperbolic cosine of a specified angle.

Math.E Returns the natural logarithmic base constant.

Math.Exp(exponent) Returns the natural logarithmic constant, e, raised to a specified power.

Math.Floor (value) Returns the largest integer number that is less than or equal to a value.

Math.Log (value) Returns the natural logarithm (base-e logarithm) of a specified value.

Math.Log10 (value) Returns the base-10 logarithm of a specified value.

Math.Max (value_1, value_2) Returns the larger of two values.

Math.Min (value_1, value_2) Returns the smaller of two values.

Math.PI Returns the constant π.

Math.Pow (base, exponent) Returns a specified base value raised to a specified power.

Math.Sign (value) Returns a number that indicates the sign of a specified value.

Math.Sin (angle) Returns the sine of a specified angle.

Math.Sinh (angle) Returns the hyperbolic sine of a specified angle.

Math.Sqrt (value) Returns the square root of a value.

Math.Tan (angle) Returns the tangent of a specified angle.

Math.Tanh (angle) Returns the hyperbolic tangent of a specified angle.

204 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Abs Method

Math.Abs Method

Returns the absolute value of any arithmetic expression.

...Math.Abs(expression)

Prerequisites

None

Parameters

expression

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the absolute value (i.e. the magnitude) of any numerical expression. That is, if
the expression has a value greater than or equal to zero, its value is returned
unchanged. If the expression value is negative, it is negated and returned as a
positive value.

Examples

Dim value As Single
value = Math.Abs(-1.23) ' Sets value to 1.23
value = Math.Abs(0) ' Sets value to 0
value = Math.Abs(3) ' Sets value to 3

See Also

Math Class

Copyright © 2024, Brooks Automation 205

11. Math Class GPL Dictionary
Math.Acos Method Part Number: 609719 Rev. A

Math.Acos Method

Returns the angle that corresponds to a specified cosine value

...Math.Acos(cosine)

Prerequisites

None

Parameters

cosine

A required expression that evaluates to the cosine of an angle. This
value must be in the range –1 <= cosine <= 1.

Remarks

Returns the angle, in radians, that corresponds to a specified cosine value. That is, if
the cosine of an angle A is B, then this arc cosine function returns A when given a
value of B. Since the cosine function generates the same value for both positive and
negative angles, theMath.Acosmethod returns a value between 0 and π for any
valid input expression. If the full range of angles is required, theMath.Atan2method
should be used whenever possible. To convert radians to degrees, multiply the
radians times 180/π. }

Examples

Dim angle As Single
angle = Math.Acos(-1) ' Sets angle to Pi
angle = Math.Acos(Math.Sqrt(2)/2) ' Sets angle to Pi/4
angle = Math.Acos(Math.Cos(-.5)) ' Sets angle to 0.5 radians

See Also

Math Class |Math.Atan2

206 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Asin Method

Math.Asin Method

Returns the angle that corresponds to a specified sine value.

...Math.Asin(sine)

Prerequisites

None

Parameters

sine

A required expression that evaluates to the sine of an angle. This value
must be in the range –1 <= sine <= 1.

Remarks

Returns the angle, in radians, that corresponds to a specified sine value. That is, if the
sine of an angle A is B, then this arc sine function returns A when given a value of B.
Since the sine function repeats the same series of answers when an angle traverses
from π/2 to 0 to –π/2 as when an angle moves from π/2 to –π to –π/2, theMath.Asin
function cannot distinguish these two cases and always returns values that range
from π/2 to -π/2. If the full range of angles is required, theMath.Atan2method should
be used whenever possible. To convert radians to degrees, multiply the radians times
180/π.

Examples

Dim angle As Single
angle = Math.Asin(-1) ' Sets angle to –Pi/2
angle = Math.Asin(Math.Sqrt(2)/2) ' Sets angle to Pi/4
angle = Math.Asin(Math.Sin(Math.PI-.5)) ' Sets angle to 0.5 radians

See Also

Math Class |Math.Atan2

Copyright © 2024, Brooks Automation 207

11. Math Class GPL Dictionary
Math.Atan Method Part Number: 609719 Rev. A

Math.Atan Method

Returns the angle that corresponds to a specified tangent value.

...Math.Atan(tangent)

Prerequisites

None

Parameters

tangent

A required expression that evaluates to the tangent of an angle.

Remarks

Returns the angle, in radians, that corresponds to a specified tangent value. That is, if
the tangent of an angle A is B, then this arc tangent function returns A when given a
value of B.

Since the tangent function repeats the same series of answers over two ranges of
angles: when an angle traverses from 0 to π/2 as when an angle moves from -π to –
π/2 and then again when an angle traverses from 0 to -π/2 as when an angle moves
from -π to π/2, theMath.Atan function cannot distinguish these cases and always
returns values that range from π/2 to -π/2.

In addition, as the angle gets close to π/2 or -π/2, the input parameter for this method
must approach positive or negative infinity.

To deal with both of these problems, theMath.Atan2method should be used
whenever possible.

To convert radians to degrees, multiply the radians times 180/π.

Examples

208 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Atan Method

Dim angle As Single
angle = Math.Atan(1) ' Sets
angle to Pi/4
angle = Math.Atan(0) ' Sets
angle to 0
angle = Math.Atan(Math.Tan(-3*Math.PI/4)) ' Sets
angle to Pi/4

See Also

Math Class |Math.Atan2

Copyright © 2024, Brooks Automation 209

11. Math Class GPL Dictionary
Math.Atan2 Method Part Number: 609719 Rev. A

Math.Atan2 Method

Returns the angle that corresponds to the quotient of two values.
...Math.Atan2(sine_factor, cosine_factor)

Prerequisites

None

Parameters

sine_factor

A required expression, which when divided by cosine_factor, is
equal to the tangent of the angle.

cosine_factor

A required expression, which when divided into sine_factor, is
equal to the tangent of the angle.

Remarks

Returns the angle, in radians, that corresponds to the tangent value computed from
sine_factor/cosine_factor and using the signs of sine_factor and cosine_factor to
uniquely determine the quadrant of the angle. As a simplified example, if A is the sine
of an angle C and B is the cosine of the angle, then this arc tangent function returns C
when given the values A and B. Unlike theMath.Atanmethod, this method can return
the full range of angles from +π to –π. In addition, it does not suffer from requiring
infinite valued parameters in order to represent any angular value. So,Math.Atan2
should be used whenever possible instead ofMath.Atan. To convert radians to
degrees, multiply the radians times 180/π.

Examples

Dim angle As Single
angle = Math.Atan2(1,0) ' Sets angle to Pi/2
angle = Math.Atan2(.5,-.5) ' Sets angle to 3*Pi/4
angle = Math.Atan2(-.707,.707) ' Sets angle to -Pi/4

See Also

Math Class

210 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Ceiling Method

Math.Ceiling Method

Returns the smallest integer number that is greater than or equal to a value.

...Math.Ceiling (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the smallest integer number that is greater than or equal to the value. This is
sometimes referred to as rounding towards positive infinity.

Examples

Dim bigger As Single
bigger = Math.Ceiling(10.9999) ' Sets bigger equal to
11
bigger = Math.Ceiling(11) ' Sets bigger equal to
11
bigger = Math.Ceiling(11.0001) ' Sets bigger equal to
12

See Also

Math Class

Copyright © 2024, Brooks Automation 211

11. Math Class GPL Dictionary
Math.Cos Method Part Number: 609719 Rev. A

Math.Cos Method

Returns the cosine of a specified angle.

...Math.Cos(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the cosine of the angle that is specified in radians. The result of this method
ranges from –1 to +1.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim cos_val As Single
cos_val = Math.Cos(0) ' Sets cos_val to
1
cos_val = Math.Cos(21*Math.PI) ' Sets cos_val to
-1
cos_val = Math.Cos(45*Math.PI/180) ' Sets cos_val to
0.7071

See Also

Math Class

212 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Cosh Method

Math.Cosh Method

Returns the hyperbolic cosine of a specified angle.

...Math.Cosh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic cosine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Also

Math Class

Copyright © 2024, Brooks Automation 213

11. Math Class GPL Dictionary
Math.E Method Part Number: 609719 Rev. A

Math.E Method

Returns the natural logarithmic base constant.

...Math.E

Prerequisites

None

Parameters

None

Remarks

Returns the constant that is the base value for the natural logarithmic functions,
2.7182818284590452354

Examples

Dim value As Single
value = Math.Pow(Math.E, 2)

See Also

Math Class

214 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Exp Method

Math.Exp Method

Returns the natural logarithmic constant, e, raised to a specified power.

...Math.Exp(exponent)

Prerequisites

None

Parameters

exponent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of the natural logarithmic constant,Math.E, raised to the exponent
power (i.e.Math.E^exponent).

Examples

Dim e_val As Single
e_val = Math.Exp(2) ' Sets e_val to 7.3891
e_val = Math.Exp(-2.2) ' Sets e_val to 0.1108
e_val = Math.Exp(Math.Log(17.1))' Sets e_val to 17.1

See Also

Math Class

Copyright © 2024, Brooks Automation 215

11. Math Class GPL Dictionary
Math.Floor Method Part Number: 609719 Rev. A

Math.Floor Method

Returns the largest integer number that is less than or equal to a value.

...Math.Floor (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the largest integer number that is less than or equal to the value. This is
sometimes referred to as rounding towards negative infinity.

Examples

Dim smaller As Single
smaller = Math.Floor(10.9999) ' Sets smaller equal to
10
smaller = Math.Floor(11) ' Sets smaller equal to
11
smaller = Math.Floor(11.0001) ' Sets smaller equal to
11

See Also

Math Class

216 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Log Method

Math.Log Method

Returns the natural logarithm (base-e logarithm) of a specified value.

...Math.Log(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the natural logarithmic constant,Math.E, must be
raised in order to produce the value.

Examples

Dim ln_exp As Single
ln_exp = Math.Log(10) ' Sets ln_exp to
2.3026
ln_exp = Math.Log(Math.E) ' Sets ln_exp to 1
ln_exp = Math.Log(Math.Exp(3.4)) ' Sets ln_exp to
3.4

See Also

Math Class

Copyright © 2024, Brooks Automation 217

11. Math Class GPL Dictionary
Math.Log10 Method Part Number: 609719 Rev. A

Math.Log10 Method

Returns the base-10 logarithm of a specified value.

...Math.Log10(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the number 10 must be raised in order to produce the
value.

Examples

Dim l_exp As Single
l_exp = Math.Log10(10) ' Sets l_
exp to 1
l_exp = Math.Log10(0.01) ' Sets l_
exp to -2
l_exp = Math.Log10(Math.Pow(10,3.4)) ' Sets l_
exp to 3.4

See Also

Math Class

218 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Max Method

Math.Max Method

Returns the larger of two values.

...Math.Max(value_1, value_2)

Prerequisites

None

Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the larger of two numerical values, value_1 or value_2.

Examples

Dim bigger As Single
bigger = Math.Max(-5, -4.9) ' Sets bigger to –4.9
bigger = Math.Max(-20/-4, 3) ' Sets bigger to 5
bigger = Math.Max(Math.Min(100, 33), 55) ' Sets bigger to 55

See Also

Math Class

Copyright © 2024, Brooks Automation 219

11. Math Class GPL Dictionary
Math.Min Method Part Number: 609719 Rev. A

Math.Min Method

Returns the smaller of two values.

...Math.Min(value_1, value_2)

Prerequisites

None

Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the smaller of two numerical values, value_1 or value_2.

Examples

Dim smaller As Single
smaller = Math.Min(-5, -4.9) ' Sets smaller to –5
smaller = Math.Min(-20/-4, 3) ' Sets smaller to 3
smaller = Math.Min(Math.Max(100, 33), 55)' Sets smaller to 55

See Also

Math Class

220 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.PI Method

Math.PI Method

Returns the constant π.

...Math.PI

Prerequisites

None

Parameters

None

Remarks

Returns the value of π, 3.14159265358979323846.

Examples

Dim to_deg, to_rad As Double
to_deg = 180/Math.PI ' Conversion factor from radians to degrees
to_rad =Math.PI/180 ' Conversion factor from degrees to radians

See Also

Math Class

Copyright © 2024, Brooks Automation 221

11. Math Class GPL Dictionary
Math.Pow Method Part Number: 609719 Rev. A

Math.Pow Method

Returns a specified base value raised to a specified power.

...Math.Pow(base, exponent)

Prerequisites

None

Parameters

base

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

exponent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of base raised to the exponent power (i.e. base^exponent). The
base cannot be negative if the exponent is a fractional value. Also, the base cannot be
zero if the exponent is less than or equal to zero.

Examples

Dim p_val As Single
p_val = Math.Pow(2, 3) ' Sets p_val to 8
p_val = Math.Pow(3, -2.2) ' Sets p_val to 0.08919
p_val = Math.Pow(Math.E, Math.Log(17.1))' Sets p_val to 17.1

See Also

Math Class

222 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Sign Method

Math.Sign Method

Returns a number that indicates the sign of a specified value.

...Math.Sign (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a 1.0 if the value is greater than zero, 0 if the value is equal to zero, otherwise
–1.0 to indicate that the value is negative.

Examples

Dim v_sign As Single, int_v_sign As Integer
v_sign = Math.Sign(-21.2/(-2.3)) ' Sets v_
sign equal to 1.0
int_v_sign = Math.Sign(-7.2) ' Sets int_
v_sign equal to –1

See Also

Math Class

Copyright © 2024, Brooks Automation 223

11. Math Class GPL Dictionary
Math.Sin Method Part Number: 609719 Rev. A

Math.Sin Method

Returns the sine of a specified angle

...Math.Sin(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the sine of the angle that is specified in radians. The result of this method
ranges from –1 to +1.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim sin_val As Single
sin_val = Math.Sin(-Math.PI/2) ' Sets sin_val to -1
sin_val = Math.Sin(20.5*Math.PI) ' Sets sin_val to 1
sin_val = Math.Sin(45*Math.PI/180) ' Sets sin_val to
0.7071

See Also

Math Class

224 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Sinh Method

Math.Sinh Method

Returns the hyperbolic sine of a specified angle.

...Math.Sinh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic sine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Also

Math Class

Copyright © 2024, Brooks Automation 225

11. Math Class GPL Dictionary
Math.Sqrt Method Part Number: 609719 Rev. A

Math.Sqrt Method

Returns the square root of a value.

...Math.Sqrt (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the square root of any positive number as a double precision value.

Examples

Dim root As Single, int_root As Integer
root = Math.Sqrt(1.44) ' Sets root equal to 1.2
int_root = Math.Sqrt(1.69) ' Sets int_root equal to 1

See Also

Math Class

226 Copyright © 2024, Brooks Automation

Brooks Automation 11. Math Class
Part Number: 609719 Rev. A Math.Tan Method

Math.Tan Method

Returns the tangent of a specified angle.

...Math.Tan(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the tangent of the angle that is specified in radians. Since the returned value
will be extremely large as the angle approaches π/2 or -π/2, it is normally desirable to
use theMath.Sin andMath.Cosmethods in place of this operation.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim tan_val As Single
tan_val = Math.Tan(0) ' Sets tan_val to 0
tan_val = Math.Tan(Math.PI/4) ' Sets tan_val to 1
tan_val = Math.Tan(-45*Math.PI/180)' Sets tan_val to -1

See Also

Math Class

Copyright © 2024, Brooks Automation 227

11. Math Class GPL Dictionary
Math.Tanh Method Part Number: 609719 Rev. A

Math.Tanh Method

Returns the hyperbolic tangent of a specified angle.

...Math.Tanh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic tangent of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Also

Math Class

228 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A Modbus Class Summary

12. Modbus Class

Modbus Class Summary

TheModbus Class in GPL supports master access to MODBUS/TCP slave devices
connected to the local Ethernet network. MODBUS/TCP is an "open" de facto
standard protocol that is widely used in the industrial manufacturing environment to
communicate between intelligent devices. It has been implemented by hundreds of
vendors on thousands of different products to communicate digital and analog I/O and
register data between devices.

Table 12-1 briefly summarizes the properties and methods for this Class, which are
described in greater detail in the following sections.

Modbus Class
Member Type Description

New Modbus Constructor
Method

Creates an object for a MODBUS connection and specifies the IP
address.

modbus_obj.Close Method Closes any connections associated with this object.

modbus_obj.ReadCoils Method Reads one or more outputs.

modbus_
obj.ReadDeviceId Method Reads the device ID strings.

modbus_
obj.ReadDiscreteInputs Method Reads one or more inputs.

modbus_
obj
.ReadHoldingRegisters

Method Reads one or more holding registers.

modbus_
obj.ReadInputRegisters Method Reads one or more input registers.

modbus_obj.Timeout Get/Set
Property

Gets or sets the timeout, in milliseconds, that this connection will wait
for a reply before throwing an exception.

Table 12-1: Modbus Class Summary

Copyright © 2024, Brooks Automation 229

12. Modbus Class GPL Dictionary
Modbus Class Summary Part Number: 609719 Rev. A

Modbus Class
Member Type Description

modbus_
obj.WriteMultipleCoils Method Writes multiple outputs.

modbus_
obj
.WriteMultipleRegisters

Method Writes multiple holding registers.

modbus_
obj.WriteSingleCoil Method Writes a single output.

modbus_
obj.WriteSingleRegister Method Writes a single holding register.

230 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.Close Method

modbus_object.Close Method

Closes the network connection associated with aModbus object.

modbus_object.Close

Prerequisites

None

Parameters

None

Remarks

The Closemethod may be used to close the network connection and free up
resources.

If no Modbus connection is active, no error occurs.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
…
mb.Close()

See Also

Modbus Class

Copyright © 2024, Brooks Automation 231

12. Modbus Class GPL Dictionary
modbus_object.ReadCoils Method Part Number: 609719 Rev. A

modbus_object.ReadCoils Method

Reads one or more outputs from a MODBUS slave and returns the values in a
Boolean array.

modbus_object.ReadCoils(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first coil
to be read.

number

A required Integer expression that defines the number of coils to be
read.

value_array

A required Boolean array that receives the output values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Coils request (function 1).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

232 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.ReadCoils Method

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool() As Boolean
mb.ReadCoils(1, 16, bool) ' Read 16 outputs

See Also

Modbus Class |modbus_object.WriteMultipleCoils |modbus_object.WriteSingleCoil

Copyright © 2024, Brooks Automation 233

12. Modbus Class GPL Dictionary
modbus_object.ReadDeviceID Method Part Number: 609719 Rev. A

modbus_object.ReadDeviceID Method

Reads device identification information from a MODBUS slave and returns as a
String value.

... modbus_object.ReadDeviceId(object_id)

Prerequisites

None

Parameters

object_id

A required Integer expression that evaluates to a number from 0 to 255
that selects the identification information to be returned.

Remarks

This method issues a MODBUS Read Device Identification request (MEI-type 13)
using the Encapsulated Interface Transport (function 43) to retrieve identification
information from the slave. The Read Device ID code is always set to 1.

The object_id parameter selects the identification information to be returned. Some
standard values are shown in Table 12-2:

Object ID Description

0 Vendor name

1 Product code

2 Major and Minor Revision

Table 12-2: ReadDeviceID Method, Standard Value

Consult the MODBUS/TCP standard for the meaning of other object_id values.

234 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.ReadDeviceID Method

Not all MODBUS devices support this function. The String value returned by this
method depends on the particular device being referenced. Consult the manual for
your MODBUS slave device for details.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim id As String
id = mb.ReadDeviceId(0) ' Read vendor name

See Also

Modbus Class

Copyright © 2024, Brooks Automation 235

12. Modbus Class GPL Dictionary
modbus_object.ReadDiscreteInputs Method Part Number: 609719 Rev. A

modbus_object.ReadDiscreteInputs Method

Reads one or more inputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadDiscreteInputs(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first input
to be read.

number

A required Integer expression that defines the number of inputs to be
read.

value_array

A required Boolean array that receives the input values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Discrete Inputs request (function 2).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

236 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.ReadDiscreteInputs Method

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool() As Boolean
mb.ReadDiscreteInputs(1, 16, bool) ' Read 16 inputs

See Also

Modbus Class |modbus_object.ReadInputRegisters

Copyright © 2024, Brooks Automation 237

12. Modbus Class GPL Dictionary
modbus_object.ReadHoldingRegisters Method Part Number: 609719 Rev. A

modbus_object.ReadHoldingRegisters Method

Reads one or more holding registers from a MODBUS slave and returns the values in
an Integer array.

modbus_object.ReadHoldingRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Holding Registers request (function 3).

Each holding register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

238 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.ReadHoldingRegisters Method

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim regs() As Integer
mb.ReadHoldingRegisters(1, 16, regs) ' Read 16 values

See Also

Modbus Class |modbus_object.ReadInputRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

Copyright © 2024, Brooks Automation 239

12. Modbus Class GPL Dictionary
modbus_object.ReadInputRegisters Method Part Number: 609719 Rev. A

modbus_object.ReadInputRegisters Method

Reads one or more input registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadInputRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Input Registers request (function 4).

Each input register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

240 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.ReadInputRegisters Method

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim regs() As Integer
mb.ReadInputRegisters(1, 16, regs) ' Read 16 values

See Also

Modbus Class |modbus_object.ReadHoldingRegisters|modbus_object.WriteMultipleRegisters
| modbus_object.WriteSingleRegister

Copyright © 2024, Brooks Automation 241

12. Modbus Class GPL Dictionary
modbus_object.Timeout Property Part Number: 609719 Rev. A

modbus_object.Timeout Property

Sets or gets the timeout period, in milliseconds, that GPL waits for a response from a
MODBUS slave.

modbus_object.Timeout =<timeout>
-or-
...modbus_object.Timeout

Prerequisites

None

Parameters

None

Remarks

The property allows you to set the timeout period for allModbusmethods that perform
I/O with the MODBUS slave.

If this time is exceeded, the method throws an exception. If the timeout period is set to
0, the timeout is disabled and a request may wait indefinitely.

Each modbus_object has an independent timeout value.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.Timeout = 2000 ' Timeout in 2 seconds

See Also

Modbus Class

242 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.WriteMultipleCoils Method

modbus_object.WriteMultipleCoils Method

Writes one or more outputs to a MODBUS slave.

modbus_object.WriteMultipleCoils(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first coil
to be written.

value_array

A required Boolean array that contains the output values to be written.
The length of the array determines the number of coils written.

Remarks

This method issues a MODBUS/TCPWrite Multiple Coils request (function 15). A new
connection to the MODBUS slave is made if none currently exists. If any network
errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool(15) As Boolean ' Array length is 16
bool(0) = True ' First output set, rest clear
mb.WriteMultipleCoils(1, bool) ' Write 16 outputs

See Also

Modbus Class |modbus_object.WriteSingleCoil

Copyright © 2024, Brooks Automation 243

12. Modbus Class GPL Dictionary
modbus_object.WriteMultipleRegisters Method Part Number: 609719 Rev. A

modbus_object.WriteMultipleRegisters Method

Writes one or more holding register values to a MODBUS slave.

modbus_object.WriteMultipleRegisters(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
holding register to be written.

value_array

A required Integer array that contains the register values to be written.
The length of the array determines the number of registers written.

Remarks

This method issues a MODBUS/TCPWrite Multiple Registers request (function 16).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of
values in value_array are used. No error is reported if values are too big to fit in 16
bits.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

244 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.WriteMultipleRegisters Method

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim value() As Integer
Redim value(7) ' Set array length
to 8
value(0) = 111 ' First reg is
111, rest are zero
mb.WriteMultipleRegisters(1, value) ' Write 8
registers

See Also

Modbus Class |modbus_object.WriteSingleRegister

Copyright © 2024, Brooks Automation 245

12. Modbus Class GPL Dictionary
modbus_object.WriteSingleCoil Method Part Number: 609719 Rev. A

modbus_object.WriteSingleCoil Method

Writes a single output to a MODBUS slave.
modbus_object. WriteSingleCoil(coil, value)

Prerequisites

None

Parameters

coil

A required Integer expression that specifies the number of the coil to be
written.

value

A required Boolean expression that determines the output to be written.
Any non-zero value is considered True.

Remarks

This method issues a MODBUS/TCPWrite Single Coil request (function 5). If more
than one coil is to be changed, it is much more efficient to use theWriteMultipleCoils
method than multipleWriteSingleCoilmethods. A new connection to the MODBUS
slave is made if none currently existsIf any network errors occur, this method throws
an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleCoil(1, True) ' Turn on coil 1
mb.WriteSingleCoil(2, False) ' Turn off coil 2

See Also

Modbus Class |modbus_object.WriteMultipleCoils

246 Copyright © 2024, Brooks Automation

Brooks Automation 12. Modbus Class
Part Number: 609719 Rev. A modbus_object.WriteSingleRegister Method

modbus_object.WriteSingleRegister Method

Writes a single holding register value to a MODBUS slave.

modbus_object.WriteSingleRegister(register, value)

Prerequisites

None

Parameters

register

A required Integer expression that specifies the number of the holding
register to be written.

value

A required Integer expression that determines the output to be written to
the holding register.

Remarks

This method issues a MODBUS/TCPWrite Single Register request (function 6). The
holding registers are 16-bit unsigned integer values. Only the low 16-bits of value are
used. No error is reported if value is too big to fit in 16 bits. If more than one register is
to be changed, it is much more efficient to use theWriteMultipleRegistersmethod
than multipleWriteSingleRegistermethods. A new connection to the MODBUS
slave is made if none currently exists. If any network errors occur, this method throws
an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleRegister(1, 123)

See Also

Modbus Class |modbus_object.WriteMultipleRegisters

Copyright © 2024, Brooks Automation 247

13. Move Class GPL Dictionary
Move Class Summary Part Number: 609719 Rev. A

13. Move Class

Move Class Summary

The following pages provide detailed information on the methods of theMove Class.
This class provides the means for issuing motion commands to a robot.

The GPL system supports position, velocity, and torque-controlled motions. In the
standard case of position-controlled motions, aMovemethod requires two
arguments: a motion destination and a motion performance specification. Typically, a
Location Object specifies the destination and a Profile Object defines the
performance parameters. The Location can specify the destination in either
Cartesian or joint coordinates and includes clearance position information that is
utilized by selectedMovemethods. The Profile specifies the type of path to follow, i.e.
straight-line or joint interpolated and how fast the robot is to move.

As an ease-of-use feature, severalMovemethods are provided for defining the
destination of a motion. For example, methods are provided for specifying if the robot
is to move directly to a destination, move to the clearance position of a destination,
move relative to the previous destination, or move a single axis.

Table 13-1 summarizes the methods that are described in greater detail in the
following sections.

Member Type Description

Move.Approach Method Moves to the clearance position for a specified Location.

Move.Arc Method Moves the tool tip of the robot along an arc path defined by three
Locations.

Move.Circle Method Moves the tool tip of the robot around a complete circle defined by three
Locations.

Move.Delay Method Pauses execution of motions for a specified period of time, in seconds.

Table 13-1: Move Class Summary

248 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move Class Summary

Member Type Description

Move.Extra Method Moves extra, independent axes during the next motion to a Cartesian
Location.

Move.ForceOverlap Method

Bypasses the system's normal motion blending features and defines
how the execution of two sequential motions are to be overlapped. Can
also automatically limit the rounding of corners between sequential
Cartesian motions.

Move.Loc Method Basic instruction to move to a specified destination Location.

Move.OneAxis Method Convenience method to move a single axis of a robot.

Move.Rel Method Moves to a Location that is relative to the final position and orientation
of the previous motion.

Move.SetJogCommand Method Sets or changes the specific mode, axis and speed during jog (manual)
control mode.

Move.SetRealTimeMod Method Sets the changes in position and orientation for the Real-time Trajectory
Modification mode.

Move.SetSpeeds Method Sets new target speeds and accelerations for all axes during velocity
control mode.

Move.SetTorques Method Sets new target torque output levels for all motors in torque control
mode.

Move.StartJogMode Method Initiates execution of jog (manual) control mode.

Move.StartRealTimeMod Method Initiates a trajectory mode that permits a GPL program to dynamically
modify a planned path while the path is being executed.

Move.StartSpeedDAC Method Starts / stops automatic control of an analog output based upon a
robot's tool tip speed.

Move.StartTorqueCntrl Method Initiates execution of torque control mode for one or more motors.

Move.StartVelocityCntrl Method Switches all axes of a robot to velocity control mode in place of position
control mode.

Move.StopSpecialModes Method Terminates execution of any active special trajectory control modes.

Move.Trigger Method
Primes the system to automatically assert a digital output signal or a
thread event at a prescribed trigger position during the next or current
motion.

Move.WaitForEOM Method Pauses GPL program execution until the current motion is completed.

Copyright © 2024, Brooks Automation 249

13. Move Class GPL Dictionary
Move.Approach Method Part Number: 609719 Rev. A

Move.Approach Method

Moves the robot in a position-controlled motion to the clearance position for a
specified Location.

Move.Approach (location_1, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method simultaneously moves all of the axes of the robot in a coordinated,
position-controlled motion to a clearance position for a specified Location. In many
cases, as the robot moves towards a part position or is being retracted from a part
position, it must first move through an intermediate clearance position. For example,
when picking up a part, it is often necessary to position the robot’s gripper directly over
the part before moving down to pick it up. Likewise, after gripping a part, it is often
necessary to retract the robot’s end effector and the part in order to clear other parts
or to avoid scrapping the part along it’s supporting surface. Since this is such a
common operation, all Location Objects contain information on their required
clearance position. The Approachmethod automatically makes use of this clearance
data to compute an intermediate “approach position” that is taken as the destination

250 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Approach Method

for the Approachmethod’s motion.

Specifically, each Location contains a ZClearance distance and a ZWorld Boolean
flag. The ZClearance property specifies the Z-axis offset distance for the approach
position in millimeters. If the ZWorld property is True, the clearance position is
interpreted as being directly above (or below) the “total position” of the Location in the
world coordinate system at the Z value specified by ZClearance. For example, if the
“total position” of a Location is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3). A world Z
clearance position is often used if the robot is loading or unloading a box and the robot
must clear the edge of the box independent of how far into the box it must reach.

If the ZWorld property of a Location is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis
of its tool or gripper. For example, if the “total position” of a Location is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool
is pointed along the positive world X-axis, the approach position would be (-
42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always wish to retract the gripper a fixed distance from each
machine before moving to the next Location. By making use of GPL’s robot
kinematics option, approach specifications can be automatically applied to both
Cartesian and Angles Location Objects. Once the Approachmethod computes the
desired motion destination, the motion execution is identical to theMove.Locmethod.
The motion can be a Straight-line or joint interpolated motion, can be blended with
the previous and the next motions as desired, and the performance parameters are
defined by profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile initialized to default
values
Dim loc1 As New Location ' Create new location value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
loc1.ZClearance = 10 ' Require 10 mm clearance in Tool
Move.Approach(loc1,prof1) ' Move to clearance position
Move.Loc(loc1, prof1) ' Move to loc1 using prof1

See Also

Location Class |Move Class | Move.Loc | Move.Rel | Profile Class

Copyright © 2024, Brooks Automation 251

13. Move Class GPL Dictionary
Move.Arc Method Part Number: 609719 Rev. A

Move.Arc Method

Moves the robot's tool tip in a circular arc defined by three Location values.

Move.Arc (location_1, location_2, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

l Circular motions can be performed while tracking a conveyor belt but cannot be used to move from a
stationary point to a belt or vice versa.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

252 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Arc Method

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows a circular arc path. The arc is
defined by the XYZ values of the final position of the previous motion and location_1
and location_2. The performance parameters for the motion are defined by the
Profile Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp). See
Figure 13-1.

Figure 13-1: Arc

The circular arc begins at the final "total XYZ position" of the previous motion, goes
through the "total" XYZ position of location_1 and terminates at the "total" XYZ
position of location_2. The "total position" of location_1 and location_2 are computed
as the results of evaluating each Location'sPosWrtRef value relative to the “total
position” of their respective reference frames, if any. If a Location is specified as an
Angles type, its XYZ position is computed using the kinematic model for the attached
robot.

If profile_1 has its InRange property set to zero or a positive value, the system will
bring the robot to a stop at location_2. If this property is negative and the next motion
statement is executed before this motion reaches its destination, GPL will attempt to
blend the two motions together into a “continuous path”. Circular interpolated motions
can be blended with any of the motion types, i.e. Cartesian straight-line, joint
interpolated or other circular interpolated motions.

If the previous motion is still in process when theMove.Arc instruction is executed,
theMove.Arc instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new Arcmotion starts to be
blended with the previous motion, the thread will automatically continue execution at
the next instruction in the GPL procedure.

The following are special notes regarding the use of the Arcmethod.

l The circular arc can be defined in any arbitrary orientation and need not lie in an cardinal
plane.

l The XYZ value of location_1 need not be halfway between the starting and ending
positions of the arc although values closer to the mid point will more accurately define the
plane of the arc.

Copyright © 2024, Brooks Automation 253

13. Move Class GPL Dictionary
Move.Arc Method Part Number: 609719 Rev. A

l If the three XYZ points that define the arc lie in a straight-line, the Arcmethod is
automatically converted to a Cartesian straight-line motion to location_2.

l When blending two Arcmotions, the s-curve AccelRamp and DecelRamp should be set
to 0 and the Accel and Decel properties should be set high to ensure that the path tracks
the circular path as closely as possible.

l As with straight-line motions, the orientation of the tool of the robot is smoothly rotated
from the final orientation of the previous motion to the orientation of the final position,
location_2. The specific rotation method is a function of the kinematic module being
utilized.

Examples

Dim p0 As New Location ' Create location objects
Dim p1 As New Location
Dim p2 As New Location
Dim p3 As New Location
Dim p4 As New Location

p0.XYZ(100,200,-100,0,180,0) ' Define two semi-circles
p1.XYZ(200,100,-100,0,180,0) ' that form an "S"
p2.XYZ(300,200,-100,0,180,0)
p3.XYZ(400,300,-100,0,180,0)
p4.XYZ(500,200,-100,0,180,0)

Move.Loc(p0,pf_start) ' Move to start position
Move.Arc(p1,p2,pf_on_path) ' Follow first semi-circle
Move.Arc(p3,p4,pf_on_path) ' Follow second semi-
circle
Move.WaitForEOM ' Pause thread until
motion done

See Also

Location Class |Move Class | Move.Circle | Move.Loc | Profile Class

254 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Circle Method

Move.Circle Method

Moves the robot's tool tip in a complete circle defined by three Location values.

Move.Circle (location_1, location_2, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

l Circular motions can be performed while tracking a conveyor belt but cannot be used to move from a
stationary point to a belt or vice versa.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

Copyright © 2024, Brooks Automation 255

13. Move Class GPL Dictionary
Move.Circle Method Part Number: 609719 Rev. A

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows an arc path around a complete
circle. The circle is defined by the XYZ values of the final position of the previous
motion and location_1 and location_2. The performance parameters for the motion
are defined by the Profile Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp,
DecelRamp). See Figure 13-2.

Figure 13-2: Circle Method

The circle begins at the final "total XYZ position" of the previous motion, goes through
the "total" XYZ position of location_1 and the "total" XYZ position of location_2 and
terminates at the starting position. The "total positions" of location_1 and location_2
are computed as the results of evaluating each Location'sPosWrtRef value relative
to the “total position” of their respective reference frames, if any. If a Location is
specified as an Angles type, its XYZ position is computed using the kinematic model
for the attached robot.

If profile_1 has its InRange property set to zero or a positive value, the system will
bring the robot to a stop at the final position. If this property is negative and the next
motion statement is executed before this motion reaches its destination, GPL will
attempt to blend the two motions together into a “continuous path”. Circular
interpolated motions can be blended with any of the motion types, i.e. Cartesian
straight-line, joint interpolated or other circular interpolated motions.

If the previous motion is still in process when theMove.Circle instruction is executed,
theMove.Circle instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new Circlemotion starts to be
blended with the previous motion, the thread will automatically continue execution at
the next instruction in the GPL procedure.

The following are special notes regarding the use of the Circlemethod.

l The circle can be defined in any arbitrary orientation and need not lie in an cardinal
plane.

256 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Circle Method

l The XYZ values of location_1 and location_2 need not be equal distance between the
starting and ending positions of the circle although values closer to 120 degrees apart
will increase the accuracy of the plane of the circle.

l If the three XYZ points that define the circle lie in a straight-line, the Circlemethod
motion is automatically converted to a short move to nowhere.

l When blending a Circlemotion with another motion, the s-curve AccelRamp and
DecelRamp should be set to 0 and the Accel and Decel properties should be set high to
ensure that the path tracks the circular path as closely as possible.

l During the circular motion, the orientation of the tool is held constant.

Examples

Dim p0 As New Location ' Create location
objects
Dim p1 As New Location
Dim p2 As New Location

p0.XYZ(100,200,-100,0,180,0) ' Center on
(200,200), radius 100
p1.XYZ(200,300,-100,0,180,0)
p2.XYZ(200,100,-100,0,180,0)

Move.Loc(p0,pf_start) ' Move to start
position
Move.Circle(p1,p2,pf_on_path) ' Move in a circle
Move.WaitForEOM ' Pause thread
until motion done

See Also

Location Class |Move Class | Move.Arc | Move.Loc | Profile Class

Copyright © 2024, Brooks Automation 257

13. Move Class GPL Dictionary
Move.Delay Method Part Number: 609719 Rev. A

Move.Delay Method

Pauses execution of a robot’s motions for a specified period of time, in seconds.
Move.Delay (seconds)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

Parameters

seconds

A required numeric expression that specifies the number of
seconds to delay any further robot motions, interpreted as a
Double value.

Remarks

This method delays any further motions for the attached robot for the specified
number of seconds. The delay starts immediately if the robot is not moving or starts at
the completion of any in-process motions if the robot is moving. Unlike other methods
that simply suspend execution of a thread, this delay is synchronized with the
movement of the robot. It is useful for inserting process delays to allow other
equipment to complete their operations before the robot moves to its next step. E.g.,
this method can be used after the robot has come to a complete halt to pick up a part,
to insert a fixed delay to allow the robot’s gripper to close and engage the part.
Another advantage of this method is that it is implemented like a command to “move to
the current position for a fixed amount of time.” This means that as soon as the delay
period begins, execution of the thread continues. This allows the thread to monitor
other activities or plan the next motion. Also, since the Delaymethod behaves like any
other motion, the Delay can be prematurely terminated by a RapidDecel command.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.Delay(0.2) ' Delay for .2 seconds after reaching loc1

See Also

Move Class | Move.WaitForEOM

258 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Extra Method

Move.Extra Method

Move extra, independent axes during the next motion to a Cartesian Location.

Move.Extra (axis_1_position, axis_2_position, axis_3_position, axis_4_position)

Prerequisites

l High power to the robot must be enabled.

l The robot must be Attached by the thread.

Parameters

axis_1_position

A required numeric expression that specifies the new position of the first
extra axis as an absolute position in units of either millimeters or
degrees as appropriate.

axis_2_position

An optional numeric expression that specifies the new position of the
second extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is only used if the robot has two or more
extra axes.

axis_3_position

An optional numeric expression that specifies the new position of the
third extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is only used if the robot has three or more
extra axes.

axis_4_position

An optional numeric expression that specifies the new position of the
fourth extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is only used if the robot has four or more

Copyright © 2024, Brooks Automation 259

13. Move Class GPL Dictionary
Move.Extra Method Part Number: 609719 Rev. A

extra axes.

Remarks

Some kinematic modules include extra, independent axes that are physically part of
the robot but that do not logically factor into the calculation of the Cartesian position
and orientation of the robot. For example, the "Dual RPR Robot" and the "XYZ Plus
Extra Axis Robot" both include an extra axis that does not affect the Cartesian location
of the robot.

For these types of robots, if a motion instruction is executed to a Cartesian Location
value, there is no information available to define where the extra axis is to be moved.
So, in general, the extra axis will remain in its current position during such a motion.

To address this need, theMove.Extramethod can be executed prior to the execution
of a motion to a Cartesian Location. During the motion, any extra axes will be moved
to the positions specified by theMove.Extramethod simultaneously with the other
axes of the robot. If the next motion is not to a Cartesian Location, the information
specified in theMove.Extramethod is ignored.

As an alternative to using theMove.Extramethod, a motion specified to an Angles
Location will move all of the axes of the robot including the extra axis. However, in
this case, the benefits of utilizing a Cartesian Location will be lost.

Please see the documentation for your specific Robot Kinematic Module to determine
if this instruction has any affect.

Examples

Dim pf1 As New Profile ' Create new profile set
to default values
Move.Extra(20,Robot.DestAngles.Angle(6)) ' Move 1st
extra axis to 20 next motion

' Keep 2nd
extra axis at same position
Move.Loc(Location.XYZValue(300,0,100),pf1) ' Move robot
and extra axis

See Also

Move Class | Move.Loc | Move.Rel

260 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.ForceOverlap Method

Move.ForceOverlap Method

Bypasses the system's normal motion blending features and defines how the
execution of two sequential motions are to be overlapped. Can also automatically
limit the rounding of corners between sequential Cartesian motions.

Move.ForceOverlap (mode, criterion)

Prerequisites

l High power to the robot must be enabled.

l The robot must be Attached by the thread.

Parameters

mode

A required arithmetic expression that defines how the overlapping is
specified and the criterion is interpreted.

criterion

A required arithmetic expression that defines how much the next motion
is to be overlapped with the currently executing motion. The
interpretation of this parameter is a function of the mode.

Remarks

In most applications, the system automatically attempts to optimize the execution of sequential
motions by blending (overlapping) the deceleration of the previous motion with the acceleration of
the next motion. For example, if a motion in the X direction is split into two separate motion
instructions and the robot is instructed not to stop between the motions, the system will
automatically blend the deceleration of the first segment with the acceleration of the second
segment such that the two motions will appear as though they were a single continuous motion.
This blending can significantly improve the performance of a robot since the time required for
accelerating and decelerating adversely affects cycle time.

When the system automatically computes the amount by which sequential motions are blended, it
takes into account the maximum allowable acceleration and deceleration of the robot. This permits
the cycle time to be optimized without exceeding the capabilities of the mechanical system.

Copyright © 2024, Brooks Automation 261

13. Move Class GPL Dictionary
Move.ForceOverlap Method Part Number: 609719 Rev. A

However, in some cases, it is desirable to override the system's standard blending computations by
using the ForceOverlapmethod to define how much two motions are to be overlapped. This
method supports the following different mode's of operations.

mode = 0: Explicit Overlap Specification

This mode explicitly defines the amount that two sequential motions are to be overlapped, specified
as the percentage of time of the second motion. This method has the following benefits as
compared to automatic blending:

l Allows all segments of the current motion to be overlapped with the next motion, not just the current
motion's deceleration and the next motion's acceleration segments. This permits a much greater
overlapping of the two motions.

l Provides an explicit overlapping specification in cases where the automatic blending may not result in
optimal performance. For example, if the first motion is along the X-axis and the next motion is along the
Y-axis, they are typically dynamically decoupled. In this instance, the two motions can be arbitrarily
overlapped from 0% to 100% without violating the dynamic limitations of the robot. Using mode 0, the
amount of overlapping can be set to any amount in order to satisfy any desired application and cycle
time requirements.

 This method has the following disadvantages as compared to automatic blending:

l No checking is performed to ensure that the maximum acceleration and deceleration capabilities of the
robot are not exceeded.

l The system's standard blending algorithms automatically reduce the deceleration of the current motion
and the acceleration of the next motion when this will not adversely affect cycle time to increase the
smoothness of the motion transition.

l The ForceOverlapmethod places more burden on the application programmer for optimizing the
motion cycle time.

The interpretation of the criterion parameter is described in Table 13-2.

mode criterion Resulting Overlap

0 % (0-100)

% of the total execution time of the next motion that is to be overlapped with the
currently executing motion. A value of 0 indicates that the two motions are not
overlapped. A value of 100 indicates that all of the next motion is to be overlapped with
the currently executing motion if possible.

Table 13-2: Criterion Parameter

The motion overlap generated by this method is subject to the following limitations.

l Since the overlap is with respect to the currently executing motion, the next motion will never be started
prior to the execution of the current motion.

l The overlap is limited to ensure that the next motion never terminates before the end of the currently
executing motion.

l If the current motion is defined to stop, i.e. has a ProfileInrange parameter of 0 or greater than 0, no
overlapping will be performed.

262 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.ForceOverlap Method

The following simplified drawings graphically illustrate how the overlapping is performed. In Figure
13-3, the current motion is shorter than the next motion. In the second set of drawings, the current
motion is longer than the next motion.

Figure 13-3: Overlapping

Note that when the next motion is longer than the current motion, the overlap can be extended to
almost the start of the current motion. If the next motion is shorter than the current motion, the next
motion will always be started sufficiently after the start of the current motion to ensure that the next
motion does not terminate before the current motion.

By comparison, Figure 13-4 illustrates the amount of overlapping that can be expected as a result of
the system's automatic blending algorithm. The automatic blending is very easy to use and ensures
that the robot's dynamic capabilities are not exceeded. However, the overlapping is generally
limited to the deceleration segment of the previous motion and the acceleration segment of the next
motion.

Figure 13-4: Overlapping

mode = 1: Automatically Limit Rounding of Corners

Copyright © 2024, Brooks Automation 263

13. Move Class GPL Dictionary
Move.ForceOverlap Method Part Number: 609719 Rev. A

This mode estimates the distance between the corner of two sequential Cartesian motions (either
straight-line or circular) and the closest point on the blended path. If this distance is estimated to
exceed a specified limit, the standard motion blending is over-ridden and the overlap is set to
approximately achieve the specified corner distance.

This is illustrated in Figure 13-5. The "Automatic blending" picture shows the path computed by the
system to minimize the motion execution time at the expense of a large deviation from the corner
point. The "Force overlapping" picture shows the path that is automatically computed to achieve the
specified maximum corner distance.

Figure 13-5: Overlapping

If the standard automatic blending algorithms produce a path that has a corner distance that is
approximately equal to or less than the specified corner distance, the path computed by the
standard motion blending algorithms is executed. However, if the corner rounding is too great, the
motion overlap is automatically reduced. The reduced overlap will decrease the corner rounding
and the corner distance and will therefore result in an increase in the motion execution time.

For this mode, the interpretation of the criterion parameter is described in Table 13-3.

mode criterion Resulting Overlap

1 distance in
mm

If required, the overlap between the next Cartesian motion and currently executing
Cartesian motion is automatically reduced to approximately achieve a corner distance
that does not exceed the specified criterion.

Table 13-3: Criterion Parameter

If the currently executing and the next motions are not Cartesian (e.g. straight-line or
circular) motions, this mode is ignored.

This special mode will produce the most accurate corner distances if the two motions
have relatively small s-curve ramp times and their accelerations, decelerations and
speeds are similar.

Examples

264 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.ForceOverlap Method

Dim pf1 As New Profile
Robot.Attached = 1 ' Get control of
robot #1
pf1.Inrange = -1 ' Don't stop at
end of motion
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in X
direction
Move.ForceOverlap(0, 50) ' Overlap 50% of
the next motion's time
Move.Rel(Location.XYZValue(0,10), pf1) ' Move 10 mm in Y
direction
Move.ForceOverlap(1, 1) ' Next corner dis-
tance should be <= 1mm
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in X
direction
Robot.Attached = 0 ' Release control
of robot

See Also

Move Class

Copyright © 2024, Brooks Automation 265

13. Move Class GPL Dictionary
Move.Loc Method Part Number: 609719 Rev. A

Move.Loc Method

Basic method for moving the robot to a specified destination in a position-controlled
motion.

Move.Loc (location_1, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This is the basic method for simultaneously moving all of the axes of a robot in a
coordinated, position controlled motion to a destination specified by a Location
Object, location_1, using performance parameters defined by a Profile Object,
profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

The destination of the motion will be the “total position” defined by location_1. For the
various forms for the Location Object, the motion destination will be computed as
follows:

l If location_1 is a Cartesian Location with a reference frame, the “total position” is
computed as the position and orientation that is a result of evaluating location_1’s

266 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Loc Method

PosWrtRef value relative to the “total position” of the reference frame.

l If location_1 is a Cartesian Location without a reference frame, location_1’s
PosWrtRef value is interpreted as the absolute coordinates for the destination.

l Otherwise, location_1 is an Angles Location and the motion destination will be the axes
positions specified by location_1.

If profile_1 specifies a Straight-line motion, the robot will move along a straight path in
Cartesian space. Otherwise, a joint-interpolated motion will be generated. If profile_1
has its InRange property set to zero or a positive value, the system will bring the robot
to a stop at location_1. If this property is negative and the next motion statement is
executed before this motion reaches its destination, GPL will attempt to blend the two
motions together into a “continuous path”.

If the previous motion is still in process when theMove.Loc instruction is executed,
theMove.Loc instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new motion starts to be blended
with the previous motion, the thread will automatically continue execution at the next
instruction in the GPL procedure.

Examples

Dim prof1 As New Profile ' Create new profile set
to default values
Dim loc1 As New Location ' Create new location
value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move
to
Move.Loc(loc1, prof1) ' Move to loc1 using prof1

See Also

Location Class |Move Class | Move.Approach | Move.Arc | Move.Extra | Move.Rel | Profile
Class

Copyright © 2024, Brooks Automation 267

13. Move Class GPL Dictionary
Move.OneAxis Method Part Number: 609719 Rev. A

Move.OneAxis Method

Convenience method to move a single axis of a robot.

Move.OneAxis (axis, axis_position, relative_flag, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

l An axis can be moved even if it or other axes are out-of-range of their software limit stops so long as the
motion moves the axis towards the in-range region. This method and jog control are the only means for
automatically moving axes that are out-of-range.

Parameters

axis

A required numeric expression that specifies the number of the robot’s
axis that is to be moved, 1-n.

axis_position

A required numeric expression that specifies the new position of the axis
as either an absolute position or a relative position, in units of either
millimeters or degrees as appropriate.

relative_flag

A required numeric expression that is interpreted as a Boolean that
indicates if the axis_position is an absolute axis position (False) or a
relative value (True).

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint

268 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.OneAxis Method

interpolated motions.

Remarks

This method is primarily a convenience and diagnostic function that moves a single
axis of the Attached robot. If the relative_flag is True, the new axis position is
computed by adding the axis_position value to the final axis position of the previous
motion. Otherwise, the axis_position is taken as the new absolute position for the axis.

When this motion is generated, the positions of all of the other axes of the robot
remain unchanged.

Once theOneAxismethod computes the desired position for each axis, the motion
execution is identical to theMove.Locmethod except that Straight-line motions are
not permitted and this method permits axes to be outside of their software limit stops.

This motion can be blended with the previous and the next motions as desired. The
performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile set
to default values
Move.OneAxis(1,20,True,prof1) ' Increment axis 1 by 20
mm or deg

See Also

Move Class | Move.Loc | Move.Rel

Copyright © 2024, Brooks Automation 269

13. Move Class GPL Dictionary
Move.Rel Method Part Number: 609719 Rev. A

Move.Rel Method

Moves the robot in a position-controlled motion to a Location that is relative to the
final position and orientation of the previous motion.

Move.Rel (location_1, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method simultaneously moves all of the axes of the robot in a coordinated,
position controlled motion to a destination specified by the “total position” of location_
1, which is interpreted as an incremental change relative to the final position and
orientation of the previous motion. If location_1 is a Cartesian Location, the “total
position” of location_1 is evaluated relative to the final Cartesian position and
orientation of the previous motion. If location_1 is a Angles Location, the motion’s
destination is computed by adding location_1’s set of angles to the final angles of the
previous motion.

270 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Rel Method

Note, that this motion is relative to the actual final position and orientation of the
previous motion and not the planned destination of the previous motion (Robot.Dest,
Robot.DestAngles). The planned destination remains the same even if the motion
prematurely terminates execution. This was designed to allow a motion to be retried.
However, the actual final position and orientation is modified by a Soft E-Stop, a Hard
E-Stop, a RapidDecel command or other conditions. So, the Relmethod is designed
to allow a program to do an incremental motion from wherever the robot actually
stopped.

For Cartesian Locations, it should be keep in mind that the incremental motion is
performed in the tool coordinate system of the robot. For example, a positive
incremental Z motion will not necessarily move up vertically in the world coordinate
system. It will move along the Z-axis of the robot’s end effector.

Once the Relmethod computes the desired motion destination, the motion execution
is identical to theMove.Locmethod. The motion can be a Straight-line or joint
interpolated motion, can be blended with the previous and the next motions as
desired, and the performance parameters are defined by profile_1 (e.g. Speed,
Accel, Decel, AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
Dim loc1 As New Location ' Create new location value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
Move.Loc(loc1, prof1) ' Move to loc1 using prof1
loc1.XYZ(10) ' Define incremental motion
in X
Move.Rel(loc1, prof1) ' Move 10 mm in Tool X, not
World

See Also

Location Class |Move Class | Move.Approach | Move.Extra | Move.Loc | Profile Class

Copyright © 2024, Brooks Automation 271

13. Move Class GPL Dictionary
Move.SetJogCommand Method Part Number: 609719 Rev. A

Move.SetJogCommand Method

Sets or changes the specific mode, axis and speed during jog (manual) control mode.

Move.SetJogComand (jog_mode, jog_axis, jog_speed)

Prerequisites

l High power to the robot must be enabled.

l The robot does not need to be homed.

l The robot must be Attached by the thread.

l The robot must be in jog control mode.

Parameters

jog_mode

A required expression that evaluates to an Integer value. This value
specifies the manual control mode that should now be in effect.

jog_axis

A required expression that evaluates to an Integer value. This defines
the robot or Cartesian axis that is to be moved under manual control.

jog_speed

A required expression that evaluates to a percentage value between
+100 and -100. This specifies the target speed and direction for the
manual control motion. The system automatically generates a motion
profile to accelerate up to this speed and to decelerate to a stop after the
manual motion is completed.

Remarks

After a robot has been placed into jog (manual) control mode, this method must be
executed to define the manual control mode, the axis to be manually controlled and
the speed at which the axis is to be moved. This method can be executed at any time

272 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.SetJogCommand Method

during jog control mode and as many times as desired. It simply posts the parameters
to the trajectory generator for execution. If multiple commands are posted in the same
trajectory cycle, the trajectory generator will only use the information from the last
command posted before the start of the cycle. The trajectory generator automatically
smoothly transitions between modes and target speeds.

For example, if the robot is being moved in World manual control mode and a new
command to move in joint manual mode is received, the trajectory generator will
decelerate the World manual mode motion to a stop prior to starting the acceleration
up to the target joint manual mode speed. As another example, if the robot is being
moved in any mode and a new command is posted that changes the target speed, the
trajectory generator will smoothly accelerate or decelerate to achieve the new speed.

The interpretation of the parameters to this method are as follows in Table 13-4:

Jog_
Mode Jog_Axis Jog_Speed Description

0 Ignored. Ignored. Idle, robot not moving.

1 Robot joint
number, 1-n

Joint speed and
direction.

Joint manual control mode. A single robot axis can be
moved. The robot does not need to be homed. Axes that
are out-of-range can be moved into range.

2

Cartesian axis:
1:X, 2:Y, 3:Z,
4:RX, 5:RY,
6:RZ

Cartesian speed and
direction.

World manual control mode. Translates or rotates along
or about a single world (base) Cartesian coordinate axis.
The robot must be homed.

3

Cartesian axis:
1:X, 2:Y, 3:Z,
4:RX, 5:RY,
6:RZ

Cartesian speed and
direction.

Tool manual control mode. Translates or rotates along
or about a single tool (gripper) Cartesian coordinate axis.
The robot must be homed.

4
Robot joint
number, 1-n, or -
1 to free all joints

Positive values free
the joint and negative
values lock the joint.

Free manual control mode. Puts any number of axes
into torque control mode to permit the axes to be manually
pushed into position.

Table 13-4: SetJogCommand Method, Parameters

For Joint, World and Tool control modes, if the magnitude of the speed is set to 5% or
less, the robot will move a discrete increment and then stop rather than move
continuously. In order to move an additional small increment, the speed must be set
to 0 and then to a value of 5% or less. This is very convenient for fine positioning the
robot.

Copyright © 2024, Brooks Automation 273

13. Move Class GPL Dictionary
Move.SetJogCommand Method Part Number: 609719 Rev. A

Any axis commanded to move at greater than 5% speed will continue to do so until
stopped. It is responsibility of the GPL Project to have suitable safe guards and time outs
to ensure that a motion is terminated when required.

Examples

Robot.Attached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control
mode
Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis,
50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to world mode,
X-axis, -50% speed
Thread.Sleep(4000)
Move.StopSpecialModes ' Terminate jog mode
Robot.Attached = 0 ' Release control of
robot

See Also

Move Class | Move.StartJogMode | Move.StopSpecialModes

274 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.SetRealTimeMod Method

Move.SetRealTimeMod Method

Sets the incremental changes in position and orientation for the Real-time Trajectory
Modification mode.

Move.SetRealTimeMod (changes_array)

Prerequisites

l High power to the robot must be enabled.

l The robot must be Selected or Attached by the thread.

l The robot must have the Real-time Trajectory Modification method enabled.

Parameters

changes_array

A required array of Doubles that contains 6 incremental change values
corresponding to the 3 position and 3 orientation degrees-of-freedom
(Dx, Dy, Dz, Rx, Ry, Rz). IfMove.StartRealTimeMod has specified
single steps, these parameters are in units of mm and degrees. If a
continuous change mode has been specified, these parameters are in
units of mm/sec and deg/sec.

Remarks

After the Real-time Trajectory Modification mode has been enabled, this method must
be executed to specify the incremental coordinate modifications. If the changes are
defined as single steps, this method must be executed once for each step. If the
changes are interpreted as continuous changes, this method must be execute each
time an incremental speed is to be altered.

This method can be executed at any time and as many times as desired. It simply
posts the desired changes to the trajectory generator. Each time that the trajectory
generator executes, it checks for any new posted values. If this method is executed
multiple times before the trajectory generator executes again, only the last values
posted will have an effect.

Please see the documentation for theMove.StartRealTimeModmethod for a
description of how the incremental changes are interpreted.

Copyright © 2024, Brooks Automation 275

13. Move Class GPL Dictionary
Move.SetRealTimeMod Method Part Number: 609719 Rev. A

Examples

Public Sub MAIN
Dim rtmod As New Thread("rtmod")
rtmod.Start ' Start RT change

service thread
Robot.Attached = 1
Move.StartRealTimeMod(1,2) ' Turn on RT cor-

rection function
Move.Loc(p0, pf0)
Move.Loc(p1, pf0)
Move.WaitForEOM
rtmod.Abort
Move.StopSpecialModes ' Turn off RT cor-

rection function
Robot.Attached = 0

End Sub
Public Sub rtmod

Dim rtm_spd(6) As Double
While True

Controller.SleepTick(2) ' Adjust every
other traj tick

If (Signal.DIO(20001)) Then
rtm_spd(2) = 10 ' +10 mm/sec in Z

ElseIf (Signal.DIO(20002)) Then
rtm_spd(2) = -10 ' -10 mm/sec in Z

Else
rtm_spd(2) = 0 ' Don't move

End If
Move.SetRealTimeMod(rtm_spd) ' Set new speed

End While
End Sub

See Also

Move Class | Move.StartRealTimeMod | Move.StopSpecialModes | Robot.CartMode|
Robot.RealTimeModAcm | Thread.Schedule

276 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.SetSpeeds Method

Move.SetSpeeds Method

Sets new target speeds for all axes of a robot in velocity control mode.

Move.SetSpeeds (speed_array, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

l The robot must be in velocity control mode.

Parameters

speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each
axis of the robot. Each array element is interpreted in units of mm/sec
(linear axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speeds, "100% joint speeds" (DataID 2700) *
"Max %speed allowed" (DataID 2704).

profile_1

An optional Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified. If this parameter is not specified, the Profile
specified by the last executedMove.SetSpeeds or
Move.StartVelocityCntrlmethod will be utilized.

Remarks

Copyright © 2024, Brooks Automation 277

13. Move Class GPL Dictionary
Move.SetSpeeds Method Part Number: 609719 Rev. A

After a robot has been placed into velocity control mode, this method can be used to
modify the target speed levels for each axis. This method can be executed at any time
and as many times as desired. It simply posts the desired target speeds to the
trajectory generator. The next time that the trajectory generator executes, the
specified speeds will be taken as the new target values. If this method is executed
multiple times before the trajectory generator executes again, only the last values
posted will have an effect.

Examples

Dim speeds(12) As Double ' All Double
speeds will be 0
Dim pf1 As New Profile ' Use default
accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control
of robot #1
Move.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velo-
city control mode
For ii = 36 To 360 Step 36

speeds(0) = ii ' New speed
value

Move.SetSpeeds(speeds) ' Ramp axis 1
speed

Controller.Sleeptick(30) ' Wait a
little while
Next ii
Move.StopSpecialModes ' Terminate
velocity mode
Robot.Attached = 0 ' Release con-
trol of robot

See Also

Move Class | Move.StartVelocityCntrl | Move.StopSpecialModes

278 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.SetTorques Method

Move.SetTorques Method

Sets new target torque output levels for all motors in torque control mode.

Move.SetTorques (torques_array)

Prerequisites

l High power to the robot must be enabled.

l The robot does not need to be homed.

l The robot must be Attached by the thread.

l One or more motors of the robot must be operating in torque control mode.

Parameters

torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the
rated torque, values greater than +- 100% are permitted.

Remarks

After selected motors of a robot have been placed into torque control mode, this
method can be used to modify the target torque levels. This method can be executed
at any time and as many times as desired. It simply posts the desired torque levels to
the trajectory generator. The next time that the trajectory generator executes, the
specified torque levels will be taken as the new target values. If this method is
executed multiple times before the trajectory generator executes again, only the last
values posted will have an effect.

Examples

Copyright © 2024, Brooks Automation 279

13. Move Class GPL Dictionary
Move.SetTorques Method Part Number: 609719 Rev. A

Dim torques(12) As Double ' All Double
torques will be 0
Dim ii, jj As Integer

Robot.Attached = 1 ' Get control of
robot #1
Move.StartTorqueCntrl(1, 0, torques) ' Set motor 1 to
torque mode
For jj = 1 To 10

For ii = 0 To 100
Controller.Sleeptick() ' Wait till next

trajectory cycle
torques(0) = ii/10 ' New torque

value
Move.SetTorques(torques) ' Ramp torque

from 0% to 10%
Next ii

Next jj
Move.StopSpecialModes ' Terminate
torque mode

Robot.Attached = 0 ' Release control
of robot

See Also

Move Class | Move.StartTorqueCntrl | Move.StopSpecialModes

280 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartJogMode Method

Move.StartJogMode Method

Initiates execution of jog (manual) control mode.

Move.StartJogMode ()

Prerequisites

l High power to the robot must be enabled.

l The robot does not need to be homed.

l The robot must be Attached by the thread.

l This mode is not compatible with torque, velocity or other special control modes.

l This mode is terminated if the GPL program that has the robot attached hits a breakpoint, is single
stepped, or stops execution for any reason.

Parameters

None

Remarks

This method switches all of the axes of a robot from the standard position controlled
mode to jog (manual) control mode. This is the mode that is utilized by the Virtual and
Hardware Manual Control Pendants (MCP) to implement joint, world, tool and free
manual control modes. This method and theMove.SetJogCommandmethod are
provided to permit these same manual modes to be easily implemented by a GPL
Project. For example, these methods can be used by a GPL program to implement
manual control modes via a graphics HMI or a joystick.

When a robot is placed into this mode, it is moved in a manner similar to velocity
control mode in that a specified axis or group of axes are accelerated and moved at a
specified continuous speed until they are instructed to change their speed.

Any axis commanded to move will continue to do so until stopped. So, it is
responsibility of the GPL Project to have suitable safe guards and time
outs to ensure that a motion is terminated when required.

Copyright © 2024, Brooks Automation 281

13. Move Class GPL Dictionary
Move.StartJogMode Method Part Number: 609719 Rev. A

When this method is executed, it first waits for any in-process position controlled
motions to be completed. It then transitions all axes into jog control mode. Once in
this mode, theMove.SetJogCommandmethod must be executed to set and change
the specific manual mode, axis and motion speed.

When an axis speed is specified, the setting of the "System Test Speed" is ignored to
permit the robot to be moved in a consistent manner when debugging applications.

To permit the axes of a robot to be moved back into range if they are accidentally
moved beyond their stop limits, joint control mode permits out-of-range axes to be
moved back in range, but not further out-of-range. In addition, the robot does not
need to be homed in order to move the axes in joint control mode to permit it to be
manually repositioned.

The robot will remain in jog control mode until one of the following occurs:

1. TheMove.StopSpecialModesmethod is executed to terminate this mode.

2. A hardware error or hard E-stop or soft E-stop occurs.

3. A RapidDecel is issued.

4. The robot is detached by the user program either by issuing a detach command or by

halting user program execution for any reason (this includes single stepping a GPL

program).

Examples

Robot.Attached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control
mode
Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis,
50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to world mode,
X-axis, -50% speed
Thread.Sleep(4000)
Move.StopSpecialModes ' Terminate jog mode
Robot.Attached = 0 ' Release control of
robot

See Also

Move Class | Move.SetJogCommand | Move.StopSpecialModes

282 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartRealTimeMod Method

Move.StartRealTimeMod Method

Initiates special trajectory mode that permits a GPL program to make incremental
changes in the position and orientation of a planned path while the path is being
executed.

Move.StartRealTimeMod (coordinates, change_type)

Prerequisites

l The "Advanced Controls" license must be installed

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

l This mode is only compatible with the standard position control mode and Cartesian interpolated
motions.

Parameters

coordinates

A required numeric expression that specifies the coordinate system in
which the incremental changes are interpreted and the coordinate
system in which the accumulated modifications are stored.

change_type

A required numeric expression that defines if the incremental changes
are applied once or if the changes are repeatedly applied (i.e. they are
interpreted as speeds).

Remarks

This method initiates a special trajectory mode whereby a GPL program can specify
incremental changes in position and orientation that are immediately applied to the
executing trajectory. When this mode is active, each time that the Trajectory
Generator computes a Cartesian set point, it automatically modifies the set point to
include the accumulated incremental real-time changes.

Copyright © 2024, Brooks Automation 283

13. Move Class GPL Dictionary
Move.StartRealTimeMod Method Part Number: 609719 Rev. A

This method can be used to incorporate sensor feedback or to alter a baseline path for
special processes. For example, if the tool tip must maintain a specific height as it
moves above a distorted surface, input from a height sensor can be used to modify
the planned path as the tool is moving. As another example, if the robot is used for
welding, a weaving motion can be superimposed on the basic weld path by adding a
real-time change that moves back and forth perpendicular to the direction of travel.

When this method is executed, the Attached robot is immediately placed into this
special trajectory mode even if a Cartesian motion is currently in progress.
Thereafter, any thread can post incremental changes in position (Dx, Dy, Dz) and
orientation (Rx, Ry, Rz) that will dynamically alter the planned path. Since these
changes are immediately added to the planned path, the GPL programmust
guarantee that the magnitudes of each change is small to avoid abrupt motions. If no
motion is being executed, the changes will alter the stationary position of the robot's
tool. If a motion or sequence of motions are being executed, the changes will alter the
planned tool path. While this mode is active, only Cartesian motions are permitted.
This mode can span an arbitrary sequence of Cartesian motions and continues to
operate even when no motion is being executed.

To simplify the use of this method for different applications, the coordinates parameter
specifies one of several choices for the coordinate system in which the incremental
changes are interpreted and accumulated. To illustrate these alternatives, we will
consider the following basic Cartesian motion where the tool orientation is rotated
counter-clockwise as the tool tip moves along a straight-line path from p1 to p2. See
Figure 13-6.

Figure 13-6: Basic Cartesian Motion with Orientation Change

If the incremental changes are specified in World coordinates and are accumulated in
World coordinates (World-World mode), incremental changes in position simply shift
the entire path and changes in orientation rotate the tool tip about its end point. See
Figure 13-7.

284 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartRealTimeMod Method

Position Change Orientation Change

Figure 13-7: Change in World, Accumulated in World

This mode decouples changes in orientation and position and so is conceptually very
easy to use. It is analogous to the motions permitted with the Manual Control
Pendant's World jog mode.

If the incremental changes are specified in Tool coordinates and the incremental
changes are accumulated in World coordinates (Tool-World mode), incremental
changes in position shift the path in a manner similar toWorld-World mode, but the
shifts are initially evaluated along the instantaneously direction of the tool. However,
changes in orientation not only change the orientation of the tool, but also rotate the
subsequent direction of the planned path. See Figure 13-8.

Position Change Orientation Change

Figure 13-8: Change in Tool, Accumulated in World

This mode can best be understood if you imagine you are flying the toolP around the
workspace. You can slip the tool right or left or move forward or backwards to offset
the path. However, if you turn the tool, you are setting it course along a new baseline
path and the taught path is relative to this new baseline. This method is analogous to
the motions permitted with the Manual Control Pendant's Tool jog mode.

Copyright © 2024, Brooks Automation 285

13. Move Class GPL Dictionary
Move.StartRealTimeMod Method Part Number: 609719 Rev. A

The final method specifies changes in Tool coordinates and accumulates the
incremental changes in Tool coordinates (Tool-Tool mode). See Figure 13-9.

Position Change Orientation Change

Figure 13-9: Change in Tool, Accumulated in Tool

This mode is analogous to dynamically changing the dimension and orientation of the
robot's tool. If you change the orientation in this mode, it generates a simple rotation
about the tool tip. However, if you change the position, this is equivalent to offsetting
the tool and will cause the path to curve if the orientation of the tool changes. If the
tool does not change its orientation, incremental changes in position simply shift the
path.

The set of coordinate systems to be used are defined by the coordinates parameter as
follows in Table 13-5:

coordinates
Value Description

0 Idle. Ignore incremental change commands. Provided for completeness.

1 World-World mode. Changes specified in the World coordinate system and accumulated in
the World coordinate system.

2 Tool-World mode. Changes specified in the Tool coordinate system and accumulated in the
World coordinate system.

3 Tool-Tool mode. Changes specified in the Tool coordinate system and accumulated in the
Tool coordinate system.

Table 13-5: Coordinates Parameter

During each Trajectory set point evaluation, any combination of incremental changes
in any of the six degrees-of-freedom (Dx, Dy, Dz, Rx, Ry, Rz) can be simultaneously
applied. However, in terms of computational efficiency, if only incremental position

286 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartRealTimeMod Method

changes are made, the computational requirements for applying the real-time
modifications are significantly reduced from the general case of position and
orientation changes. So, incremental orientation changes should be specified as 0
unless needed.

As a convenience, the incremental changes can be specified as single steps that are
only applied once or continuous changes that continue until new values are specified.
The continuous change modes are useful to produce smooth continuous changes
without requiring that a GPL thread post new values each trajectory cycle. The
interpretation of the incremental changes are specified by the change_type parameter
as follows in Table 13-6:

change_
type
Value

Description

0 No change. Equivalent to specifying 0 for all 6 coordinates.

1 Once. Changes are applied a single time and then no further changes are made until a new set of
changes are posted.

2 Continuous, ignore System Speed. Changes are interpreted as speeds (mm/sec or deg/sec) and
are not affected by the setting of the System Speed on the web interface Operator Control Panel.

3 Continuous, consider System Speed. Changes are interpreted as speeds (mm/sec or deg/sec)
and are affected by the setting of the System Speed on the web interface Operator Control Panel.

Table 13-6: change_type Parameter

This mode will remain in effect until one of the following occurs:

1. TheMove.StopSpecialModesmethod is executed to terminate all special control modes for the

robot.

2. A hardware error or hard E-stop or soft E-stop occurs.

3. A RapidDecel is issued.

4. The robot is detached by the user program either by issuing a detach command or by halting user

program execution for any reason.

Examples

Example #1: Move up/down in Z based upon DIO signals

Public Sub MAIN
Dim rtmod As New Thread("rtmod")

rtmod.Start ' Start RT change

Copyright © 2024, Brooks Automation 287

13. Move Class GPL Dictionary
Move.StartRealTimeMod Method Part Number: 609719 Rev. A

service thread
Robot.Attached = 1

Move.StartRealTimeMod(1,2) ' Turn on RT cor-
rection function
Move.Loc(p0, pf0)
Move.Loc(p1, pf0)
Move.WaitForEOM
rtmod.Abort

Move.StopSpecialModes ' Turn off RT cor-
rection function
Robot.Attached = 0

End Sub
Public Sub rtmod

Dim rtm_spd(6) As Double
While True

Controller.SleepTick(2) ' Adjust every
other traj tick

If (Signal.DIO(20001)) Then
rtm_spd(2) = 10 ' +10 mm/sec in Z

ElseIf (Signal.DIO(20002)) Then
rtm_spd(2) = -10 ' -10 mm/sec in Z

Else
rtm_spd(2) = 0 ' Don't move

End If
Move.SetRealTimeMod(rtm_spd) ' Set new speed

End While
End Sub

Example #2: Add Tool-Y weaving to baseline motions

Const WEAVE_SPEED As Double = 20 ' Weave moves at
this mm/sec speed

Const WEAVE_MAGNITUDE As Double = 5 ' Weave magnitude
Const WEAVE_PRIORITY As Integer = 16 ' Execution pri-

ority for the RealTimeMod
' thread

Const WEAVE_HP_TIME As Double = 0.250' Estimated exe-
cution time

Const WEAVE_N_PHASE As Double = 0.500' RealTimeMod
executed this many msec

' after trajectory

288 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartRealTimeMod Method

generator.
Private WeaveMode As Integer ' Controls oper-

ation of weaving thread
' 0 = Not active

' 1 = Start weaving
' 2 = Weave execut-

ing
' 3 = Stop weaving

' Standard motion program.

Public Sub MAIN
Dim weave As New Thread("Weave")

WeaveMode = 0 ' Weaving not act-
ive

weave.Start ' Start weaving
thread

Robot.Attached = 1
Move.Loc(p0, pfj)
Move.WaitForEOM

Move.StartRealTimeMod(3,2) ' Turn on RT cor-
rection function

WeaveMode = 1 ' Start weaving
Move.Loc(p1, pfs)
Move.Loc(p2, pfs)
Move.WaitForEOM

WeaveMode = 3 ' Stop weaving
While (weave.ThreadState = 2) ' Wait until weav-

ing stops
Thread.Sleep(2)
End While

Move.StopSpecialModes ' Turn off RT cor-
rection function
Robot.Attached = 0

End Sub

' Weaving function

Public Sub Weave
Dim rtm_spd(6), traj_rate, dy As Double

traj_rate = Controller.PDbNum(600,1)*1000 ' Traj

Copyright © 2024, Brooks Automation 289

13. Move Class GPL Dictionary
Move.StartRealTimeMod Method Part Number: 609719 Rev. A

update rate in msec
Thread.Schedule(WEAVE_PRIORITY, traj_rate, WEAVE_HP_

TIME, _
WEAVE_N_PHASE) ' Increase task pri-

ority

While True
Select WeaveMode

Case 0 ' Weave not active

Case 1 ' Start weaving
rtm_spd(1) = WEAVE_SPEED ' Set default

speed
Move.SetRealTimeMod(rtm_spd) ' Start weaving
WeaveMode = 2 ' Weaving act-

ive

Case 2 ' Weaving active
dy = Robot.RealTimeModAcm.Y ' Get current

weave magnitude
If (Math.Abs(dy) >= WEAVE_MAGNITUDE) Then

rtm_spd(1) = -WEAVE_SPEED*Math.Sign(dy)
' Reverse direction

Move.SetRealTimeMod(rtm_spd) ' Set new
speed

End If

Case 3 ' Stop weaving
dy = Robot.RealTimeModAcm.Y ' Get current

weave magnitude
If (Math.Abs(dy) <= 1.5*WEAVE_SPEED) Then

Thread.CurrentThread.Abort ' Weave at
center, stop

Else
rtm_spd(1) = -WEAVE_SPEED*Math.Sign(dy)

' Reverse direction
Move.SetRealTimeMod(rtm_spd) ' Set new

speed
End If

End Select
Thread.Sleep(1) ' Wait for next

290 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartRealTimeMod Method

trajectory cycle
End While

End Sub

Datalog of Cartesian X/Y axes during weaving

See Also

Move Class | Move.SetRealTimeMod | Move.StopSpecialModes | Robot.CartMode |
Robot.RealTimeModAcm

Copyright © 2024, Brooks Automation 291

13. Move Class GPL Dictionary
Move.StartSpeedDAC Method Part Number: 609719 Rev. A

Move.StartSpeedDAC Method

Starts, alters or stops automatic control of an analog output channel (DAC) whose
value is computed based upon the robot's instantaneous tool tip speed.

Move.StartSpeedDAC (mode, n_segments, speed_array, dac_array)

Prerequisites

l The "Advanced Controls" license must be installed

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

l This mode is only compatible with the standard position control mode and Cartesian interpolated
motions.

Parameters

mode

An optional numeric expression that is not currently used. This is a
placeholder for future capabilities.

n_segments

A required numeric expression that evaluates to the Integer number of
piecewise linear interpolation segments that define how tool tip speeds
are converted to raw DAC commands. If this value is 0 or negative, the
SpeedDACmode is terminated. The maximum permitted value for this
parameter is 3.

speed_array

An optional array of Doubles that define the ranges of speeds that are
interpolated in each piecewise linear segment. If n_segments is 1, the
first array element (0) and the second array element (1) define the range
of tool tip speeds that are converted to DAC values by interpolating
between the first two dac_array elements. If n_segments is 2, the

292 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartSpeedDAC Method

second array element (1) and the third (2) define the range of tool tip
speeds that are converted by interpolating between the second and
third dac_array elements. Speed values must be 0 or greater and must
monotonically increase within the speed_array. That is, element (1)
must be greater than element (0), and (2) must be greater than (1), etc.
All speeds are in units of mm/sec.

dac_array

An optional array of Doubles that define the ranges of DAC values that
are output for each of the piecewise linear interpolation segments. The
first two elements (0) and (1) define the range of DAC values that are
interpolated for the first segment. Each entry in this array is interpreted
as a raw DAC value from 32767 to -32768, which represent voltages
from +10VDC to -10VDC. There is no restriction on values stored in
each DAC element, i.e. sequential entries can be increasing, decreasing
or the same.

Remarks

This method initiates, changes or terminates a special trajectory mode that computes
the instantaneous commanded speed of the attached robot's tool tip and
automatically sets the value of an analog output channel (DAC) based upon the
computed speed. The trajectory generator computes the tool tip speed each time it
evaluates the path set points. This computation takes into consideration all of the
characteristics of the trajectory including accelerations, decelerations, motion
blending, any reduced speed due to the global test speed set by the Operator Control
Panel, real-time path modifications, etc.

The computed tool tip speed is converted to a DAC value using one or more
piecewise linear interpolation segments. If a single segment is specified, a range of
speeds are linearly converted to a range of DAC values. Speeds that are less than
the lowest value in the speed range are set to the first value in the DAC range.
Speeds that are higher than the highest value in the speed range are set to the last
value in the DAC range. If two or more linear segments are specified, a piecewise
linear relationship between tool tip speeds and DAC values can be represented.
Figure 13-10 illustrates how tool tip speeds are converted to DAC values for a sample
two segment (n_segments=2) specification.

Copyright © 2024, Brooks Automation 293

13. Move Class GPL Dictionary
Move.StartSpeedDAC Method Part Number: 609719 Rev. A

Figure 13-10: Tool Tip Speeds Converted to DAC Values

Once the DAC value is computed by the Trajectory Generator using the piecewise
linear specification, the value is sent to the servo code. The servo code interpolates
between sequential DAC values at the PID loop evaluation rate and writes the
interpolated value to the hardware DAC. This extra level of interpolation ensures that
the DAC value will be changed smoothly and accurately. If this method is called with 0
segments specified, this special trajectory mode is terminated and the DAC value is
set to 0. This mode can be started, modified and stopped at any time when the robot is
idle or moving. However, once started, only Cartesian interpolated motions (e.g.
straight-line or circular interpolated) can be executed. There are several Parameter
Database values (Table 13-7) that are important for the operation of the SpeedDAC
method.

Parameter
Database ID

Parameter
Name Description

2014
Speed DAC
output map:
node, channel

This parameter must be set to the controller node number and the number
of the DAC to be controlled. If this parameter is not set, the SpeedDAC
method can still be used to compute the instantaneous speed of the robot's
tool tip, but no hardware analog output signal will be generated. If this
parameter is set, the output value of the specified DAC channel will be
continuously written by the servo code even when the SpeedDACmethod
is not enabled. During this period, the "SpeedDACmode DAC output
value" (DataID 3542) can be manually written to output values to the DAC.
The value of DACs configured for SpeedDAC operation should not be
modified via GPL's Signal.AIO methods.

3541
SpeedDAC
mode tool tip

speed

If the SpeedDACmode is enabled, this parameter returns the robot's tool
tip speed in mm/sec. This is the actual tool tip speed and is affected by the
"System wide test speed" (DataID 601).

Table 13-7: Parameter Database Values

294 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartSpeedDAC Method

Parameter
Database ID

Parameter
Name Description

3542
SpeedDAC
mode DAC
output value

If the SpeedDACmode is enabled, this parameter returns the value that is
written to the DAC and will range from 32767 to -32768. If the SpeedDAC
mode is disable but the DAC is configured via the "Speed DAC output map:
node, channel" (DataID 2014), the servos control the value of the DAC and
this DataID can be written to explicitly set the DAC value.

This mode will remain in effect until one of the following occurs:

1. AMove.StartSpeedDACmethod is executed with a zero n_segments parameter.

2. TheMove.StopSpecialModesmethod is executed to terminate all special control modes for the

robot.

3. A hardware error or hard E-stop or soft E-stop occurs.

4. A RapidDecel is issued.

5. The robot is detached by the user program either by issuing a detach command or by halting user

program execution for any reason.

Examples

Dim prof1 As New Profile
Dim loc1 As New Location
Dim speeds(2), dacs(2) As Double
Robot.Attached = 1 ' Get control of robot #1
speeds(0) = 30 ' At 30 mm/sec

dacs(0) = 1*32768/10 ' output 1 VDC

speeds(1) = 300 ' At 300 mm/sec

dacs(1) = 5*32768/10 ' output 5 VDC

Move.StartSpeedDAC(0, 1, speeds, dacs) ' Start SpeedDAC output
prof1.Straight = True ' Must be Cartesian motion
loc1.XYZ(10,20,-30,0,180,20) ' Define position to move to
Move.Loc(loc1, prof1) ' Move to loc1 using prof1
Move.WaitForEOM
Move.StartSpeedDAC(0,0) ' Terminate mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.StopSpecialModes | Robot.CartMode

Copyright © 2024, Brooks Automation 295

13. Move Class GPL Dictionary
Move.StartTorqueCntrl Method Part Number: 609719 Rev. A

Move.StartTorqueCntrl Method

Initiates execution of torque control mode for one or more motors.

Move.StartTorqueCntrl (motor_mask, adc_mask, torques_array)

Prerequisites

l High power to the robot must be enabled.

l The robot does not need to be homed.

l The robot must be Attached by the thread.

Parameters

motor_mask

A required numeric expression that evaluates to a bit mask that
specifies the motors to be placed into torque control mode. The least
significant bit corresponds to the first motor for the attached robot.

adc_mask

A required numeric expression that evaluates to a bit mask that
specifies the single motor whose torque is to be directly controlled by the
first ADC input channel. This value should be zero if no motor is to be
ADC controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
corresponding motor at its full positive or negative rated motor torque.
Since the peak motor torque can usually be higher than the rated
torque, ADC values greater than +- 1.0 are permitted.

torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the
rated torque, values greater than +- 100% are permitted.

296 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartTorqueCntrl Method

Remarks

This method places the specified motors into torque control. Motors that are not
placed into torque control mode continue to operate in position control mode and can
be moved by the standard Move Class Methods. Thus, some axes of the robot can
continue to follow a position-controlled path while others can exert a force or can
move freely if their torque output is set to zero.

If a motor is specified in the adc_mask, that motor’s torque output level is the sum of
the percentage of rated motor torque specified in the torques_array and the value
defined by the ADC input.

When this method is executed, it first waits for any in-process motions to be
completed. It then transitions the specified motors into torque control and sets their
initial torque levels to the values specified in the torques_array. The torque levels can
subsequently be changed by executing aMove.SetTorquesmethod or by a change
in the ADC signal.

Since torque control does not close the position loop around a motor, the torque
applied is unaffected by the current setting of the "System Test Speed". This is the
speed value that can be set via the web Operator Control Panel or the "System wide
test speed in %" (DataID 601) database parameter.

The specified motors will remain in torque control mode until one of the following
occurs:

1. TheMove.StopSpecialModesmethod is executed to terminate torque control mode

for all motors.

2. A hardware error or hard E-stop or soft E-stop occurs.

3. A RapidDecel is issued.

4. The robot is detached by the user program either by issuing a detach command or by

halting user program execution for any reason.

Torque control mode is compatible with both position and velocity control modes.
However, torque control mode can only be initiated when in position control mode.

Examples

Dim torques(12) As Double ' All Double
torques will be 0
Dim ii, jj As Integer
Robot.Attached = 1 ' Get control of

Copyright © 2024, Brooks Automation 297

13. Move Class GPL Dictionary
Move.StartTorqueCntrl Method Part Number: 609719 Rev. A

robot #1
Move.StartTorqueCntrl(1, 0, torques) ' Set motor 1 to
torque mode
For jj = 1 To 10

For ii = 0 To 100
Controller.Sleeptick() ' Wait till next

trajectory cycle
torques(0) = ii/10 ' New torque

value
Move.SetTorques(torques) ' Ramp torque

from 0% to 10%
Next ii

Next jj
Move.StopSpecialModes ' Terminate
torque mode
Robot.Attached = 0 ' Release control
of robot

See Also

Move Class | Move.SetTorques | Move.StopSpecialModes

298 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartVelocityCntrl Method

Move.StartVelocityCntrl Method

Switches all axes of a robot from position to velocity control mode.

Move.StartVelocityCntrl (mode, adc_mask, speeds_array, profile_1)

Prerequisites

l High power to the robot must be enabled.

l The robot must be homed.

l The robot must be Attached by the thread.

Parameters

mode

A required numeric expression that evaluates to the mode of velocity
control to be executed. Currently, this parameter is unused and should
be set to 0 for compatibility with future software releases.

adc_mask

A required numeric expression that evaluates to a bit mask that
specifies the single axis whose speed is to be directly controlled by the
first ADC input channel. This value should be zero if no axis is to be ADC
controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
corresponding axis at its full 100% speed.

speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each
axis of the robot. Each array element is interpreted in units of mm/sec
(linear axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speeds, "100% joint speeds" (DataID 2700) *
"Max %speed allowed" (DataID 2704).

profile_1

Copyright © 2024, Brooks Automation 299

13. Move Class GPL Dictionary
Move.StartVelocityCntrl Method Part Number: 609719 Rev. A

A required Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified.

Remarks

This method switches all of the axes of a robot from the standard position controlled mode to
velocity controlled mode. When in velocity controlled mode, each axis accepts a target speed as its
command rather than a position. The target speeds can be set by this method or can be updated at
any time using theMove.SetSpeedsmethod. Once each axis has accelerated, it will continue to
rotate at its target speed until the speed is explicitly changed, velocity control mode is terminated or
an error occurs.

As with position control mode, velocity control mode is compatible with torque control mode. That is,
when in velocity control mode, one or more motors can be in torque control mode. (Note: Motors
must be placed into torque control mode when the robot is in position control mode. After motors are
placed into torque control, the position-controlled joints can then be switched to velocity control
mode.)

If an axis is specified in the adc_mask, that axis' target speed is the sum of the appropriate value in
the speeds_array plus the value defined by the ADC input.

When this method is executed, it first waits for any in-process position controlled motions to be
completed. It then transitions all axes into velocity control mode and sets the initial target speeds to
the values specified in the speeds_array. The speed targets can subsequently be changed by
executing aMove.SetSpeedsmethod or by a change in the ADC signal.

As a convenience in debugging applications, the velocity control target speed is affected by the
current setting of the "System Test Speed". This is the speed value that can be set via the web
Operator Control Panel or the "System wide test speed in %" (DataID 601) database parameter. In
addition, software and hardware limit stop checking is still performed during this mode of operation.
If an axis is to be rotated continuously, motors can be configured for continuous turn capability
assuming that this capability is supported by the robot's kinematic module.

The robot will remain in velocity control mode until one of the following occurs:

1. TheMove.StopSpecialModesmethod is executed to terminate velocity control mode.

2. A hardware error or hard E-stop or soft E-stop occurs.

300 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.StartVelocityCntrl Method

3. A RapidDecel is issued.

4. The robot is detached by the user program either by issuing a detach command or by halting user

program execution for any reason.

Examples

Dim speeds(12) As Double ' All Double
speeds will be 0
Dim pf1 As New Profile ' Use default
accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control
of robot #1
Move.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velo-
city control mode
For ii = 36 To 360 Step 36

speeds(0) = ii ' New speed
value

Move.SetSpeeds(speeds) ' Ramp axis 1
speed

Controller.Sleeptick(30) ' Wait a
little while
Next ii
Move.StopSpecialModes ' Terminate
velocity mode
Robot.Attached = 0 ' Release con-
trol of robot

See Also

Move Class | Move.SetSpeeds | Move.StopSpecialModes| Move.StartTorqueCntrl

Copyright © 2024, Brooks Automation 301

13. Move Class GPL Dictionary
Move.StopSpecialModes Method Part Number: 609719 Rev. A

Move.StopSpecialModes Method

Terminates execution of any active special trajectory control modes.
Move.StopSpecialModes

Prerequisites

l High power to the robot must be enabled.

l The robot must be Attached by the thread.

Parameters

None

Remarks

If any special trajectory modes are in effect, this method executes the equivalent of a
Robot.RapidDecel to immediately decelerate any moving axes of the attached robot
to a stop. At the completion of this operation, all special trajectory generation modes
will be terminated and the robot will be in the standard position control mode. If no
special modes are in effect, this method performs no operation and does not signal an
error. In particular, the following modes of execution will be terminated:

External trajectory control mode
Jog (manual) control mode
Master/slave mode
Real-time trajectory modification mode
Torque control mode
Velocity control mode

Examples

Move.StopSpecialModes ' Halts any special control modes in effect

See Also

Move Class | Move.StartJogMode | Move.StartRealTimeMod | Move.StartTorqueCntrl |
Move.StartVelocityCntrl | Robot.Rapid.Decel

302 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Trigger Method

Move.Trigger Method

Primes the system to automatically assert a digital output signal or a thread event at a
prescribed trigger position during the next or current motion. Up to two independent
triggers can be set for a given motion.

Move.Trigger (mode, trigger_pt, channel)
-or-
Move.Trigger (mode, trigger_pt, thread_object, event_mask)

Prerequisites

l High power to the robot must be enabled.

l The robot must be Selected or Attached by the thread.

Parameters

mode

A required arithmetic expression that defines the manner in which the
trigger position is defined.

trigger_pt

A required arithmetic expression that defines the trigger position. The
interpretation of this value is a function of the mode.

channel

(Digital Output Trigger Only) A required arithmetic expression that
specifies the digital I/O channel whose output is set at the trigger point.
If the channel number is positive, the output is turned ON at the trigger
point. If the channel number is negative, the output is turned OFF at the
trigger point. If the value is 0, any previousMove.Trigger operation is
disabled.

thread_object

Copyright © 2024, Brooks Automation 303

13. Move Class GPL Dictionary
Move.Trigger Method Part Number: 609719 Rev. A

(Thread Event Trigger Only) A required Thread Object that defines the
user thread whose event will be set at the trigger point.

event_mask

(Thread Event Trigger Only) A required numeric expression that
specifies the events to be set at the trigger point. Each bit in event_mask
corresponds to a different event. Bit 0 (mask value &H0001)
corresponds to event 1. Multiple events may be specified. The
maximum event is 16, so the maximum value for event_mask is
&HFFFF.

Remarks

After this instruction is executed, the digital output signal or thread event defined by
the parameters will be asserted when the next or current motion reaches a specified
trigger position. The trigger position is defined by the mode and the trigger_pt values
as described in the following table:

mode trigger_
pt Resulting Trigger Point

0 % (0-100) % of change in position of the motion measured from the start of the motion, e.g. 0
indicates start of motion.

1 % (0-100) % of change in position of the motion measured from the end of the motion, e.g. 0
indicates end of motion.

2 mm Distance in millimeters from the start of the motion. Only valid for straight-line and arc
motions.

3 mm Distance in millimeters before the end of the motion. Only valid for straight-line and arc
motions.

4 seconds Time after the start of the motion.

5 seconds Time before the end of the motion.

100+n
Applies to the currently executing motion instead of the next motion. For example, a
mode of 102 is the same as mode 2 except that the trigger is with respect to the
currently executing motion instead of the next motion.

1000+m
Defines the second trigger for the specified motion instead of the first. For example, a
mode of 1102 is the same as mode 102 except that the second trigger of the currently
executing motion is primed instead of the first.

Table 13-8: mode and trigger_pt Values

304 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.Trigger Method

For example, if the mode is "1" and the trigger_pt is "10", if the next motion is joint
interpolated, the channel signal will be asserted by the first trigger when the joints are
90% of the way to their final values. Alternately, the same result could be achieved
with a mode of "1001". In this case, the second trigger will be utilized. The two triggers
per motion are completely independent and identical in their performance.

For modes 4 & 5, the trigger point is computed assuming that the system is operating
with the System Speed (as set via the Operator Control Panel) at a value of 100%. If
the System Speed is set to 50%, the motion time is doubled and the effective trigger
point time is doubled as well. To set the time value to be independent of the System
Speed, the trigger_pt value should be adjusted by the value of the "System wide test
speed in %" (DataID 601).

If the next motion is blended with the subsequent motion and a mode is selected that
is relative to the end of the next motion, the trigger point will be relative to the end of
the blending period. Since the start and end of the blending period are a function of
both the next and the subsequent motions, the trigger point will vary as a function of
both motions. Likewise, if the next motion is blended with the previous motion, trigger
points defined relative to the start of the next motion will vary as a function of the
motion blending.

If you desire to trigger a signal when the robot reaches the end point of a motion, but
that motion is blended with the subsequent motion, it is possible to trigger at
approximately the correct position without regard to the details of the blending
algorithms. Specifically, if you wish to trigger when the robot reaches position Pn,
create two intermediate positions that are equidistance before and after Pn (Pn minus
a small delta and Pn plus a small delta). Then rather than moving to Pn, move to Pn
minus the delta and then Pn plus the delta. If you set the trigger to occur 50% of the
way through the motion between these two intermediate positions, the signal will
trigger when the robot is approximately at Pn. See Figure 13-11.

Figure 13-11: Trigger Method

Copyright © 2024, Brooks Automation 305

13. Move Class GPL Dictionary
Move.Trigger Method Part Number: 609719 Rev. A

If a motion terminates in the standard manner, the digital output signal or thread event
is guaranteed to be asserted at some point during the motion. However, if an error or
RapidDecel function prematurely terminates a motion, the trigger may not be
asserted.

Examples

Public Sub MAIN
Dim Evt_Thd As New Thread("Bckgnd_thread")
Dim pf1 As New Profile ' Use default

accel/decel
Evt_Thd.Start ' Start back-

ground thread
Robot.Attached = 1 ' Get control

of robot #1
Signal.DIO(20001) = 0 ' Turn off sig-

nal
Move.Trigger(0, 20, 20001) ' Turn on 20%

into motion
Move.Trigger(1001, 10, Evt_Thd, &H10)' Trigger event

90% into motion
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in

tool coordinates
Robot.Attached = 0 ' Release con-

trol of robot
End Sub

Public Sub Bckgnd_thread()
Thread.WaitEvent(&H10, -1) ' Wait for trig-

ger
Signal.DIO(20001) = 0 ' Turn off sig-

nal
Console.WriteLine("Thread triggered")

End Sub

See Also

Move Class

306 Copyright © 2024, Brooks Automation

Brooks Automation 13. Move Class
Part Number: 609719 Rev. A Move.WaitForEOM Method

Move.WaitForEOM Method

Suspends execution of the current thread until the robot completes its current motion.

Move.WaitForEOM

Prerequisites

l High power to the robot must be enabled.

l The robot must be Attached by the thread.

Parameters

None

Remarks

This allows a program that is controlling a robot (i.e. Attached to) to synchronizing its
execution with the robot by suspending execution of the thread until any current robot
motion has been completed. This method is valid for waiting until the completion of
both position and velocity controlled motions.

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.WaitForEOM ' Execution suspended until
robot at loc1

: ' Execution continues here
after robot stops

See Also

Move Class | Move.Approach | Move.Loc |Move.OneAxis | Move.Rel

Copyright © 2024, Brooks Automation 307

14. Networking Classes GPL Dictionary
Networking Classes Summary Part Number: 609719 Rev. A

14. Networking Classes

Networking Classes Summary

The following pages provide detailed information on the properties and methods for
the various classes that implement Ethernet networking communications.

The networking classes include: a IPEndPoint Class for specifying IP and port
addresses; a Socket Class that is the basis for most networking I/O operations and
contains the basic send and receive methods; a TcpListener Class that is used for
implementing TCP server applications; a TcpClient Class for implementing TCP
client applications; and finally a UdpClient Class for implementing both the server
and client side of UDP based communications.

Table 14-1 through Table 14-5 summarize the properties and methods for each Class,
which are described in greater detail in the following sections.

IPEndPoint
Member Type Description

New IPEndPoint Constructor
Method

Creates an Endpoint and allows the IP Address and Port to be
specified.

ipendpoint_
obj.IPAddress Property Sets or gets the IP Address of an Endpoint.

ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.

Table 14-1: IPEndPoint Member Class

Socket Member Type Description

socket_
obj.Available Property Gets the number of data bytes currently available to receive from a Socket.

Table 14-2: Socket Member Class

308 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A Networking Classes Summary

Socket Member Type Description

socket_
obj.Blocking Property Sets or gets the blocking mode for a Socket. If True, the Socket blocks. If

False, it does not block.

socket_obj.Close Method Closes any connections associated with a Socket.

socket_obj.Connect Method Requests a TCP Client connection with a remote TCP Server.

socket_
obj.KeepAlive Property Sets or gets the flag that controls whether a keep-alive message is

automatically transmitted over the current TCP connection.

socket_obj.Receive Method Receives a datagram from an open TCP connection.

socket_
obj.ReceiveFrom Method Receives a datagram from an open UDP connection.

socket_
obj
.ReceiveTimeout

Property Sets or gets the receive timeout, in milliseconds, for a Socket.

socket_
obj
.RemoteEndPoint

Property Gets information about the remote end point of a TCP connection.

socket_obj.Send Method Sends a datagram on an open TCP connection.

socket_
obj.SendTimeout Property Sets or gets the send timeout, in milliseconds, for a Socket.

socket_obj.SendTo Method Sends a datagram to an open UDP connection.

TcpClient
Member Type Description

New TcpClient Constructor
Method

Creates anObject for a TCP Client and optionally requests a
connection.

tcpclient_obj.Client Method Returns the embedded Socket for performing I/O.

tcpclient_obj.Close Method Closes a Client Socket and breaks any connection.

Table 14-3: TcpClient Member Class

TcpListener
Member Type Description

New TcpListener Constructor
Method Creates anObject for a TCP Server to listen for connections.

tcplistener_
obj.AcceptSocket Method Accepts a connection and returns a new Socket Object for use by the

TCP Server.

tcplistener_obj.Close Method Stops listening and closes the listener Socket.

Table 14-4: TcpListener Member Class

Copyright © 2024, Brooks Automation 309

14. Networking Classes GPL Dictionary
Networking Classes Summary Part Number: 609719 Rev. A

TcpListener
Member Type Description

tcplistener_
obj.Pending Property True if there is a pending connection and AcceptSocket will succeed.

Otherwise False.

tcplistener_obj.Start Method Starts listening for connection requests.

tcplistener_obj.Stop Method Stops listening and closes the listener Socket. Same as Close
method.

UdpClient Member Type Description

New UdpClient Constructor Method Creates anObject for I/O using UDP.

udpclient_obj.Client Method Returns the embedded Socket for performing I/O.

udpclient_obj.Close Method Closes a Socket.

Table 14-5: UdpClient Member Class

310 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A New IPEndPoint Constructor

New IPEndPoint Constructor

Constructor for creating an IP endpoint object and optionally initializing it.
New IPEndPoint (IP_address, port_number)

Prerequisites

None

Parameters

IP_address

An optional string containing a standard IP address in the form
“nnn.nnn.nnn.nnn”. This address identifies a computer or computer-
based device on the network. If omitted, or empty, the IP address is
assumed to be a “wild card”, matching any address.

port_number

An optional number specifying the port number from 0 to 65536 of a
process, protocol, or connection. If omitted, the port number is assigned
automatically.

Remarks

The combination of IP address and port uniquely specifies a computer and process on
a network. When messages are exchanged, both the sender and the receiver have an
endpoint address consisting of these two items.

Examples

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address
192.168.0.2
Dim ep As New IPEndPoint("", 69) ' Port 69 at any address

See Also

Networking Classes | ipendpoint_object.IPAddress | ipendpoint_object.Port

Copyright © 2024, Brooks Automation 311

14. Networking Classes GPL Dictionary
ipendpoint_object.IPAddress Property Part Number: 609719 Rev. A

ipendpoint_object.IPAddress Property

Sets or gets the IP address associated with an IPEndPoint object.

ipendpoint_object.IPAddress =<ip_address_string>
-or-
...ipendpoint_object.IPAddress

Prerequisites

None

Parameters

None

Remarks

The IP Address identifies a computer or computer-based device on the network. If
empty, the IP address is assumed to be a “wild card”, matching any address.

This property converts the IP Address part of an IPEndPoint Object to or from a
string value. The string value contains the address in the form nnn.nnn.nnn.nnn where
each nnn field is a decimal number representing 8 bits of the 32-bit IP address.

Examples

Dim ep As New IPEndPoint()
ep.IPAddress = "192.168.0.2" ' Assign the IP Address
to the endpoint
Console.Writeline(ep.IPAddress) ' Display the IP
Address of the endpoint

See Also

Networking Classes | NewIPEndPoint | ipendpoint_object.Port

312 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A ipendpoint_object.Port Property

ipendpoint_object.Port Property

Sets or gets the port number associated with an IPEndPoint Object.

ipendpoint_object.Port= <port_number>
-or-
...ipendpoint_object.Port

Prerequisites

None

Parameters

None

Remarks

The port number specifies a process, protocol, or connection at an endpoint. This
number may range from 0 to 65536.

This property sets or gets the port number of an IPEndPoint Object.

Examples

Dim ep As New IPEndPoint()
ep.Port = 1234 ' Set the port of an end-
point object
Console.Writeline(ep.Port) ' Display the port of the
endpoint

See Also

Networking Classes | NewIPEndPoint | ipendpoint_object.IPAddress

Copyright © 2024, Brooks Automation 313

14. Networking Classes GPL Dictionary
socket_object.Available Property Part Number: 609719 Rev. A

socket_object.Available Property

Gets the number of data bytes currently available to receive from a Socket.

...socket_object.Available

Prerequisites

The Socketmust be open and ready to receive data.

Parameters

None

Remarks

This property returns the number of bytes available on an open Socket. If this number
is greater than zero, a Receive or ReceiveFrommethod may be called to read data.
Throws an Exception if the Socket is not open or an error occurs.

This method may be used to poll for data to read. A better solution is to set the
ReceiveTimeout property for the Socket.

Examples

While ts.Available = 0 ' Test if anything to receive
Thread.Sleep(1000) ' Wait 1 second

End While
ts.Receive(recv, 1500) ' Receive the data

See Also

Networking Classes | socket_object.Blocking | socket_object.ReceiveTimeout

314 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.Blocking Property

socket_object.Blocking Property

Gets or sets the blocking I/O mode for a Socket.

socket_object.Blocking= <boolean_value>
-or-
...socket_object.Blocking

Prerequisites

The Socketmust be open in order to set this flag.

Parameters

None

Remarks

This property sets or gets the state of the blocking mode for a Socket. If the Socket is
in blocking mode, calls to receive data wait until data is available, and calls to send
data wait if the output queue is full. If the Socket is not in blocking mode, calls to send
or receive data throw an Exception if they would have to wait. By default Sockets are
created in blocking mode. Non-blocking mode may be used to poll for data to read by
repeatedly issuing receive requests and handling the Exception. A better solution is
to use the Available property or to set the ReceiveTimeout or SendTimeout
property for the Socket.

Examples

ts.Blocking = 0 ' Set to non-blocking mode
While ts.Available = 0 ' Test if anything to receive

Thread.Sleep(1000) ' Wait 1 second
End While
ts.Receive(recv, 1500) ' Receive the data

See Also

Networking Classes | socket_object.ReceiveTimeout | socket_object.SendTimeout

Copyright © 2024, Brooks Automation 315

14. Networking Classes GPL Dictionary
socket_object.Close Method Part Number: 609719 Rev. A

socket_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Closemethod may be used to close the network connection and free up
resources. If it is called with a TcpListener, TcpClient, or UdpClient Object, the
underlying Socket is actually closed. If the Socket is not currently open, no error
occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

316 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.Connect Method

socket_object.Connect Method

Initiates a TCP client connection with a remote TCP server.

socket_object.Connect (remote_endpoint)

Prerequisites

The Socket Objectmust have been created by a tcpclient_object.Clientmethod with
the endpoint parameter omitted.

Parameters

remote_endpoint

A required IPEndPoint Object that specifies the IP address and port
number of the remote endpoint to which you wish to connect.

Remarks

This method is only called when the remote endpoint of a connection was not
specified in the constructor for the initial TcpClient Object from which the Socket
was obtained.

Examples

Dim tc As New TcpClient() ' Optional endpoint not spe-
cified
Dim sock As Socket
Dim ep As New IPEndPoint("192.168.0.3", 1234)
sock = tc.Client
sock.Connect(ep)

See Also

Networking Classes | New TcpClientConstructor

Copyright © 2024, Brooks Automation 317

14. Networking Classes GPL Dictionary
socket_object.KeepAlive Property Part Number: 609719 Rev. A

socket_object.KeepAlive Property

Sets or gets the Boolean flag that controls whether a keep-alive message is
automatically transmitted over the current TCP connection.

socket_object.KeepAlive= <boolean_value>
-or-
...socket_object.KeepAlive

Prerequisites

The Socketmust currently be open to set this property.

Parameters

None

Remarks

This property sets, clears or returns the keep-alive flag for the current TCP
connection. When set, the local network node sends a special keep-alive packet
periodically on the TCP connection whenever it is idle for a period of time. This
message permits the system to detect if the network connection is broken (e.g. the
network cable is unplugged) even if the associated GPL thread has not recently
communicated using the connection.

If this flag is not set, an idle TCP connection does not send any messages. If the
network path is broken, the local node will not detect the broken connection until it
attempts to send a message.

Using the keep-alive feature eliminates the need to implement “heartbeat” messages
within your application to detect broken connections. Also, since the keep-alive
message is only sent when the connection is idle, it does not increase traffic on a busy
connection.

The keep-alive timing for GPL is pre-set as described below and cannot be changed.

1. If the connection is idle, a keep-alive packet is sent every 14 seconds.

2. If no response is received, additional keep-alive packets are sent every 2 seconds.

318 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.KeepAlive Property

3. If no response is received after 9 successive keep-alive packets (a total of 32

seconds) the connection is closed locally.

The keep-alive flag only enables the local node to detect a broken connection. If the
remote node wishes to detect a broken connection, it must also set its keep-alive flag.

Examples

Dim tc As New TcpClient() ' Optional endpoint not spe-
cified
Dim sock As Socket
Dim ep As New IPEndPoint("192.168.0.3", 1234)
sock = tc.Client
sock.Connect(ep)
sock.KeepAlive = True ' Enable keep-alive for this
connection

See Also

Networking Classes

Copyright © 2024, Brooks Automation 319

14. Networking Classes GPL Dictionary
socket_object.Receive Method Part Number: 609719 Rev. A

socket_object.Receive Method

Receives a message from an open TCP connection.

...socket_object.Receive(input_buffer, max_length)

Prerequisites

An active TCP connection must exist for the Socket.

The Socket Objectmust have been created by the tcpclient_object.Clientmethod or
the tcplistener_object.AcceptSocketmethod.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they must be read by subsequent Receive
method calls.

Remarks

If blocking is enabled, this method blocks until some data is received. There is no
guarantee that an entire datagram is received at once.

This method returns the number of bytes of data received. If the number is zero, this
indicates that the TCP connection has been broken by either the local or remote
endpoint. In this case, the program should close the Socket.

If any other network errors occur, this method throws an Exception.

Examples

320 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.Receive Method

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim input As String
Dim count As Integer
sock = tc.Client
count = sock.Receive(input, 2000)

See Also

Networking Classes | socket_object.ReceiveFrom

Copyright © 2024, Brooks Automation 321

14. Networking Classes GPL Dictionary
socket_object.ReceiveFrom Method Part Number: 609719 Rev. A

socket_object.ReceiveFrom Method

Receives a message from an open UDP Socket.

...socket_object.ReceiveFrom(input_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Objectmust be open for UDP I/O.

The Socket Objectmust have been created by the udpclient_object.Clientmethod.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they are lost.

remote_endpoint

A ByRef IPEndPoint Object that receives endpoint information
identifying the remote source of the received data. The original contents
of remote_endpoint are ignored and replaced by the new information.

Remarks

If blocking is enabled, this method blocks until some data is received. The entire
datagram is transferred by this method, if the max_length value is large enough.

Because of internal limitations on datagram size, max_length values greater than
1536 are not useful.

322 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.ReceiveFrom Method

This method returns the number of bytes of data received. If that number is zero, this
indicates that the Socket has been disconnect and should therefore be closed.

If any other network errors occur, this method throws an Exception.

Examples

Dim local_ep As New IPEndPoint("", 1234) ' Receive data
for port 1234.
Dim uc As New UdpClient(local_ep)
Dim remote_ep As IPEndPoint
Dim sock As Socket
Dim input As String
Dim count As Integer
sock = uc.Client
count = sock.ReceiveFrom(input, 2000, remote_ep)
Console.Writeline("Remote IP address: " & remote_ep.IPAd-
dress)
Console.Writeline("Remote Port: " & CStr(remote_
ep.Port))

See Also

Networking Classes | socket_object.Receive

Copyright © 2024, Brooks Automation 323

14. Networking Classes GPL Dictionary
socket_object.ReceiveTimeout Property Part Number: 609719 Rev. A

socket_object.ReceiveTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
receive data.

socket_object.ReceiveTimeout= <timeout>
-or-
...socket_object.ReceiveTimeout

Prerequisites

The Socketmust currently be open to set this property.

Parameters

None

Remarks

This property allows you to set the timeout period for a Receive or ReceiveFrom
method. It only applies if the Socket is set to blocking. If a receive request blocks
waiting for data, it will only wait for the specified timeout period. If that time is
exceeded, the receive requests throws an Exception. If the timeout period is set to 0,
the timeout is disabled and a request may block indefinitely.

Examples

ts.ReceiveTimeout = 30000 ' Timeout in 30 seconds
ts.Receive(recv, 1500) ' Receive the data

See Also

Networking Classes | socket_object.Blocking| socket_object.SendTimeout

324 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.RemoteEndPoint Property

socket_object.RemoteEndPoint Property

Gets remote end point information for an active TCP connection.
...socket_object.RemoteEndPoint

Prerequisites

None

Parameters

None

Remarks

This property returns information about the opened end point for a TCP/IP connection.
This information is especially useful after a listener accepts a connection. The
returned object is of class IPEndPoint. The IPAddress and Port properties of the
returned object contain information about the IP Address and Port of the remote client.
If there is no active connection, the returned IPEndPoint object contains IPAddress
"0.0.0.0" and Port 0.

Examples

Dim ep As New IPEndPoint("", 1234) ' Listen on port 1234
Dim rem_ep As IPEndPoint
Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket
rem_ep = sock.RemoteEndPoint
Console.Writeline("Remote IP = " & rem_ep.IPAddress)
Console.Writeline("Remote port = " & CStr(rem_ep.Port))

See Also

Networking Classes | tcplistener_object.AcceptSocket | IPEndPoint Class

Copyright © 2024, Brooks Automation 325

14. Networking Classes GPL Dictionary
socket_object.Send Method Part Number: 609719 Rev. A

socket_object.Send Method

Sends a message to an open TCP connection.

...socket_object.Send(output_buffer, max_length)

Prerequisites

An active TCP connection must exist for the Socket.

The Socket Objectmust have been created by the tcpclient_object.Clientmethod or
the tcplistener_object.AcceptSocketmethod.

Parameters

output_buffer

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If in blocking mode, the
returned value is always equal to the number of bytes requested. In non-blocking
mode, the value may be less than the number of bytes requested. In that case, you
should re-issue the Send to output the remainder of the bytes.

If any network errors occur, this method throws an Exception.

Examples

326 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.Send Method

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = tc.Client
...
count = sock.Send(output)

See Also

Networking Classes | socket_object.SendTo

Copyright © 2024, Brooks Automation 327

14. Networking Classes GPL Dictionary
socket_object.SendTimeout Property Part Number: 609719 Rev. A

socket_object.SendTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
send data.

socket_object.SendTimeout= <timeout>
-or-
...socket_object.SendTimeout

Prerequisites

None

Parameters

None

Remarks

The property allows you to set the timeout period for a Send or SendTomethod. It
only applies if the Socket is set to blocking. If a send request blocks waiting for the
output queue, it will only wait for the specified timeout period. If that time is exceeded,
the send request throws an Exception. If the timeout period is set to 0, the timeout is
disabled and a send may block indefinitely.

Examples

ts.SendTimeout = 30000 ' Timeout in 30 seconds
ts.Send(trns, 1500) ' Send the data

See Also

Networking Classes | socket_object.Blocking| socket_object.ReceiveTimeout

328 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A socket_object.SendTo Method

socket_object.SendTo Method

Sends a message using an open UDP Socket.

...socket_object.SendTo(output_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Objectmust be open for UDP I/O.

The Socket Objectmust have been created by the udpclient_object.Clientmethod.

Parameters

output_buffer

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

remote_endpoint

An IPEndPoint Object that contains endpoint information identifying
the remote destination for the data sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If that number is less
than the number requested, you should re-issue the SendTo to output the remainder
of the bytes.

Copyright © 2024, Brooks Automation 329

14. Networking Classes GPL Dictionary
socket_object.SendTo Method Part Number: 609719 Rev. A

If any network errors occur, this method throws an Exception.

Examples

Dim uc As New UdpClient()
Dim remote_ep As New IPEndPoint("192.168.0.5")
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = uc.Client
count = sock.SendTo(output, 0, remote_ep)
...
count = sock.ReceiveFrom(input, 2000, remote_ep) ' Get
new remote endpoint
...
count = sock.SendTo(output, 0, remote_ep) ' Reply
to previous sender

See Also

Networking Classes | socket_object.Send

330 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A New TcpClient Constructor

New TcpClient Constructor

Constructor for creating a TcpClient Object and optionally connecting to a remote
TCP server.

New TcpClient (endpoint)

Prerequisites

None

Parameters

endpoint

An optional IPEndPoint Object that contains the IP address and port
identifying the remote endpoint of a TCP server. If omitted, a Connect
method must be called later for the TCP client Socket before I/O can be
performed.

Remarks

This constructor creates a new TcpClient Object and creates the underlying Socket.
If the optional endpoint parameter is specified, a connect request is sent immediately
to the remote server. If it is omitted, a Connectmethod must be called for the TCP
client Socket before I/O can be performed.

Examples

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address
192.168.0.2
Dim tc As New TcpClient(ep) ' Connect to remote end-
point

Dim tc As New TcpClient() ' Create socket but do not
connect

See Also

Networking Classes | socket_object.Connect

Copyright © 2024, Brooks Automation 331

14. Networking Classes GPL Dictionary
tcpclient_object.Client Method Part Number: 609719 Rev. A

tcpclient_object.Client Method

Returns the Socket Object associated with a TcpClient Object.

...tcpclient_object.Client

Prerequisites

None

Parameters

None

Remarks

Since all I/O is performed on Sockets, this method allows the Socket associated with
a TcpClient object to be accessed.

Examples

Dim tc As New TcpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | udpclient_object.Client

332 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A tcpclient_object.Close Method

tcpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Closemethod may be used to close the network connection and free up
resources. If it is called with a TcpListener, TcpClient, or UdpClient Object, the
underlying Socket is actually closed. If the Socket is not currently open, no error
occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

Copyright © 2024, Brooks Automation 333

14. Networking Classes GPL Dictionary
New TcpListener Constructor Part Number: 609719 Rev. A

New TcpListener Constructor

Constructor for creating a TcpListener Object that allows a TCP server to be
created.

New TcpListener (endpoint)

Prerequisites

None

Parameters

endpoint

An IPEndPoint Object that contains the IP address and port identifying
the local endpoint for connections accepted by this TCP server. The IP
address of this endpoint is ignored since GPL controllers only have a
single IP address. The port number determines the port on which the
server listens.

Remarks

This constructor creates a new TcpListener Object and creates the underlying
Socket. It does not actually begin listening for connections until the Startmethod is
called. TheseObjects are the basis for implementing TCP servers.

Examples

Dim ep As New IPEndPoint("", 1234) ' Listen on port
1234
Dim tl As New TcpListener(ep) ' Create listener
object

See Also

Networking Classes | tcplistener_object.Start

334 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A tcplistener_object.AcceptSocket Method

tcplistener_object.AcceptSocket Method

Accepts a TCP connection and returns a new Socket Object for performing I/O on
that connection.

...tcplistener_object.AcceptSocket

Prerequisites

The TCP listener associated with the tcplistener_object should have already been
started.

Parameters

None

Remarks

This method is used by a TCP server to accept a connection request from a remote
TCP client. It creates a new Socket for performing I/O with that client. If no connection
requests are pending, this method blocks until one is received. To avoid blocking, use
the Pending property before calling AcceptSocket.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("", 1234) ' Listen on port
1234
Dim tl As New TcpListener(ep) ' Create listener
object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener_object.Pending

Copyright © 2024, Brooks Automation 335

14. Networking Classes GPL Dictionary
tcplistener_object.Close Method Part Number: 609719 Rev. A

tcplistener_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Closemethod may be used to close the network connection and free up
resources. If it is called with a TcpListener, TcpClient, or UdpClient Object, the
underlying Socket is actually closed. If the Socket is not currently open, no error
occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

336 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A tcplistener_object.Pending Property

tcplistener_object.Pending Property

Gets a Boolean value that indicates if there are any TCP connection requests
pending.

...tcplistener_object.Pending

Prerequisites

The TCP listener associated with the tcplistener_object must have already been
started.

Parameters

None

Remarks

This property is used by a TCP server to test if there are any pending connection
requests for a TcpListener Object. If so, it returns True. Otherwise it returns False. If
there is a pending request, call the AcceptSocketmethod to accept it.

If any network errors occur, this property returns False.

Examples

Dim tl As New TcpListener(ep) ' Create listener
object
Dim sock As Socket
tl.Start
If tl.Pending Then

sock = tl.AcceptSocket
End If

See Also

Networking Classes | tcplistener_object.AcceptSocket

Copyright © 2024, Brooks Automation 337

14. Networking Classes GPL Dictionary
tcplistener_object.Start Method Part Number: 609719 Rev. A

tcplistener_object.Start Method

Start listening for TCP connection requests.

tcplistener_object.Start

Prerequisites

None

Parameters

None

Remarks

This method is used by TCP servers to start listening for connection requests from
remote TCP clients. You can test if any requests are received by using the Pending
property. After a request is received, it is accepted by calling the AcceptSocket
method. After you accept a connection request, you can call the Stopmethod to
cease accepting any further connection requests if you wish. Executing the Stop
method does not effect your ability to continue to service datagrams for connections
that have already been established.

If any network errors occur, this method throws an Exception.

Examples

Dim tl As New TcpListener(ep) ' Create listener
object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener_object.AcceptSocket

338 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A tcplistener_object.Stop Method

tcplistener_object.Stop Method

Stop listening for TCP connection requests.

tcplistener_object.Stop

Prerequisites

None

Parameters

None

Remarks

This method is used by TCP servers when they are done listening for connection
requests from remote TCP clients. Executing this method does not effect your ability
to continue to service datagrams for connections that have already been established.

No error occurs if the listener is not active.

Examples

Dim tl As New TcpListener(ep) ' Create listener
object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket
tl.Stop

See Also

Networking Classes | tcplistener_object.Start

Copyright © 2024, Brooks Automation 339

14. Networking Classes GPL Dictionary
New UdpClient Constructor Part Number: 609719 Rev. A

New UdpClient Constructor

Constructor for creating a UdpClient Object.

New UdpClient (endpoint)

Prerequisites

None

Parameters

endpoint

An optional IPEndPoint Object that contains the IP address and port
identifying the local endpoint for datagrams recognized by this UDP
Socket. The IP address of this endpoint is ignored since GPL controllers
only have a single IP address. If the port is non-zero, only datagrams to
the specified port can be received.

Remarks

This constructor creates a new UdpClient Object and creates the underlying Socket.
No network I/O is generated by this method.

Examples

Dim ep As New IPEndPoint("", 1234) ' Port 1234
Dim uc As New UdpClient(ep) ' Create a socket
for UDP communications

See Also

Networking Classes | udpclient_object.Client

340 Copyright © 2024, Brooks Automation

Brooks Automation 14. Networking Classes
Part Number: 609719 Rev. A udpclient_object.Client Method

udpclient_object.Client Method

Returns the Socket Object associated with a UdpClient Object.

...udpclient_object.Client

Prerequisites

None

Parameters

None

Remarks

Since all I/O is performed on Sockets, this method allows the Socket associated with
a UdpClientObject to be accessed.

Examples

Dim tc As New UdpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | tcpclient_object.Client

Copyright © 2024, Brooks Automation 341

14. Networking Classes GPL Dictionary
udpclient_object.Close Method Part Number: 609719 Rev. A

udpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Closemethod may be used to close the network connection and free up
resources. If it is called with a TcpListener, TcpClient, or UdpClient Object, the
underlying Socket is actually closed. If the Socket is not currently open, no error
occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

342 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A Profile Class Summary

15. Profile Class

Profile Class Summary

The following pages provide detailed information on the properties and methods of the
Profile Class. This class defines the attributes of objects that are used to specify the
performance parameters for a typical motion. That is, a Profile Object contains
speed, acceleration, deceleration, in range criteria and other specifications that
dictate how a motion is to be performed. The basic motion instruction,Move.Loc,
takes as its two arguments a Profile Object and a Location Object. The Location
Object specifies the destination for the robot motion and the Profile Object specifies
how the robot is to get to the destination.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Profile Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input
parameter data types. Also, as appropriate, the properties and methods generally
produce results that are formatted as Double’s. These results will automatically be
converted to smaller data types as necessary, e.g. Double -> Integer, and will not
generate an error so long as numeric overflow does not occur.

Table 15-1 summarizes the properties and methods that are described in greater
detail in the following sections.

Member Type Description

profile_
obj.Speed Property Sets and gets peak motion speed specified as a percentage of the nominal speed.

profile_
obj.Speed2 Property Sets and gets the secondary peak motion speed specification as a percentage of

their nominal speeds for selected axes during Cartesian motions.

profile_
obj.Accel Property Sets and gets peak motion acceleration specified as a percentage of the nominal

acceleration.

Table 15-1: Profile Class Summary

Copyright © 2024, Brooks Automation 343

15. Profile Class GPL Dictionary
Profile Class Summary Part Number: 609719 Rev. A

Member Type Description

profile_
obj.Decel Property Sets and gets peak motion deceleration specified as a percentage of the nominal

deceleration.

profile_
obj
.AccelRamp

Property Sets and gets duration for ramping up to the peak acceleration, specified in seconds.

profile_
obj
.DecelRamp

Property Sets and gets duration for ramping up to the peak deceleration, specified in seconds.

profile_
obj.Straight Property Sets and gets Boolean indicating if the robot is to follow a straight-line path.

profile_
obj.InRange Property

Sets and gets constraint that specifies if the robot should be stopped at the end of
the motion and when the robot is close enough to the final destination to be
considered at its final position.

profile_
obj.Text Property Sets and gets a String value not used by GPL. Available for general use by

applications.

profile_
obj.Clone Method Method that returns a copy of the profile_obj.

344 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.Accel Property

profile_object.Accel Property

Sets and gets the peak motion acceleration defined as the percentage of the nominal
acceleration.

profile_object.Accel =<new_value>
-or-
...profile_object.Accel

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Accel property defines the peak acceleration
that the motion can achieve. An Accel value of 100 corresponds to the nominal
(100%) acceleration for the specified type of motion. The Accel value can range from
1.0 up to a maximum value permitted for the robot. For a Straight-line motion, the
acceleration is computed along the path and about the Cartesian rotational angles
defined by the robot’s kinematic module. For joint motions, the acceleration
percentage is applied to the joint angles.

The acceleration that the robot actually achieves for a given motion may be different
than the Accel value for a number of reasons: if an AccelRamp (s-curve profile) value
is specified, the motion may not be long enough to ramp up to the specified
acceleration; the Accel value may be limited by the maximum permitted Accel value;
or the Accel value may be automatically scaled if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a
convenience feature that automatically scales the specified Accel and Decel values
with the Speed so that slow motions have gentler accelerations and decelerations
and fast motions accelerate and decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default
values specified in the controller’s Configuration Database. Therefore, the Accel
parameter only needs to be set if you wish to deviate from the default value.

Copyright © 2024, Brooks Automation 345

15. Profile Class GPL Dictionary
profile_object.Accel Property Part Number: 609719 Rev. A

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Accel = 50 ' Only accelerate at 50% of
nominal rate
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 with per-
formance “prof1”

See Also

Profile Class | profile_object.AccelRamp | profile_object.Decel | profile_object.DecelRamp

346 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.AccelRamp Property

profile_object.AccelRamp Property

Sets and gets the duration for ramping up to the peak acceleration, specified in
seconds.

profile_object.AccelRamp =<new_value>
-or-
...profile_object.AccelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the AccelRamp property specifies how long, in
seconds, its takes for the Accel to achieve its specified value. Likewise, this time is
also used for ramping the Accel down to zero. If the AccelRamp time is set to zero, at
the start of a motion, the Accel command instantaneously jumps up to its specified
value and then, at the end of acceleration period, instantaneously drops down to zero.
A zero AccelRamp time corresponds to a square wave acceleration curve and
commands an infinite jerk, i.e. rate of change of the acceleration. A non-zero
AccelRamp time produces a trapezoidal acceleration curve, which is often referred to
as an s-curve profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On
the other hand, an s-curve profile will lengthen the planned duration of a motion since
the average acceleration and deceleration will be less than a square wave profile. So,
while most robots will benefit from s-curve profiles, for low accelerations or for very
stiff robots, a square wave acceleration profile may be more beneficial.

The actual acceleration ramp time for a given motion may be different than the
AccelRamp value for a number of reasons: if the motion is short, there may not be

Copyright © 2024, Brooks Automation 347

15. Profile Class GPL Dictionary
profile_object.AccelRamp Property Part Number: 609719 Rev. A

sufficient time to ramp all of the way up to the Accel value; or the AccelRamp value
may be automatically scaled by with the Accel value if the Parameter Database
“Couple %accel/%decel to %speed” parameter is set. The Parameter DB value is a
convenience feature that automatically scales the specified AccelRamp and Accel
values with the Speed so that slow motions have gentler accelerations with shorter
ramp times and fast motions accelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default
values specified in the controller’s Configuration Database. Therefore, the
AccelRamp parameter only needs to be set if you wish to deviate from the default
value.

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Accel = 50 ' Only accelerate at 50% of
nominal rate
prof1.AccelRamp = 0.1 ' Take 0.1 sec to achieve 50%
nominal accel
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 with per-
formance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.DecelRamp

348 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.Clone Method

profile_object.Clone Method

Method that returns a copy of the profile_object.

...profile_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1points to the same data as object_2. Any subsequent
change of a property in either object_1 or object_2 affects the data associated with
both objects. To make an independent copy of an object, the Clonemethod is the
standard means for performing this operation:

object_1 = object_2.Clone

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Dim prof2 As Profile ' Create new profile with no data allocated
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
prof2 = prof1.Clone ' Makes a copy of prof1 data
prof2.Accel = 50 ' Doesn’t affect prof1 data

See Also

Profile Class

Copyright © 2024, Brooks Automation 349

15. Profile Class GPL Dictionary
profile_object.Decel Property Part Number: 609719 Rev. A

profile_object.Decel Property

Sets and gets the peak motion deceleration defined as the percentage of the nominal
deceleration.

profile_object.Decel =<new_value>
-or-
...profile_object.Decel

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Decel property defines the peak deceleration
that the motion can achieve. An Decel value of 100 corresponds to the nominal
(100%) deceleration for the specified type of motion. The Decel value can range from
1.0 up to a maximum value permitted for the robot. For a Straight-line motion, the
Deceleration is computed along the path and about the Cartesian rotational angles
defined by the robot’s kinematic module. For joint motions, the deceleration
percentage is applied to the joint angles.

The deceleration that the robot actually achieves for a given motion may be different
than the Decel value for a number of reasons: if an DecelRamp (s-curve profile) value
is specified, the motion may not be long enough to ramp up to the specified
deceleration; the Decel value may be limited by the maximum permitted Decel value;
or the Decel value may be automatically scaled if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a
convenience feature that automatically scales the specified Accel and Decel values
with the Speed so that slow motions have gentler accelerations and decelerations
and fast motions accelerate and decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default
values specified in the controller’s Configuration Database. Therefore, the Decel
parameter only needs to be set if you wish to deviate from the default value.

350 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.Decel Property

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Decel = 25 ' Only decelerate at 25% of
nominal rate
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 with per-
formance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.AccelRamp | profile_object.DecelRamp

Copyright © 2024, Brooks Automation 351

15. Profile Class GPL Dictionary
profile_object.DecelRamp Property Part Number: 609719 Rev. A

profile_object.DecelRamp Property

Sets and gets the duration for ramping up to the peak deceleration, specified in
seconds.

profile_object.DecelRamp =<new_value>
-or-
...profile_object.DecelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the DecelRamp property specifies how long, in
seconds, its takes for the Decel to achieve its specified value. Likewise, this time is
also used for ramping the Decel down to zero. If the DecelRamp time is set to zero, at
the start of the motion deceleration period, the Decel command instantaneously
jumps up to its specified value and then, at the end of the motion, instantaneously
drops down to zero. A zero DecelRamp time corresponds to a square wave
deceleration curve and commands an infinite jerk, i.e. rate of change of the
deceleration. A non-zero DecelRamp time produces a trapezoidal deceleration curve,
which is often referred to as an s-curve profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On
the other hand, an s-curve profile will lengthen the planned duration of a motion since
the average acceleration and deceleration will be less than a square wave profile. So,
while most robots will benefit from s-curve profiles, for low decelerations or for very
stiff robots, a square wave deceleration profile may be more beneficial.

The actual deceleration ramp time for a given motion may be different than the
DecelRamp value for a number of reasons: if the motion is short, there may not be

352 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.DecelRamp Property

sufficient time to ramp all of the way up to the Decel value; or the DecelRamp value
may be automatically scaled by with the Decel value if the Parameter Database
“Couple %accel/%decel to %speed” parameter is set. The Parameter DB value is a
convenience feature that automatically scales the specified DecelRamp and Decel
values with the Speed so that slow motions have gentler decelerations with shorter
ramp times and fast motions decelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default
values specified in the controller’s Configuration Database. Therefore, the
DecelRamp parameter only needs to be set if you wish to deviate from the default
value.

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Decel = 25 ' Only decelerate at 25% of
nominal rate
prof1.DecelRamp = 0.1 ' Take 0.1 sec to achieve 50%
nominal decel
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 with per-
formance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.AccelRamp| profile_object.Decel

Copyright © 2024, Brooks Automation 353

15. Profile Class GPL Dictionary
profile_object.InRange Property Part Number: 609719 Rev. A

profile_object.InRange Property

Gets and sets the constraint that specifies if the robot should be stopped at the end of
the motion and when the robot is close enough to the final destination to be
considered at its final position.

profile_object.InRange =<new_value>
-or-
...profile_object.InRange

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

Whenever the robot picks up a part or places it at its final destination, the robot should
normally be brought to a complete stop and any small position errors should be
eliminated (nulled) before the part is grasped or released. Conversely, if the robot is
moving through intermediate (via) positions simply to clear obstacles, bringing the
robot to a stop at these positions increases the cycle time without providing any
benefit. Also, when the robot is to be brought to a stop, there are instances where it is
beneficial to spend more time reducing the final positioning errors to the tightest
possible position constraint for the robot and other times when a looser constraint is
acceptable to save cycle time.

The InRange property specifies if the robot is to stop at the end of motion and, if so,
how tight a position error constraint should be applied to determine when the robot
has reached its final destination. The value of this property is interpreted in Table 15-
2.

354 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.InRange Property

InRange
Value Interpretation

<0 Don’t stop the robot at the end of the motion. Blend with the next motion if possible.

0 Stop the robot at the end of the motion, but do not apply any position error constraints. This means
that as soon as the final set point command has been issued to the servos, GPL will signal that the
motion has been completed.

Small
number >0

Stop the robot at the end of the motion, but use a very small (loose) position error constraint. This
will ensure that the robot has approximately reached the specified destination before GPL
considers that the motion has been completed.

Large
number <=

100

Stop the robot at the end of the motion and apply a stringent position error constraint. If this value is
100, the robot will have to be within its tightest error envelope before GPL considers the motion
completed. Values greater than 100 can be specified, but these require smaller error tolerances
than are recommended by the manufacturer of the robot.

Table 15-2: InRange Value

When a New Profile is created, its properties are automatically set to reasonable
default values. Normally, the InRange property defaults to 100. Therefore, the
InRange parameter only needs to be altered if this default value is not appropriate.

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.InRange = 10 ' Stop at EOM, reduced
requirement for inrange
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1

See Also

Profile Class

Copyright © 2024, Brooks Automation 355

15. Profile Class GPL Dictionary
profile_object.Speed Property Part Number: 609719 Rev. A

profile_object.Speed Property

Sets and gets the peak motion speed specified as a percentage of the nominal speed.

profile_object.Speed =<new_value>
-or-
...profile_object.Speed

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Speed property defines the peak speed that
the motion can achieve. A Speed value of 100 corresponds to the nominal (100%)
speed for the specified type of motion. The Speed value can range from 0.01 up to a
maximum value permitted for the robot. For a Straight-line motion, the speed is
computed along the path and about the Cartesian rotational angles defined by the
robot’s kinematic module. For joint motions, the speed percentage is applied to the
joint angles.

While 100% is normally the maximum operating speed recommended by the robot
manufacturer, there are times that a greater Speed setting may be beneficial. Often,
the 100% Speed setting is established for when the robot is carrying its maximum
payload. Also, 100% Speedmay be the sustained maximum speed setting, but higher
burst speeds may be permitted.

The speed that the robot actually achieves for a given motion may be different than
the specified Speed value for a number of reasons: the motion may not be long
enough to ramp up to the specified speed given the available acceleration; the Speed
value may be limited by the maximum permitted Speed value; or the operator may
have set a slow “Test Speed” that scales down the specified Speed value.

356 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.Speed Property

When a New Profile is created, its properties are automatically set to the default
values specified in the controller’s Configuration Database. Therefore, the Speed
parameter only needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Speed = 50 ' Only go at half of the
rated speed
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 with per-
formance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed2

Copyright © 2024, Brooks Automation 357

15. Profile Class GPL Dictionary
profile_object.Speed2 Property Part Number: 609719 Rev. A

profile_object.Speed2 Property

Sets and gets the secondary peak motion speed specification as a percentage of their
nominal speeds for selected axes during Cartesian motions.

profile_object.Speed2 =<new_value>
-or-
...profile_object.Speed2

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified Cartesian motion segment is generated.

Parameters

None

Remarks

For all joint interpolated and the majority of Cartesian motions, the standard Speed
property is used to control the peak speed of the robot. However, for certain robot
geometries and certain Cartesian (straight-line) motions, it is beneficial to have a
secondary property to control motion speeds.

The Speed2 property only applies to Cartesian motions and is generally used to
specify a secondary speed setting to control the peak rotation speed for a motion. If
Speed2 is zero, both the peak translation and rotation are governed by the Speed
property. If Speed2 is non-zero, the peak Cartesian translation motion speed is
limited by the Speed property and the peak Cartesian rotation speed is limited by
Speed2. For a such a motion, the speed value that is more limiting will govern the
overall motion timing.

For most motions, Speed2 should be set to 0. However, if your robot has a wrist that
can rotate very quickly and it is unpredictable as to whether the motion will be primarily
a translation or a rotation, Speed2 can be set low to limit the speed of a large rotation
without negatively impacting motions that are primarily translations.

For some special kinematic modules, Speed2may also be applied to other degrees-
of-freedom. Please see the Kinematic Library for specific information on these special
uses.

358 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.Speed2 Property

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Straight = True
prof1.Speed2 = 25 ' Limit Cartesian rotation
speed
prof1.Speed = 100 ' Keep translation speed at
full
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 with per-
formance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed

Copyright © 2024, Brooks Automation 359

15. Profile Class GPL Dictionary
profile_object.Straight Property Part Number: 609719 Rev. A

profile_object.Straight Property

Sets and gets Boolean indicating if the robot’s tool tip is to follow a straight-line path or
if the path will be a function of the robot’s geometry.

profile_object.Straight =<new_value>
-or-
...profile_object.Straight

Prerequisites

Takes effect when the profile_object is passed as a parameter to aMove Class
method and the specified motion segment is generated.

Parameters

None

Remarks

For certain motions, the path of the robot’s tool or the part being held by the robot is
important and moving along a straight line is desirable. In other cases, the path may
not be important. In the latter case, the robot may move faster if the path is defined by
interpolating between the joint angles of the initial and final Locations.

If the Straight property is True, by making use of the system’s built-in knowledge of
the robot’s geometry (i.e. kinematics), the robot’s tool tip is moved along a straight-line
path in Cartesian space. If Straight is False, the system will interpolate in joint angles
to move the robot to its destination.

If the robot is a simple 1, 2, or 3 degree-of-freedom Cartesian mechanism with all
linear axes, there is no difference between straight-line and joint interpolated motions.
However, if the Cartesian robot has a rotary theta axis or if the robot is a non-
Cartesian mechanism with rotary or parallel axes, the two motion types are quite
different.

In situations where the path is not important, joint interpolated motions requires less
processor time and the robot will often move more quickly.

By default, when a New Profile is created, Straight is set to False.

360 Copyright © 2024, Brooks Automation

Brooks Automation 15. Profile Class
Part Number: 609719 Rev. A profile_object.Straight Property

Examples

Dim prof1 As New Profile ' Create new profile set to
default values
prof1.Straight = True
Move.Loc (loc1, prof1) ' Perform motion to pre-
viously defined

' location, loc1 by moving
along a straight path

See Also

Profile Class

Copyright © 2024, Brooks Automation 361

15. Profile Class GPL Dictionary
profile_object.Text Property Part Number: 609719 Rev. A

profile_object.Text Property

Sets and gets a String associated with a Profile Object. This field is not used by GPL
and is provided for use by application programs.

profile_object.Text = <string_value>
-or-
...profile_object.Text

Prerequisites

None

Parameters

None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a Profile object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently
displayed when the object is accessed or written.

Examples

Dim prof1 As New Profile ' Create new Profile object
prof1.Text = "This is my profile"
Console.WriteLine(prof1.Text)

See Also

Profile Class |location_object.Text|refframe_object.Text

362 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A RefFrame Class Summary

16. Reference Frame Class

RefFrame Class Summary

The following pages provide detailed information on the properties and methods of the
reference frame class, RefFrame. If one or more Location Objects are defined with
respect to a RefFrame Object, when the position and/or orientation of the reference
frame are altered, the position and orientation of all associated Location Objects are
automatically adjusted as well.

RefFrame Objects are very useful when picking up or placing several parts that are
at fixed positions relative to a base plate or when accessing pallets that have parts
arranged in a rectangular grid or when the robot is to operate on a conveyor belt. The
assembly of a printed circuit board is a common example of the first situation. When a
PCB enters into a machine for mounting electronic components, the position and
orientation of the PCB is first accurately determined, typically using a vision system.
The reference frame that represents the PCB is then updated and all of the positions
and orientations of the components to be placed are automatically adjusted. The use
of robots in the laboratory automation industry provides a good example of the use of
pallet reference frames. In this case, samples to be tested are placed on a tray and
arranged in a rectangular grid pattern. After the tray is located and its associated
reference frame updated, the RefFrame Class provides a simple means for stepping
from sample to sample. Finally, conveyor reference frames are utilized to implement
the GPL conveyor tracking capability. This feature allows locations to be specified
relative to a moving conveyor line. This capability is important in the packaging
industry where parts are often transported on conveyors.

To allow different types of static and dynamic reference frames to be represented, the
RefFrame Object includes a Type property. At present, only basic, pallet and
conveyor reference frames are supported. In the future, additional types of reference
frames may be added.

In general, each type of reference frame only makes use of a subset of the properties
and methods of the RefFrame Class. The tables below summarize the properties and
methods utilized for each type of reference frame.

Copyright © 2024, Brooks Automation 363

16. Reference Frame Class GPL Dictionary
RefFrame Class Summary Part Number: 609719 Rev. A

Basic Reference Frame

Member Type Description

refframe_obj.Type Property Set to 0 to indicate a basic reference frame.

refframe_obj.Loc Property Loc.Pos is set equal to the position and orientation of the reference frame by a
GPL procedure.

refframe_obj.Pos Method Returns the absolute (“total”) position and orientation for any type of reference
frame object.

refframe_
obj.PosWrtRef Method Returns the position for any type of reference frame while ignoring any further

reference frames.

refframe_obj.Text Property Sets and gets a String value not used by GPL. Available for general use by
applications.

Table 16-1: Basic RefFrame

Pallet Reference Frame

Member Type Description

refframe_obj.Type Property Set to 1 to indicate a pallet reference frame.

refframe_obj.Loc Property
Loc.X, Y and Z define the position of the first row, column and layer. The
orientation of the X, Y, and Z axes of Loc define the direction for each row,
column, and layer respectively.

refframe_obj.Pos Method Returns the absolute (“total”) position and orientation for any type of reference
frame object.

refframe_
obj.PosWrtRef Method Returns the position for any type of reference frame while ignoring any further

reference frames.

refframe_obj.Text Property Sets and gets a String value not used by GPL. Available for general use by
applications.

refframe_
obj.PalletIndex Property Sets and gets the index for the next position along the pallet row, column, or

layer (1 to n).

refframe_
obj.PalletMaxIndex Property Sets and gets the maximum position index along the pallet row, column, or

layer (1 to n).

refframe_
obj.PalletNextPos Method Advances to the next pallet position.

refframe_
obj.PalletOrder Property Sets and gets the parameter that specifies the order in which PlalletNextPos

indexes along the row, column, and layer indices.

refframe_
obj.PalletPitch Property Sets and gets the step size for advancing along each row, column, or layer.

refframe_
obj.
PalletRowColLay

Method
Sets the next pallet position row, column, and layer indices in a single
instruction.

Table 16-2: Pallet RefFrame

364 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A RefFrame Class Summary

Conveyor Reference Frame

Member Type Description

refframe_obj.Type Property Set to 2 to indicate a conveyor reference frame.

refframe_obj.Loc Property Not used. Conveyor reference frames cannot be defined with respect to any
other reference frame.

refframe_obj.Pos Method Returns the absolute (“total”) position and orientation for any type of reference
frame object.

refframe_
obj.PosWrtRef Method Returns the position of the "nominal" transformation for the associated

conveyor robot.

refframe_obj.Text Property Sets and gets a String value not used by GPL. Available for general use by
applications.

refframe_
obj
.ConveyorOffset

Property
Sets or gets the property that specifies the zero position of the conveyor belt's
encoder.

refframe_
obj
.ConveyorRobot

Property
Sets or gets the property that specifies the robot module that is interfaced to the
belt encoder and contains the data that defines the conveyor.

Table 16-3: Conveyor RefFrame

Copyright © 2024, Brooks Automation 365

16. Reference Frame Class GPL Dictionary
refframe_object.ConveyorOffset Property Part Number: 609719 Rev. A

refframe_object.ConveyorOffset Property

For a conveyor reference frame, sets or gets the property that specifies the zero
position of the conveyor belt's encoder.

refframe_object.ConveyorOffset= <encoder_offset>
-or-
… refframe_object.ConveyorOffset

Prerequisites

The refframe_object must be a conveyor reference frame.

The Conveyor Tracking software license must be installed on the controller.

Parameters

None

Remarks

Since the raw reading of a conveyor’s encoder can increase almost without limit, an
offset to the encoder reading is provided to effectively zero the encoder value. This
permits a motion program to be taught in one region of the conveyor and then reused
in another region of the conveyor as the belt continues to advance. Whenever the belt
encoder's value is read, the ConveyorOffset is automatically subtracted from the
encoder's instantaneous reading.

When the encoder is zero'ed by setting the ConveyorOffset equal to the encoder's
current reading, the position and orientation of the belt will be equal to the "Nominal"
value defined in the conveyor's robot module (DataID 16060).

The ConveyorOffset is specified in units of millimeters.

If the conveyor encoder has rollover enabled, the system will automatically internally
adjust the ConveyorOffset to ensure that its value is within one rollover value of the
instantaneous encoder reading.

Examples

Dim belt1 As New RefFrame
Dim loc1 As New Location

366 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.ConveyorOffset Property

belt1.Type = 2 ' Conveyor reference
frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.RefFrame = belt1 ' Zero encoder
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then

Console.WriteLine("Out of range")
End If

See Also

RefFrame Class |location_object.ConveyorLimit| refframe_object.ConveyorRobot

Copyright © 2024, Brooks Automation 367

16. Reference Frame Class GPL Dictionary
refframe_object.ConveyorRobot Property Part Number: 609719 Rev. A

refframe_object.ConveyorRobot Property

For a conveyor reference frame, sets or gets the property that specifies the robot
module that is interfaced to the belt encoder and contains the data that defines the
conveyor.

refframe_object.ConveyorRobot= <robot_number>
-or-
… refframe_object.ConveyorRobot

Prerequisites

The refframe_object must be a conveyor reference frame.

The Conveyor Tracking software license must be installed on the controller.

Parameters

None

Remarks

Most of the information that a conveyor reference frame computes is derived from the
data specified by a conveyor robot. A conveyor robot module defines the interface
that is connected to the belt encoder and contains its "nominal" transformation. The
nominal transformation defines the direction of travel of the belt and its approximate
center point. Since a controller can be interfaced to multiple conveyor belts, the
ConveyorRobot property provides the means for associating a reference frame with
a particular conveyor belt.

This property must be set before the position of a conveyor reference frame can be
accessed.

The robot_number can range for 1 to N, where N is the total number of robots that are
configured in a controller.

Examples

Dim belt1 As New RefFrame
Dim loc1 As New Location
belt1.Type = 2 ' Conveyor reference

368 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.ConveyorRobot Property

frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.RefFrame = belt1 ' Zero encoder
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then

Console.WriteLine("Out of range")
End If

See Also

RefFrame Class |location_object.ConveyorLimit| refframe_object.ConveyorOffset

Copyright © 2024, Brooks Automation 369

16. Reference Frame Class GPL Dictionary
refframe_object.Loc Property Part Number: 609719 Rev. A

refframe_object.Loc Property

Sets and gets a reference frame’s Location Object, which typically contains the
nominal position and orientation of the frame.

refframe_object.Loc = <Cartesian_location_object>
-or-
…refframe_object.Loc

Prerequisites

None

Parameters

None

Remarks

Most reference frame types have an associated Cartesian Location Object that is
pointed to by the Loc property. Typically, the nominal position and orientation of the
reference frame is stored in this Location although the specific interpretation of this
data is a function of the reference frame type.

The refframe_object.Loc.RefFrame property points to the next reference frame if
refframe_object is itself relative to another frame. For conveyor reference frames,
Loc is unused and Loc.RefFramemust always be null since conveyor reference
frames cannot be relative to another reference frame of any type.

Table 16-4 describes how to interpret the position and orientation data stored in the
Cartesian Location Object pointed to by refframe_object.Loc.

370 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.Loc Property

RefFrame
Type refframe_object.Loc Contents

Basic

Contains the reference frame position and orientation. So, refframe_object.Loc.Pos represents
the total position of refframe_object and refframe_object.Loc.PosWrtRef is the position and
orientation of refframe_object with respect to any subsequent reference frames. If a program
wishes to change the position and orientation of a basic frame, it must do so via refframe_
object.Loc. However, if a program wishes to read the reference frame position and orientation, it
is normally a better practice to use the refframe_object.Pos and refframe_object.PosWrtRef
methods. These last two methods will return the current total and relative position for any type of
reference frame.

Pallet

The XYZ position of the refframe_object.Loc defines the position of row 1, column 1, and layer 1
of the pallet. The orientation of refframe_object.Loc defines the direction of the rows, columns,
and layers of the pallet. The X-axis of refframe_object.Loc defines the index direction for a row.
The Y-axis defines the index direction for a column. The Z-axis defines the index direction for
layers.

Conveyor

The Loc property is not used for conveyor reference frames. The "nominal" position for a
conveyor reference frame is dynamically extracted from the value stored in the associated
conveyor robot module. This permits the direction of travel and nominal position of a conveyor to
be taught once, automatically loaded when the controller is restarted, and referenced by multiple
conveyor reference frames. The Loc.PosWrtRefmust always be NULL since conveyor
reference frames cannot be relative to any other reference frame. The refframe_object.Pos and
refframe_object.PosWrtRef methods should be used to access the instantaneous and nominal
positions of a conveyor reference frame.

Table 16-4: Loc.RefFrame

As a convenience, when a new reference frame object is created, a Cartesian
Location Object is automatically created and linked to the reference frame. By
default, this Location will have its position and orientation angles set to zero.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
loc1.RefFrame = ref1 ' Define loc1 wrt
ref1
loc1.XYZ(10,0,0,0,180,0) ' Define loc1
poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07
Console.Writeline(loc1.Pos.Y) ' Displays 97.07
Console.Writeline(loc1.Pos.Z) ' Displays -80

See Also

RefFrame Class |refframe_object.Pos|refframe_object.PosWrtRef

Copyright © 2024, Brooks Automation 371

16. Reference Frame Class GPL Dictionary
refframe_object.PalletIndex Property Part Number: 609719 Rev. A

refframe_object.PalletIndex Property

For a pallet reference frame, sets or gets the row, column or layer index for the next
grid position to be accessed.

refframe_object.PalletIndex(row_col_lay) = <next_index>
-or-
…refframe_object.PalletIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the row index is to
be accessed, 2 if the column index is to be accessed, or 3 if the layer
index is to be accessed.

Remarks

This property permits a program to set or get the next row, column, or layer index to be
accessed in a pallet reference frame. Each index can range from 1 to the maximum
value for that dimension as specified by the object’s PalletMaxIndex property. The
row, column, and layer indices are always positive integer numbers. If you wish to step
in a negative direction, the appropriate PalletPitch property for the refframe_object
can be set to a negative number.

If you wish to set all 3 index values at once, you can make use of the object’s
PalletRowColLaymethod. If you want to just advance to the next logical pallet
position, the PalletNextPosmethod can be invoked.

By default, when a new pallet reference frame is created, the pallet indices are set to
1, 1, 1.

Examples

372 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PalletIndex Property

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet
frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along
column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all
0’s
ref1.PalletIndex(2) = 2 ' Set grid (1,2,1)
Console.Writeline(loc1.Pos.X) ' Displays 100
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class | refframe_object.PalletMaxIndex|refframe_object.PalletNextPos|refframe_
object.PalletRowColLay

Copyright © 2024, Brooks Automation 373

16. Reference Frame Class GPL Dictionary
refframe_object.PalletMaxIndex Property Part Number: 609719 Rev. A

refframe_object.PalletMaxIndex Property

For a pallet reference frame, sets or gets the number of rows, columns, or layers in the
pallet.

refframe_object.PalletMaxIndex(row_col_lay)= <maximum_index>
-or-
…refframe_object.PalletMaxIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the number of rows
is to be accessed, 2 if the number of columns is to be accessed, or 3 if
the number of layers is to be accessed.

Remarks

This property allows a program to set or get the number of rows, columns or layers for
a given pallet reference frame. The number of rows, columns or layers is specified by
an integer number greater than or equal to 1.

To specify a specific pallet position, the PalletIndex properties must be set to at least
1 and cannot be greater then the applicable maximum values defined by the
PalletMaxIndex property.

By default, when a new pallet reference frame is created, the maximum pallet indices
are each set to 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

374 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PalletMaxIndex Property

ref1.Type = 1 ' Change to pallet
frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along
column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all
0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

RefFrame Class | refframe_object.PalletIndex|refframe_object.PalletRowColLay

Copyright © 2024, Brooks Automation 375

16. Reference Frame Class GPL Dictionary
refframe_object.PalletNextPos Method Part Number: 609719 Rev. A

refframe_object.PalletNextPos Method

For a pallet reference frame, advances the pallet position to the next logical position.

refframe_object.PalletNextPos

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Given the current pallet position and the PalletOrder, this method advances the pallet
to the next logical position. For example, if the current pallet position is at the last
element in a row, 3rd column position, and 2nd layer, and the PalletOrder indicates
that the pallet should be incremented by row, column and layer, PalletNextPos will
advance to the 1st row element, 4th column element and 2nd layer.

If the initial pallet position is at the last row, column, and layer position, PalletNextPos
changes the pallet position indices to 1,1,1.

If you want to randomly select the next pallet position, a program can utilize
PalletIndex or PalletRowColLay instead of the PalletNexPosmethod.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet
frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along

376 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PalletNextPos Method

column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer
order

loc1.RefFrame = ref1 ' loc1.PosWrtRef all
0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class |refframe_object.PalletIndex|refframe_object.PalletOrder|refframe_
object.PalletRowColLay

Copyright © 2024, Brooks Automation 377

16. Reference Frame Class GPL Dictionary
refframe_object.PalletOrder Property Part Number: 609719 Rev. A

refframe_object.PalletOrder Property

For a pallet reference frame, sets or gets the parameter that specifies the order in
which the row, column, and layer indices are incremented.

refframe_object.PalletOrder = <indexing_order>
-or-
… refframe_object.PalletOrder

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Normally, the rows and columns of a pallet are defined such that a layer of rows and
columns lie in the world coordinate system X-Y plane. If the rows and columns are
defined in such a manner, you may wish to increment from one pallet position to the
next in a different order than the standard row first, then column, then layer pattern.
For example, you may want to stack from the bottom layer to the top layer before
incrementing to the next row or column. The PalletOrder parameter allows a program
to define the order in which the row, column, and layer indices are incremented.

The interpretation of this parameter is presented in Table 16-5.

PalletOrder Value Incrementing Order

0 Row, column, layer

1 Row, layer, column

2 Column, row, layer

3 Column, layer, row

4 Layer, row, column

5 Layer, column, row

Table 16-5: PalletOrder Parameter

378 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PalletOrder Property

By default, when a new pallet reference frame is created, the PalletOrder is set to 0
(row,column,layer).

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet
frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along
column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer
order

loc1.RefFrame = ref1 ' loc1.PosWrtRef all
0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class |refframe_object.PalletNextPos

Copyright © 2024, Brooks Automation 379

16. Reference Frame Class GPL Dictionary
refframe_object.PalletPitch Property Part Number: 609719 Rev. A

refframe_object.PalletPitch Property

For a pallet reference frame, sets or gets the step size (pitch) between adjacent rows,
columns, or layers in a pallet.

refframe_object.PalletPitch(row_col_lay) = <pitch_size>
-or-
…refframe_object.PalletPitch(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the row pitch is to be
accessed, 2 if the column pitch is to be accessed, or 3 if the layer pitch is
to be accessed.

Remarks

This property allows a program to set or get the step size (pitch) between sequential
rows, columns or layers for a pallet reference frame. The step sizes are in units of
millimeters and can be both positive and negative real numbers.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet
frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along

380 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PalletPitch Property

column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all
0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

RefFrame Class

Copyright © 2024, Brooks Automation 381

16. Reference Frame Class GPL Dictionary
refframe_object.PalletRowColLay Method Part Number: 609719 Rev. A

refframe_object.PalletRowColLay Method

For a pallet reference frame, sets the row, column, and layer indices for the next grid
position to be accessed.

refframe_object.PalletRowColLay(row, column, layer)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row

A required numerical expression that specifies the index for the next row
to be accessed, where the row number is interpreted as an integer value
that ranges from 1 to the maximum permitted row index for this pallet,
i.e. refframe_object.PalletMaxIndex(1).

column

A required numerical expression that specifies the index for the next
column to be accessed, where the column number is interpreted as an
integer value that ranges from 1 to the maximum permitted column
index for this pallet, i.e. refframe_object.PalletMaxIndex(2).

layer

A required numerical expression that specifies the index for the next
layer to be accessed, where the layer number is interpreted as an
integer value that ranges from 1 to the maximum permitted layer index
for this pallet, i.e. refframe_object.PalletMaxIndex(3).

Remarks

382 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PalletRowColLay Method

This is a convenience method that allows a program to explicitly set the row, column,
and layer indices for the next pallet element to be accessed. This method permits a
program to randomly set or reset the next element. For example, if values of 1,1,1 are
specified as the arguments to this method, the first pallet position will be accessed
next.

By default, when a new pallet reference frame is created, the pallet indices are set to
1, 1, 1.

The operation performed by this method can also be accomplished by utilizing the
PalletIndex property once for each of the three pallet indices or the PalletNextPos
method can be invoked to advance to the next logical pallet position.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet
frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along
column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all
0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

RefFrame Class |refframe_object.PalletIndex|refframe_object.PalletMaxIndex|refframe_
object.PalletNextPos

Copyright © 2024, Brooks Automation 383

16. Reference Frame Class GPL Dictionary
refframe_object.Pos Method Part Number: 609719 Rev. A

refframe_object.Pos Method

Returns a Cartesian Location equal to the current total position and orientation for
any type of RefFrame Object.

… refframe_object.Pos(location_object)

Prerequisites

None

Parameters

location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

For any type of reference frame object, this method returns a Cartesian Location
whose value is equal to the current (instantaneous) total position and orientation of
the frame taking into account any additional linked reference frames. In the case of a
“basic” reference frame, the current location is equal to the contents of refframe_
object.Loc.Pos. In the case of a dynamic reference frame, such as a pallet, the
current total position and orientation is computed based upon the object properties,
e.g. nominal location, current row, column and layer numbers. In the case of a
conveyor reference frame, the instantaneous position of the conveyor belt is
computed and returned. For a conveyor reference frame, the X-axis of this value
points along the direction of travel for the belt.

This method returns the reference frame’s total position and orientation that is
equivalent to the value used to compute the total position and orientation of a
Cartesian Location that is defined with respect to the reference frame. For example, if
a Cartesian Location, loc1, has its RefFrame pointer set equal to a reference frame,
ref1, then loc1.Pos is equal to:

ref1.Pos(dummy).Mul(loc1.PosWrtRef)

384 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.Pos Method

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.Pos(dum).X) ' Displays 100
Console.Writeline(ref1.Pos(dum).Y) ' Displays 90
Console.Writeline(ref1.Pos(dum).Z) ' Displays -80

See Also

RefFrame Class | refframe_object.PosWrtRef

Copyright © 2024, Brooks Automation 385

16. Reference Frame Class GPL Dictionary
refframe_object.PosWrtRef Method Part Number: 609719 Rev. A

refframe_object.PosWrtRef Method

Returns a Cartesian Location equal to the current position and orientation of a
RefFrame Object ignoring any further reference frames.

…refframe_object.PosWrtRef(location_object)

Prerequisites

None

Parameters

location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

In general, this method returns a Cartesian Location whose value is equal to the
current position and orientation of the reference frame without taking into account any
additional linked reference frames. See Table 16-6.

RefFrame
Type refframe_object.PosWrtRef

Basic Returns the contents of refframe_object.Loc.PosWrtRef.

Pallet
Returns the current pallet position and orientation based upon the object properties, e.g. nominal
location, current row, column and layer numbers, without taking into consideration any linked
reference frames.

Table 16-6: PosWrtRef Method

386 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.PosWrtRef Method

RefFrame
Type refframe_object.PosWrtRef

Conveyor

Returns the "Nominal" transformation for the conveyor as defined in the associated conveyor
robot (DataID 16060). The X-axis of is value points along the direction of travel of the belt and the
XYZ position of this value is typically defined approximately at the center of travel for the belt. The
nominal value for a conveyor is stored in the conveyor robot module to permit this transformation
to be taught once, automatically loaded when the controller is restarted, and referenced by
multiple conveyor reference frames.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.PosWrtRef(dum).X) ' Displays 100
Console.Writeline(ref1.PosWrtRef(dum).Y) ' Displays 90
Console.Writeline(ref1.PosWrtRef(dum).Z) ' Displays -80

See Also

RefFrame Class | refframe_object.Pos

Copyright © 2024, Brooks Automation 387

16. Reference Frame Class GPL Dictionary
refframe_object.Text Property Part Number: 609719 Rev. A

refframe_object.Text Property

Sets and gets a String associated with a RefFrame Object. This field is not used by
GPL and is provided for use by application programs.

refframe_object.Text = <string_value>
-or-
...refframe_object.Text

Prerequisites

None

Parameters

None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a RefFrame object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently
displayed when the object is accessed or written.

Examples

Dim ref1 As New RefFrame ' Create new RefFrame
object
ref1.Text = "This is my reference frame"
Console.WriteLine(ref1.Text)

See Also

RefFrame Class |location_object.Text|profile_object.Text

388 Copyright © 2024, Brooks Automation

Brooks Automation 16. Reference Frame Class
Part Number: 609719 Rev. A refframe_object.Type Property

refframe_object.Type Property

Sets and gets the Integer Type of a RefFrame Object, which indicates if the object is
a basic type or one of the special types of reference frames.

refframe_object.Type = <new_Integer_value>
-or-
...refframe_object.Type

Prerequisites

None

Parameters

None

Remarks

There are several different types of reference frames that can be represented by a
refframe_object. The Type property indicates which type of reference frame is stored
in a specific object. The possible values for the Type property are shown in Table 16-
7.

Type
Value Description

0 Basic RefFrame that stores the position and orientation of the reference frame in the Loc Location.

1 Pallet RefFrame that defines a one, two or three-dimensional rectangular grid of positions that are
sequentially indexed.

2 Conveyor RefFrame whose value is dynamically computed and is equal to the instantaneous position
of a conveyor belt. Requires that the Conveyor Tracking Software License be installed in the controller.

Table 16-7: Type Property Values

For all reference frames, there are a few common properties that are always defined
and accessible. These common properties include the Type, Loc, Pos and
PosWrtRef. In addition, specific types of reference frames may have additional
properties and methods that are only meaningful for a specific type of refframe_

Copyright © 2024, Brooks Automation 389

16. Reference Frame Class GPL Dictionary
refframe_object.Type Property Part Number: 609719 Rev. A

object. For example, a pallet reference frame has a PalletOrder property that is only
relevant for that type of frame.

In general, if you attempt to access a property that is not relevant for a refframe_
object, an error will be generated.

When a “New” RefFrame is created, its Type is automatically set to 0, i.e. the basic
type.

Examples

Dim ref1 As New RefFrame ' Create new reference frame
Dim iType As Integer
iType = ref1.Type ' iType will be set to 0

See Also

RefFrame Class

390 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot Class Summary

17. Robot Class

Robot Class Summary

The following pages provide detailed information on the properties and methods of the
global Robot Class. This class provides access to the features and status of each
robot configured in the system, e.g. the current position of a robot, processes for
establishing the position reference for each axes of each robot, functions for forcing
an in-process motion to decelerate to a halt, methods for setting and getting the
robot's base and tool offsets, etc.

The most important operations of the Robot Class are to associate a specific robot
with a specific thread and to grant exclusive control of a robot to a thread. Most read-
only robot operations require that a statement either explicitly specify a robot or have
a previously Selected robot. For example, to read the current position of a robot, the
Selected robot will be accessed if no robot is specified. More importantly, in order to
control or move a robot, a thread must first be Attached to a robot in order to gain
exclusive access to it.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties
and methods of the Robot Class, it is not necessary to have different variations of
these members to deal with the different possible mixes of input parameter data
types. Also, as appropriate, the properties and methods generally produce results that
are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so
long as numeric overflow does not occur.

Table 17-1 summarizes the properties and methods that are described in greater
detail in the following sections.

Copyright © 2024, Brooks Automation 391

17. Robot Class GPL Dictionary
Robot Class Summary Part Number: 609719 Rev. A

Member Type Description

Robot.Attached Property Sets and gets the number of the robot that is exclusively controlled by
a thread.

Robot.Base Property Sets and gets the position and orientation offset for the base of the
robot.

Robot.CartMode Property Gets an Integer that contains flag bits that indicate if any special
Cartesian trajectory modes are active.

Robot.Custom Property Sets and gets elements of a parameter array whose interpretation is
specific to each kinematic module.

Robot.DefLinComp Method Defines internal table of motor encoder "Linearity compensation"
correction values that are automatically applied to encoder values.

Robot.Dest Property Returns a Cartesian Location whose value is equal to the originally
planned final destination of the previously executed motion.

Robot.DestAngles Property Returns an Angles Location whose value is equal to the originally
planned final destination of the previously executed motion.

Robot.Home Method Homes the Attached robot to establish the reference positions for
each axes.

Robot.HomeAll Method Homes all robots to establish the reference positions for each of their
axes.

Robot.JointToMotor Method Converts an array of axis joint angles (in degrees or millimeters) to an
equivalent array of motor positions (in encoder counts)..

Robot.LastProfile Property
Returns a Profile Object whose properties are equal to those of the
currently executing motion or the last executed motion if no motion is
active.

Robot.MotorTempStatus Property Returns a code that indicates the temperature status of a motor.

Robot.MotorToJoint Method Converts an array of motor positions (in encoder counts) to an
equivalent array of axis joint angles (in degrees or millimeters).

Robot.Payload Property Asserts or retrieves the last asserted value that specifies the mass of
the payload being carried by the robot.

Robot.RapidDecel Property Sets the Boolean flag that forces any in-process motion for a robot to
be rapidly decelerated to a stop.

Robot.RealTimeModAcm Property
Returns a Cartesian Location whose value is equal to the
accumulated modifications generated by the Real-time Trajectory
Modification mode.

Robot.RestartBase Property Gets the position and orientation offset for the base of the robot that
was set when the controller was restarted.

Robot.RestartTool Property Gets the position and orientation offset for the tool or gripper of the
robot that was set when the controller was restarted.

Robot.Selected Property Sets and gets the default robot number to be used when accessing a
specific robot.

Table 17-1: Robot Class Summary

392 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot Class Summary

Member Type Description

Robot.Source Property Returns a Cartesian Location whose value is equal to the initial
position and orientation of the previously executed motion.

Robot.SourceAngles Property Returns an Angles Location whose value is equal to the initial axes
positions of the previously executed motion.

Robot.SpeedAngles Property Returns an Angles Location whose components contain the
instantaneous speed of each axis.

Robot.Tool Property Sets and gets the position and orientation offset for the tool or gripper
of the robot.

Robot.TrajState Property Gets an Integer that indicates the current state of the Trajectory
Generator for a given robot.

Robot.Where Property Gets a Cartesian Location whose value indicates the current position
and orientation of a robot.

Robot.WhereAngles Property Gets an Angles Location whose value indicates the current position of
each axes of a robot.

Copyright © 2024, Brooks Automation 393

17. Robot Class GPL Dictionary
Robot.Attached Property Part Number: 609719 Rev. A

Robot.Attached Property

Sets and gets the number of the robot that is exclusively controlled by a thread.

Robot.Attached = <robot_number>
-or-
... Robot.Attached

Prerequisites

None

Parameters

None

Remarks

In order to ensure that a robot receives a consistent set of motion commands, a robot
must be Attached before any motion commands can be issued by a thread and only a
single thread can be Attached to a robot at any given time. While a robot is Attached
by a thread, other threads are still permitted to read certain properties of the robot,
such as the current robot position and trajectory state. Also, other threads are able to
alter the robots operation in ways that make sense. For example, any thread can
disable high power, signal a Soft or Hard E-Stop, or force a robot to rapidly decelerate.
The Attached robot number is an Integer that ranges from 1 to N. If the Attached
property is set to 0, any robot attached to the thread is released (un-Attached). When
a robot is Attached, the system forces the Selected property to be equal to the
Attached value. Typically, if a project is intended to control a robot, the GPL software
development environment can be configured to automatically generate the
statements to ensure the robot will be Attached at the start of program execution and
un-Attached when the program is terminated or pauses execution.

Examples

Robot.Attached = 1 ' We now have exclusive control of robot #1
Robot.Attached = 0 ' This is how you give up control

See Also

Robot Class | Robot .Selected

394 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Base Property

Robot.Base Property

Sets and gets the position and orientation offset for the base of the robot.

Robot.Base = <Cartesian_location>
-or-
... Robot.Base (robot)

Prerequisites

l For the set operation, the robot must be attached to the current thread.

l For the set operation, the Locationmust be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the base of the robot to the origin
of the World coordinate system.

The Base definition is beneficial if you create an application using Cartesian
Locations and the base of the robot is subsequently shifted slightly. By adjusting the
position of the Base definition, a project can automatically correct all of the joint angle
positions that will be computed from Cartesian Locations.

For computational reasons, some robot kinematic modules may not support the Base
property. Also, as a computational efficiency, the value of Base can only contain a
positional offset in X, Y, and Z and a rotation about the Z-axis. That is, the Euler
angles for the Base must always be "X,Y,Z,0,0,Roll".

For most applications, the Base value is not used and its value is set to "0,0,0,0,0,0".

Once the Robot.Base has been set, these dimensions remain in effect until the Base
property is set again or the controller is powered down and restarted. As a

Copyright © 2024, Brooks Automation 395

17. Robot Class GPL Dictionary
Robot.Base Property Part Number: 609719 Rev. A

convenience, when the controller is restarted, a "Restart Base " definition is
automatically put into effect based upon the values of "Base set at restart" (DataID
16052).

Changing the robot's Base instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread
attempts to set the Base, GPL automatically waits until the motion is completed before
executing this instruction.

Examples

Dim base As New Location
Robot.Attached = 1
base.XYZ(10, 0, 0) ' Move base by 10mm in
X
Robot.Base = base
Console.WriteLine(Robot.Base().X) ' Outputs a value of
10

See Also

Robot Class | Robot.RestartBase

396 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.CartMode Property

Robot.CartMode Property

Returns an Integer that contains flag bits that indicate if any special Cartesian
trajectory modes are active.

...Robot.CartMode (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

The Trajectory Generator supports a number of special operating modes that can only
be executed when Cartesian motions are being evaluated. This property returns an
Integer that contains flag bits that indicate if any of these special modes are currently
active.

This is the same value that is returned in the "CartMode Trajectory Flags" (DataID
3526) Parameter Database entry.

The bits within the value returned by this property are defined in Table 17-2.

CartMode
Flags Description

&H01 Conveyor Tracking. If on, indicates that the robot is moving with respect to a conveyor belt and is
automatically adjusting the Cartesian set point to track the belt.

Table 17-2: CartMode Property

Copyright © 2024, Brooks Automation 397

17. Robot Class GPL Dictionary
Robot.CartMode Property Part Number: 609719 Rev. A

CartMode
Flags Description

&H02
Real-time Trajectory Modification. If on, indicates that the Cartesian set point can be dynamically
altered based upon input from a GPL program. The Trajectory Generator incorporates the real-
time modifications into the computed Cartesian set point each trajectory cycle.

&H04 SpeedDAC. If on, indicates that the Trajectory Generator is computing the instantaneous tool tip
speed and using this information to control the value of a analog output (DAC) device.

Examples

Dim flags As Integer
flags = Robot.CartMode() ' Reads current mode
bits

See Also

Robot Class | Move.StartRealTimeMod | Move.StartSpeedDAC

398 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Custom Property

Robot.Custom Property

Sets and gets elements of a parameter array whose interpretation is specific to each
kinematic module.

Robot.Custom(index) = <New_value>
-or-
... Robot.Custom (robot, index)

Prerequisites

l For the set operation, the robot must be attached to the current thread.

l For kinematic modules that do not use the array of custom kinematic parameters, setting or reading
these parameters has no effect on the operation of the associated robot.

Parameters

index

An optional numeric expression that specifies the element of the custom
kinematic parameter array (1-5) that is accessed. If this value is 1 or
unspecified, the first element will be accessed.

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Selected kinematic modules have special runtime parameters that alter their behavior
in a non-standard fashion. For example, the "Dual RPR" robot has two arms and two
sets of grippers that can be moved. At any given time, only one of the arms and one of
the grippers can be factored into the computation of the Cartesian position and
orientation of the robot. The "custom kinematic parameters" are utilized by this
kinematic module at runtime to specify which of the two arms is logically considered
part of the robot.

Copyright © 2024, Brooks Automation 399

17. Robot Class GPL Dictionary
Robot.Custom Property Part Number: 609719 Rev. A

In some instances, setting a parameter may cause the executing thread to pause
waiting for the attached robot to complete its current motion. This side effect and
other similar actions are controlled by the specific kinematic module type.

For a description of how these parameters are utilized in a specific robot and their side
effects, please consult the documentation on the Kinematic Robot Modules.

Examples

Robot.Attached = 1
Robot.Custom(1) = 1 ' Set custom parameter
value

See Also

Robot Class

400 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.DefLinComp Method

Robot.DefLinComp Method

Defines internal table of motor encoder "Linearity compensation" correction values
that are automatically applied to encoder values.

Robot.DefLinComp (robot, motor, enc_start, enc_step, num_cor, cor)

Prerequisites

Motor linear compensation must be permitted for the robot.

Motor linear compensation must be enabled.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to compensate
(1-n).

enc_start

A required numeric expression that specifies the first (and lowest)
encoder count to be corrected.

enc_step

A required numeric expression that specifies the step size in encoder
counts between successive encoder correction values. Must be greater
than 0 and can be a fractional value.

Copyright © 2024, Brooks Automation 401

17. Robot Class GPL Dictionary
Robot.DefLinComp Method Part Number: 609719 Rev. A

num_cor

A required numeric expression that specifies the number of encoder
correction values that are defined in the cor array (1-n). The number of
values is only limited by the available system memory. Increasing the
number of correction values and decreasing the step size improves the
compensation and only effects memory, not execution time.

cor

A required array of double precision values that specifies the correction
in encoder counts at each sequential encoder position. The corrections
can include fractional encoder counts. Positive values indicate that the
encoder should be reading a higher value and negative numbers
indicate the encoder reading should be lower.

Remarks

This method creates and defines an internal table of encoder correction values for the
specified motor of a robot. These corrections are automatically applied to each motor
command and to each encoder reading. This technique permits repeatable position
errors to be corrected to yield more linear and accurate axis positioning. In between
correction values, the corrections are interpolated. Outside of the correction range,
the raw encoder value is utilized.

As soon as this method creates and initializes the correction data, it is immediately put
into effect.

As a convenience, this instruction can be executed even when robot power is
enabled. So long as the corrections are small, this will result in a small instantaneous
motion of the motor.

When first trying a new compensation data set, motor power should be
disabled to avoid any sudden, high speed motor motions.

402 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.DefLinComp Method

Correction data sets can be created for any motor of the robot that you wish to
compensate. It is not necessary to create a correction table for all
motors. Correction tables stay in effect until they are over-written or the controller is
restarted.

Please see the "Motor Linearity Compensation" section in the Controller Software >
Software Setup > Selected Setup Details and Procedures chapter of the
PreciseFlex™ PreciseFlex Library for information on creating correction data sets and
for more information on this technique.

Examples

Dim cor(2) As Double
cor(0) = 0
cor(1) = -18 ' First step is too short
cor(2) = 5.3 ' Second step is too long
Robot.DefLinComp(1, 1, 5000, 1000, 3, cor)

See Also

Robot Class

Copyright © 2024, Brooks Automation 403

17. Robot Class GPL Dictionary
Robot.Dest Property Part Number: 609719 Rev. A

Robot.Dest Property

Returns a Cartesian Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.Dest (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation that
was originally planned as the final destination for the previously executed motion. The
previously executed motion can still be in progress or could have already stopped
executing when this property is accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition.
Consequently, this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the Dest Location is not the same as
performing aMove.Rel instruction. TheMove.Rel instruction will perform a
incremental motion relative to wherever the robot's final position was at the conclusion
of the previous motion. Moving relative to the Dest Locationmoves with respect to
where the previous motion was planned to terminate.

Table 17-3 describes the data returned in the Location value.

404 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Dest Property

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to planned Cartesian position and orientation destination of the previous motion.

RefFrame Always Null

Config Configuration bits for the planned destination of the previous motion.

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 17-3: Dest Property Location Value

Examples

Dim DestLoc As Location
DestLoc = Robot.Dest() ' Reads planned motion des-
tination

See Also

Robot Class | Robot.DestAngles | Robot.LastProfile | Robot.Source | Robot.SourceAngles

Copyright © 2024, Brooks Automation 405

17. Robot Class GPL Dictionary
Robot.DestAngles Property Part Number: 609719 Rev. A

Robot.DestAngles Property

Returns an Angles Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.DestAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that were originally planned
as the final destination for the previously executed motion. The previously executed
motion can still be in progress or could have already stopped executing when this
property is accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition.
Consequently, this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the DestAngles Location is not the
same as performing aMove.Rel instruction. TheMove.Rel instruction will perform a
incremental motion relative to wherever the robot's final position was at the conclusion
of the previous motion. Moving relative to the DestAngles Locationmoves with
respect to where the previous motion was planned to terminate.

Table 17-4 describes the data returned in the Location value.

406 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.DestAngles Property

Property Returned Location Object value

Type Angles Location

Angles Set equal to planned axes position destinations of the previous motion.

RefFrame Always Null

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 17-4: DestAngles Property Location Value

Examples

Dim DestLoc As Location
DestLoc = Robot.DestAngles() ' Reads planned motion des-
tination

See Also

Robot Class | Robot.Dest | Robot.LastProfile | Robot.Source | Robot.SourceAngles

Copyright © 2024, Brooks Automation 407

17. Robot Class GPL Dictionary
Robot.Home Method Part Number: 609719 Rev. A

Robot.Home Method

Homes the Attached robot to establish the reference positions for each axes.

Robot.Home

Prerequisites

l High power to the robot must be enabled.

l A robot must be Attached by the thread.

Parameters

None

Remarks

This method allows a robot to be homed via a program statement. The homing
process reestablishes the reference (e.g. zero) position for each axis of the robot.
This enables the robot to reliably move to the same positions after each time that the
controller is restarted even when the robot is equipped with incremental, not absolute
encoders.

The axes homing sequence must be executed once for each axis after the system is
restarted and prior to executing any position controlled motions. Often, the homing
process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home
to hard stop, home to limit switch, home to home switch, etc. The specific method for
each axis and the parameters for each method are pre-configured by the robot
manufacturer. The Homemethod simply executes the pre-configured method for the
robot Attached to the thread.

Examples

Robot.Attached = 1 ' Attach a robot to the thread
Robot.Home() ' Home the Attached robot

See Also

Robot Class | Robot.HomeAll

408 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.HomeAll Method

Robot.HomeAll Method

Homes all robots to establish the reference positions for each of their axes.

Robot.HomeAll

Prerequisites

l High power must be enabled.

l No robot can be Attached by a different thread.

Parameters

None

Remarks

This method allows all robots to be homed via a program statement. This homing
process reestablishes the reference (e.g. zero) position for each axis of each robot.
This enables the robots to reliably move to the same positions after each time that the
controller is restarted even when the robots are equipped with incremental, not
absolute encoders.

The axes homing sequence must be executed once for each axis of each robot after
the system is restarted and prior to executing a robot in position controlled mode.
Often, the homing process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home
to hard stop, home to limit switch, home to home switch, etc. The specific method for
each axis and the parameters for each method are pre-configured by the robot
manufacturer. The HomeAllmethod simply executes the pre-configured method for
all robots.

Examples

Robot.HomeAll() ' Execute home sequence for all
robots

See Also

Robot Class | Robot.Home

Copyright © 2024, Brooks Automation 409

17. Robot Class GPL Dictionary
Robot.JointToMotor Method Part Number: 609719 Rev. A

Robot.JointToMotor Method

Converts an array of axis joint angles (in degrees or millimeters) to an equivalent array
of motor positions (in encoder counts). Automatically takes into account any motor
coupling and other factors.

Robot.JointToMotor (robot, joint_pos, motor_pos)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

joint_pos

A required array of double precision values that defines the axis position
values, in either degrees (for rotary axes) or millimeters (for linear axes),
that are to be converted into an equivalent array of motor encoder
positions. This array must have one value for each of the axes of the
robot. joint_pos(0) must contain the position for axis 1.

motor_pos

A required array of double precision values into which the computed
equivalent motor encoder positions are written in encoder counts. This
array must have at least one element for each motor of the robot.
motor_pos(0) will contain the position for motor 1.

Remarks

410 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.JointToMotor Method

This method converts an array of axis joint angles, specified in degrees for rotary
joints and millimeters for linear axes, into an equivalent array of motor positions,
specified in encoder counts.

For many robots, there is a simple scalar relationship between joint angles and motor
encoder counts. However, some robots have a much more complicated relationship
due to mechanical coupling of motors, linearity compensation, encoder roll-over
compensation, and other factors.

This method can be executed for any robot and all factors that affect the relationship
between joint angles and motor encoder counts are automatically taken into
consideration.

Examples

Dim mot(4), jts(4), jt2(4) As Double
Dim cur_pos As New Location
Dim ii As Integer
cur_pos.Type = 1 ' Read joint positions
cur_pos.Here
For ii = 1 To 4 ' Copy to jts array

jts(ii-1) = cur_pos.Angle(ii)
Next ii
Robot.JointToMotor(1, jts, mot) ' Convert to enc
counts
Robot.MotorToJoint(1, mot, jt2) ' Convert back to jt
angles

See Also

Robot Class | Robot.MotorToJoint

Copyright © 2024, Brooks Automation 411

17. Robot Class GPL Dictionary
Robot.LastProfile Property Part Number: 609719 Rev. A

Robot.LastProfile Property

Returns a Profile Object whose properties are equal to those of the currently
executing motion or the last executed motion if no motion is active.

...Robot.LastProfile (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property extracts a copy of the motion Profile parameters that were specified for
the currently executing motion of a Robot or the last motion if no motion is now in
progress. The extracted values are returned in a Profile Object.

If the previous motion was interrupted due to an error, this property, in combination
with the Dest or DestAngles properties, is very useful for retrying the motion.

Examples

Dim Profile1 As Profile
Profile1 = Robot.LastProfile() ' Reads last Pro-
file utilized

See Also

Robot Class |Robot.Dest | Robot.DestAngles

412 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.MotorTempStatus Property

Robot.MotorTempStatus Property

Returns an Integer value that indicates the temperature status of a motor.

...Robot.MotorTempStatus (robot, motor)

Prerequisites

The motor must support temperature sensing and motor temperature monitoring must
be enabled. Motor temperature monitoring is enabled by setting Max motor
temperature (DataID 10110) to a non-zero value.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to be accessed
(1-n).

Remarks

This property returns an Integer code that indicates the temperature status of a motor.

This value permits a program to determine if a motor's temperature is within its normal
operating range without needing to know the configuration parameters for the motor. If
required, the specific motor temperature value can be accessed by reading the Motor
temperature (DataID 12110) parameter.

Table 17-5 describes the codes returned by this property.

Copyright © 2024, Brooks Automation 413

17. Robot Class GPL Dictionary
Robot.MotorTempStatus Property Part Number: 609719 Rev. A

Returned
Code Description

-1 Temperature monitoring is not enabled for this motor. Use parameter Max motor temperature
(DataID 10110) to enable temperature monitoring.

0 The motor's temperature is within its normal operating range.

1 The motor's temperature is within the warning temperature range. See Warning motor temperature
(DataID 10111) to set the warning temperature value.

2 The motor's temperature has exceeded its maximum permitted value.

Table 17-5: MotorTempStatus Property, Codes

See theMotor Temperature Sensing section in the Controller Software Setup
chapter of the PreciseFlex™ PreciseFlex Library for details on the operation of
supported motor temperature sensors.

Examples

Dim temp As Integer
temp = Robot.MotorTempStatus(1, 2)
If temp > 0 Then

If temp > 1 Then
Controller.SystemMessage("Motor temperature too

high")
 Else
 Controller.SystemMessage("Motor temperature warn-
ing")
 End If
End If

See Also

Robot Class

414 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.MotorToJoint Method

Robot.MotorToJoint Method

Converts an array of motor positions (in encoder counts) to an equivalent array of axis
joint angles (in degrees or millimeters). Automatically takes into account any motor
coupling and other factors.

Robot.MotorToJoint (robot, motor_pos, joint_pos)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor_pos

A required array of double precision values that defines the motor
encoder position values that are to be converted into an equivalent array
of joint axis positions. This array must have one value for each of the
motors of the robot. motor_pos(0) must contain the position for motor 1.

joint_pos

A required array of double precision values into which the computed
equivalent joint axis positions are written in either degrees (for rotary
axes) or millimeters (for linear axes). This array must have at least one
element for each axis of the robot. joint_pos(0) will contain the position
for axis 1.

Remarks

Copyright © 2024, Brooks Automation 415

17. Robot Class GPL Dictionary
Robot.MotorToJoint Method Part Number: 609719 Rev. A

This method converts an array of motor positions, specified in encoder counts, into an
equivalent array of axis joint angles, specified in degrees for rotary joints and
millimeters for linear axes.

For many robots, there is a simple scalar relationship between motor encoder counts
and joint angles. However, some robots have a much more complicated relationship
due to mechanical coupling of motors, linearity compensation, encoder roll-over
compensation, and other factors.

This method can be executed for any robot and all factors that affect the relationship
between motor encoder counts and joint angles are automatically taken into
consideration.

Examples

Dim mot(4), jts(4), jt2(4) As Double
Dim cur_pos As New Location
Dim ii As Integer
cur_pos.Type = 1 ' Read joint positions
cur_pos.Here
For ii = 1 To 4 ' Copy to jts array

jts(ii-1) = cur_pos.Angle(ii)
Next ii
Robot.JointToMotor(1, jts, mot) ' Convert to enc
counts
Robot.MotorToJoint(1, mot, jt2) ' Convert back to jt
angles

See Also

Robot Class | Robot.JointToMotor

416 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Payload Property

Robot.Payload Property

Asserts or retrieves the last asserted value that specifies the mass of the payload
being carried by the robot (as a percentage of the maximum payload).

Robot.Payload = <new_percentage>
-or-
... Robot.Payload (robot)

Prerequisites

Setting the payload only affects the performance of the robot if the robot's kinematic
module supports Dynamic Feedforward compensation (DFF) and if DFF is enabled.

For the set operation, the robot must either be attached to the current thread or must not be
attached to any thread.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property either asserts or retrieves the last asserted value that specifies the mass
of the payload being carried by the robot. For clarity, this property does not measure
the mass of the payload, it simply sets the estimated mass or reads the last set value.

For robots that have Dynamic Feedforward compensation enabled (DFF), this
property will adjust the feedforward for each of the robot's axes to compensate for the
mass of the payload. If full DFF compensation is supported, changing this value will
alter the gravity compensation for each affected axis and will adjust the axes servo
control loops to command torques to compensate for the inertial load of each motor as
well as to account for such factors as centripetal and Coriolis forces.

For example, if a robot picks up a very heavy payload, specifying a new mass value
that correctly estimates the load will improve the gravity balancing of any axis that is

Copyright © 2024, Brooks Automation 417

17. Robot Class GPL Dictionary
Robot.Payload Property Part Number: 609719 Rev. A

placed into Manual Control Free Mode. This improved estimate will also reduce the
position tracking errors of all axes during computer controlled motions.

For simplicity, the payload is specified as a percentage of the maximummass defined
by the "Dynamic feedforward mass, kg" (DataID 16067).

Since changing the payload alters the behavior of the servo loops, as a precaution, if
the robot is in motion when the value of this property is altered, GPL automatically
waits until the motion is completed before applying the change. Once the payload is
changed, the new value will remain in effect until the Robot.Payload is altered or the
controller is powered down and restarted. As a convenience, when the controller is
restarted, the initial value of the payload is automatically set to the value specified by
the "Dynamic feedforward default % payload" (DataID 16071).

Examples

Robot.Attached = 1
Robot.Payload = 50 ' 1/2 maximum payload
being carried
Console.WriteLine(Robot.Payload()) ' Outputs a value of
50

See Also

Robot Class

418 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.RapidDecel Property

Robot.RapidDecel Property

Sets the internal Boolean flag that forces any in-process motion for a robot to be
rapidly decelerated to a stop.
Robot.RapidDecel (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Setting the RapidDecel flag initiates a rapid deceleration of any motion in progress for
the specified robot. At the conclusion of the deceleration, no error is signaled and
program execution continues uninterrupted. The motion will, however, have been
stopped at a location different from the original plan. If the robot was not in motion,
setting this flag is ignored. At the start of the next motion, the RapidDecel flag is
automatically reset. The RapidDecel feature can be used to stop motions prematurely
due to an external signal, such as tripping a switch, touch sensor, or force sensor.
Since these are expected events, program processing is not halted. Since this flag
stops any in-process motion, it is similar in effect to the Soft E-Stop, Hard E-Stop, and
Disable Power functions. However, those functions are typically used to stop all
robots simultaneously when an unexpected event occurs and they generate error
conditions.

Examples

Robot.RapidDecel() ' Triggers a rapid decel of Selected robot

See Also

Robot Class | Controller.PowerEnabled | Controller.SoftEstop

Copyright © 2024, Brooks Automation 419

17. Robot Class GPL Dictionary
Robot.RealTimeModAcm Property Part Number: 609719 Rev. A

Robot.RealTimeModAcm Property

Returns a Cartesian Location whose value is equal to the accumulated path
modifications generated by the Real-time Trajectory Modification mode.

... Robot.RealTimeModAcm (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

When the Real-time Trajectory Modification mode is enabled (via the
Move.StartRealTimeModmethod), this property can be used to sample the
instantaneous accumulated path modification value computed by this special mode of
operation. Knowledge of the accumulated change is not required in most
applications, but this value can be of use in certain situations.

The interpretation of the accumulated change Location is a function of the coordinate
frames utilized to apply the real-time modifications and to accumulate the changes.
For each of the primary modes of the Real-time Modification method, the planned set
point transformation is conceptually computed each trajectory cycle as follows:

World-World Mode

Updated_position = Accumulated_position + SetPoint_
position
Updated_orientation = Accumulated_orientation *
SetPoint_orientation

420 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.RealTimeModAcm Property

Tool-World Mode

Updated_transform = Accumulated_transform * SetPoint_
transform

Tool-Tool Mode

Updated_transform = SetPoint_transform * Accumulated_
transform

Examples

Dim dz As Double
dz = Robot.RealTimeModAcm.Z ' Accumulated change in Z
position

See Also

Robot Class |Move.StartRealTimeMod | Move.SetRealTimeMod

Copyright © 2024, Brooks Automation 421

17. Robot Class GPL Dictionary
Robot.RestartBase Property Part Number: 609719 Rev. A

Robot.RestartBase Property

Gets the position and orientation offset for the base of the robot that was set when the
controller was restarted.

... Robot.RestartBase (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

As a convenience, when the controller is restarted, the "base" for each robot is
automatically set equal to the position and orientation offset defined by its "Base set at
restart" (DataID 16052) value. Since many applications utilize the same base offset
each day, this ensures that the Base dimensions are correctly set when the system is
restarted. This property returns a Cartesian Location value that is equal to the Base
dimensions that were set the last time that the system was restarted. Once set, these
Base dimensions can be easily modified using the Robot.Base property. See that
property for additional information on the use and benefits of the Base property.

Examples

Robot.Attached = 1
Robot.Base = Robot.RestartBase() ' Set base back to default

See Also

Robot Class | Robot.Base

422 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.RestartTool Property

Robot.RestartTool Property

Gets the position and orientation offset for the tool or gripper of the robot that was set
when the controller was restarted.

... Robot.RestartTool (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

As a convenience, when the controller is restarted, the tool for each robot is
automatically set equal to the position and orientation offset defined by its "Tool set at
restart" (DataID 16051) value. Since many applications utilize the same tool or
gripper each day, this ensures that the Tool dimensions are correctly set when the
system is restarted. This property returns a Cartesian Location value that is equal to
the Tool dimensions that were set the last time that the system was restarted. Once
set, these Tool dimensions can be easily modified using the Robot.Tool property.
See that property for additional information on the use and benefits of the Tool
property.

Examples

Robot.Attached = 1
Robot.Tool = Robot.RestartTool() ' Set tool back to default

See Also

Robot Class | Robot.Tool

Copyright © 2024, Brooks Automation 423

17. Robot Class GPL Dictionary
Robot.Selected Property Part Number: 609719 Rev. A

Robot.Selected Property

Sets and gets the default robot number to be used when accessing a specific robot.

Robot.Selected = <robot_number>
-or-
... Robot.Selected

Prerequisites

None

Parameters

None

Remarks

This property allows a thread to set its default robot number. Most of the properties
and methods that reference a robot allow the robot number to be explicitly specified or
to be unspecified and utilize the Selected robot number by default. However, there
are some methods, such as the location_object.Here, that always access the
Selected robot. The Selected robot number is an Integer that ranges from 1 to N.
When a robot is Attached, the system forces the Selected property to be equal to the
Attached value.

Examples

Dim iRobot As Integer
Robot.Selected = 1 ' Robot #1 is now Selected
iRobot = Robot.Selected ' iRobot will be set to 1

See Also

Robot Class | Robot.Attached

424 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Source Property

Robot.Source Property

Returns a Cartesian Location whose value is equal to the starting position and
orientation of the previously executed motion.

...Robot.Source (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation for the
starting position of the previously executed motion. The previously executed motion
can still be in progress or could have already stopped executing when this property is
accessed.

The value returned by this property does not reflect any blending that may have
occurred if the motion was executed as part of a continuous path. That is, the value
returned will be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the Dest Location
to reconstruct the previously planned motion. For example, this is beneficial for
moving the robot's tool back onto the previous path if the previous motion was
prematurely terminated via a RapidDecel.

Table 17-6 describes the data returned in the Location value.

Copyright © 2024, Brooks Automation 425

17. Robot Class GPL Dictionary
Robot.Source Property Part Number: 609719 Rev. A

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to starting Cartesian position and orientation of the previous motion.

RefFrame Always Null

Config Configuration bits for the start of the previous motion.

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 17-6: Source Property, Location Value

Examples

Dim SourceLoc As Location
SourceLoc = Robot.Source() ' Reads starting motion
location

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.SourceAngles

426 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.SourceAngles Property

Robot.SourceAngles Property

Returns an Angles Location whose value is equal to the starting axes positions of the
previously executed motion.

...Robot.SourceAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that represent the starting
position of the previously executed motion. The previously executed motion can still
be in progress or could have already stopped executing when this property is
accessed.

The value returned by this property does not reflect any blending that may have
occurred if the motion was executed as part of a continuous path. That is, the value
returned will be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the DestAngles
Location to reconstruct the previously planned motion. For example, this is beneficial
for moving the robot's axes back onto the previous path if the previous motion was
prematurely terminated via a RapidDecel.

Table 17-7 describes the data returned in the Location value.

Copyright © 2024, Brooks Automation 427

17. Robot Class GPL Dictionary
Robot.SourceAngles Property Part Number: 609719 Rev. A

Property Returned Location Object value

Type Angles Location

Angles Set equal to initial axes positions of the previous motion.

RefFrame Always Null

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 17-7: SourceAngles Property, Location Value

Examples

Dim SourceLoc As Location
SourceLoc = Robot.SourceAngles() ' Reads initial motion
position

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.Source

428 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.SpeedAngles Property

Robot.SpeedAngles Property

Returns an Angles Location whose components contain the instantaneous speeds of
each of the robot's axes.

...Robot.SpeedAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the instantaneous speed of each of the robot's axes. These
speeds are determined by sampling the encoder values, differencing and filtering
these values, and then converting them to joint angles. The conversion to joint angles
takes into consideration any mechanical coupling between the motors and other
kinematic considerations.

This property returns the axes speed values in the Angles properties of an Angles
Location. The speeds are in units of mm/sec or degrees/sec as appropriate.

Table 17-8 describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location

Angles Set equal to the instantaneous speeds for each of the axes of the robot in mm/sec or deg/sec.

RefFrame Always Null

Table 17-8: SpeedAngles Property, Location Value

Copyright © 2024, Brooks Automation 429

17. Robot Class GPL Dictionary
Robot.SpeedAngles Property Part Number: 609719 Rev. A

Property Returned Location Object value

Config Always zeroed.

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim RobotPos As Location
Dim jt3 As Double
RobotPos = Robot.SpeedAngles() ' How fast is
each axis moving?
jt3 = RobotPos.Angle(3) ' Speed of axis 3

See Also

Robot Class | Robot.Where | Robot.WhereAngles|location_object.Here

430 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Tool Property

Robot.Tool Property

Sets and gets the position and orientation offset for the tool or gripper of the robot.

Robot.Tool = <Cartesian_location>
-or-
... Robot.Tool (robot)

Prerequisites

l For the set operation, the robot must either be attached to the current thread or must not be attached to
any thread.

l For the set operation, the Locationmust be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the last axis of the robot to the
center point of the robot's gripper (or tool).

The Tool definition is particularly beneficial for robots that can change the orientation
of the gripper. When the tool center point is properly defined and the system is
instructed to move along a straight-line path, the tool center point will move along a
straight line even if the orientation of the gripper is simultaneously changed. Also, in
Jog-Tool control mode, the operator can easily rotate the tool center point while
maintaining the same position.

For the majority of simple grippers, the gripper dimensions consist of just an offset
along the Z-axis of the robot with no change in orientation. This corresponds to an
Location XYZ specification of "0,0,tool_length,0,0,0".

Once the Robot.Tool has been set, these dimensions remain in effect until the Tool
property is set again or the controller is powered down and restarted. As a
convenience, when the controller is restarted, a "Restart Tool" definition is

Copyright © 2024, Brooks Automation 431

17. Robot Class GPL Dictionary
Robot.Tool Property Part Number: 609719 Rev. A

automatically put into effect based upon the values of "Tool set at restart" (DataID
16051).

Changing the Tool dimensions instantaneously changes where the system thinks that
the robot's Cartesian set point is located. So, if the robot is in motion when a thread
attempts to set the Tool, GPL automatically waits until the motion is completed before
executing this instruction.

Examples

Dim tool As New Location
Robot.Attached = 1
tool.XYZ(0, 0, 100) ' Simple tool with
100mm length
Robot.Tool = tool
Console.WriteLine(Robot.Tool().Z) ' Outputs a value of
100

See Also

Robot Class | Robot.RestartTool

432 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.TrajState Property

Robot.TrajState Property

Returns a numeric value that provides state information for the Trajectory Generator
or the currently executing motion for a given robot.
...Robot.TrajState (robot, mode)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

mode

An optional numeric expression that specifies the type of state
information that is to be returned. If no value is specified, a mode of 0 is
assumed.

Remarks

This property returns various state information for the trajectory generator or the
currently executing motion for a specific robot depending upon the value of the mode
parameter.

mode0: Basic Trajectory State
This property returns a value that indicates whether a trajectory is currently being
evaluated for the specified robot and, if so, what portion of the trajectory is being
generated. This value can be utilized to determine if a trajectory is being ramped up to
its maximum speed, being ramped, waiting for final position errors to be nulled, sitting
idle, performing a special control mode, etc. The possible values returned by this
property are presented in Table 17-9.

Copyright © 2024, Brooks Automation 433

17. Robot Class GPL Dictionary
Robot.TrajState Property Part Number: 609719 Rev. A

TrajState Description (Mode = 0, Basic Trajectory State)

0 Halted, Trajectory Generator not being executed and no robot attached

1 Idle, Trajectory Generator ready to service commands but no motion in progress.

2 Position controlled mode, accelerating up to maximum speed

3 Position controlled mode, moving at constant velocity

4 Position controlled mode, blending two motions together

5 Position controlled mode, decelerating robot to a stop

6 Position controlled mode, force overlapping two motions together

8 Velocity controlled mode

9 Special motor speed control mode, usually indicates homing

10 Jog (manual) control mode

11 External trajectory control, special mode

15 Motion terminated, waiting for final position to satisfy InRange criteria

Table 17-9: Basic Trajectory State

mode1: Active Motion Status
This property returns a value that indicates whether the currently active or the
previous motion (if none is currently active) has been initiated or has terminated and, if
so, whether the motion ran to completion or was prematurely terminated. The possible
values returned by this property are presented in Table 17-10.

TrajState Description (Mode = 1, Active Motion Status)

0 No motion posted for execution yet.

1 Motion was posted to the trajectory generator but was rejected because it didn't match the end
point of the previous motion (this value is normally never returned).

2 Motion has been posted to the trajectory generator for execution but has not started yet (this value
is normally never returned).

3 Motion has been posted that is to be executed in continuous path mode with respect to the
previous motion (this value is normally never returned).

4 Motion currently being executed.

5 Motion terminated or is being terminated, but the motion did not run to completion and the robot did
not or will not reach its planned destination.

6 Motion terminated and ran to completion and reached its planned destination.

Table 17-10: Active Motion Status

434 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.TrajState Property

mode2: Motion Counter
Each time that a new motion is executed for a specific robot, the robot's Motion
Counter is incremented. This value can use used to verify that the data being
analyzed is with respect to the same motion. This is a 32-bit integer counter and
should not roll-over for most practical situations.

mode3: Active Motion Type
This property returns a value that indicates the type of motion being executed, e.g.
Cartesian straight-line, joint interpolated, etc. Some of the values returned are for
special modes and are not documented. See Table 17-11.

TrajState Description (Mode = 3, Active Motion Type)

0 Joint interpolated motion

1 Cartesian straight-line motion

2 Circular interpolated motion

3 - 6 Special motion types, such as velocity or jog or external trajectory control modes.

Table 17-11: Active Motion Type

mode4: Total Motion Time in Seconds
For the currently executing motion or the previous motion (if no motion is currently
executing), this value returns the total motion time in seconds. If the motion is part of a
continuous path, some of the specified time will be overlapped with the previous or the
next motion.

mode5: Motion Elapsed Time in Seconds
This indicates the number of seconds that have elapsed since the start of the
currently executing motion or the previous motion (if no motion is currently executing).
After a motion completes execution, this timer continues to increase in value until the
next motion begins execution, at which time the timer is reset to zero.

mode6: Motion Interpolation Factor
is the factor that is computed by the Trajectory Generator to interpolate between the
starting and the ending position of the currently executing motion. Initially, it has a
value of 0. At the end of the motion, it will have a value of 1. This factor can be used
to determine how far the trajectory has progressed. For example, for Cartesian
straight-line motions, this value indicates how far the robot is from the initial or the final
position.

Examples

Copyright © 2024, Brooks Automation 435

17. Robot Class GPL Dictionary
Robot.TrajState Property Part Number: 609719 Rev. A

Dim istate As Integer
istate = Robot.TrajState() ' Reads current trajectory state

See Also

Robot Class

436 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.Where Property

Robot.Where Property

Returns a Cartesian Location whose value is equal to the current position and
orientation of a robot.

...Robot.Where (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current position and orientation of a robot in a Cartesian
Location. This position and orientation automatically take into account both the
robot's Base and Tool offsets.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into an equivalent Cartesian position and
orientation. These sampled values are usually slightly different than the commanded
axes set point positions due to servo tracking errors and small positional errors.

The conversion to Cartesian coordinates make use of the optional Kinematic module
for the selected robot.

Note, if you wish to update the position and orientation of a Location variable, it is
often better to utilize the location_object.Heremethod rather than simply assigning
theWhere Location to the variable. The Heremethod preserves the other properties
of the Location variable and will automatically take into account any reference frame
(RefFrame).

Table 17-12 describes the data returned in the Location value.

Copyright © 2024, Brooks Automation 437

17. Robot Class GPL Dictionary
Robot.Where Property Part Number: 609719 Rev. A

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to current Cartesian position and orientation of a robot.

RefFrame Always Null

Config Configuration bits for the current robot position and orientation.

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 17-12: Where Property, Location Value

Examples

Dim RobotPos As Location
RobotPos = Robot.Where() ' Where is the robot
right now?

See Also

Robot Class | Robot.SpeedAngles| Robot.WhereAngles |location_object.Here

438 Copyright © 2024, Brooks Automation

Brooks Automation 17. Robot Class
Part Number: 609719 Rev. A Robot.WhereAngles Property

Robot.WhereAngles Property

Returns an Angles Location whose value is equal to the current axes positions of a
robot.

...Robot.WhereAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current positions of the axes of a robot in a Angles Location.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into equivalent axes positions. These sampled
values are usually slightly different than the commanded axes set point positions due
to servo tracking errors and small positional errors.

Note, if you wish to update the position of a Location variable, it is often better to
utilize the location_object.Heremethod rather than simply assigning the
WhereAngles Location to the variable. The Heremethod preserves the other
properties of the Location variable.

Table 17-13 describes the data returned in the Location value.

Copyright © 2024, Brooks Automation 439

17. Robot Class GPL Dictionary
Robot.WhereAngles Property Part Number: 609719 Rev. A

Property Returned Location Object value

Type Angles Location

Angles Set equal to current position of each axes of a robot.

RefFrame Always Null

Config Configuration bits for the current robot position and orientation.

ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Table 17-13: WhereAngles Property, Location Value

Examples

Dim RobotPos As Location
RobotPos = Robot.WhereAngles() ' Where is the
robot right now?

See Also

Robot Class | Robot.SpeedAngles | Robot.Where |location_object.Here

440 Copyright © 2024, Brooks Automation

Brooks Automation 18. Signal Class
Part Number: 609719 Rev. A Signal Class Summary

18. Signal Class

Signal Class Summary

The following pages provide detailed information on the properties and methods of the
global Signal Class. This class provides access to the simple hardware interfacing
features of the Guidance controller, such as the digital and analog input and output
(I/O). These common interfaces allow a GPL program to coordinate its actions with
those of other devices.

Using the digital I/O, programs can employ semaphores to interlock their execution
with other equipment in the work cell such as feeders or processing machines. Using
the analog I/O, programs can sample the values of simple sensors such as force or
temperature sensors to alter the sequence of program execution.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Signal Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input
parameter data types. Also, as appropriate, the properties and methods generally
produce results that are formatted as Double’s. These results will automatically be
converted to smaller data types as necessary, e.g. Double -> Integer, and will not
generate an error so long as numeric overflow does not occur.

Table 18-1 summarizes the properties and methods that are described in greater
detail in the following sections.

Member Type Description

Signal.AIO Property Sets and gets the values of the analog input and output channels.

Signal.DIO Property Sets and gets the values of the digital input and output channels.

Table 18-1: Signal Class Summary, Properties and Methods

Copyright © 2024, Brooks Automation 441

18. Signal Class GPL Dictionary
Signal.AIO Property Part Number: 609719 Rev. A

Signal.AIO Property

Sets and gets the values of the analog input and output channels.

Signal.AIO(channel)=<new_value>
-or-
... Signal.AIO(channel)

Prerequisites

None

Parameters

channel

A required numeric expression that specifies the analog channel to be
accessed. Table 18-2 shows the allocated ranges of channel numbers.

Channel Type Minimum number Max allocated number

Analog outputs 1 10000

Analog inputs 10001 20000

Table 18-2: Channel Numbers Allocated Ranges

Please consult the hardware specification for your specific version of
controller for information on the maximum number of input and output
channels available on your system.

Only the value of an output channel can be written. The current values of
both input and output channels can be read.

Remarks

At the hardware level, both analog input and analog output signals levels are
represented by integer numbers whose ranges are a function of the specific model of
your controller. To generalize accessing these devices at the GPL level, analog

442 Copyright © 2024, Brooks Automation

Brooks Automation 18. Signal Class
Part Number: 609719 Rev. A Signal.AIO Property

values are represented by floating point numbers that are scaled, offset, and
thresholded relative to the raw hardware values.

In many systems, analog values are configured to range from either +-1.0 or +-100.
Please consult the personnel who configured your controller for the applicable ranges
of possible analog values.

Examples

Dim sensor_reading As Single
sensor_reading = Signal.AIO(10001) 'Sets sensor_read-
ing equal to the

'scaled value of
the first analog

'input channel

See Also

Signal Class | Signal.DIO

Copyright © 2024, Brooks Automation 443

18. Signal Class GPL Dictionary
Signal.DIO Property Part Number: 609719 Rev. A

Signal.DIO Property

Sets and gets the values of the digital input and output channels.

Signal.DIO(channel, count)=<new_value>
-or-
... Signal.DIO(channel, count)

Prerequisites

None

Parameters

channel

A required numeric expression that specifies the first digital channel to
be accessed. Signal numbers are organized into ranges based on the
signal type. Within those ranges, the signals are organized into banks of
96 I/O points. The bank numbers start at 0. A signal number is formed by
adding the signal base value to 100 times the bank number. In a
distributed servo network, general digital I/O signals on the slave
controllers may be accessed from the master controller by adding
100000 times the slave controller node number to the signal number.

count

An optional numeric expression that specifies the number of successive
digital channels to be accessed. The value may range from 1 to 32. If
omitted, only a single channel is accessed and the property value is a
Boolean. If specified, the property value is a numeric bit mask. Omitting
the count parameter is not the same as specifying a count of 1. If
multiple channels are specified, all channels within the range signal to
signal+count-1 must be valid.

Remarks

444 Copyright © 2024, Brooks Automation

Brooks Automation 18. Signal Class
Part Number: 609719 Rev. A Signal.DIO Property

When specifying DIO signal (channel) numbers, a positive base signal number
indicates that the signal is True if its logical level is high. A negative base signal
number indicates that the signal is True if its logical level is low. For example, if the
channel is 10001, the signal is True if the input is at a logic high level. If the channel is
–10001, the signal is True if the input is at a logic low level.

Only an output DIO signal can be written. The current values of both input and output
signals can be read. If count is specified, the DIO specified by channel corresponds to
bit 0 of the property value. channel+1 corresponds to bit 1, channel+n corresponds to
bit n, where n < count. Table 18-3 shows the possible signal numbers based on the
type and the bank.

Signal Type Signal
Base

Signal
Range Banks

Test 0 0

General
outputs 1

1 +
100*bank

96 +
100*bank

0 = Local outputs,
1-15 = Remote outputs on RIO or
MODBUS/TCP modules.

Dedicated
outputs 8001

8001 +
100*bank
8096 +

100*bank

0 = Controller outputs,
1-15 = axis outputs.

General
inputs 10001

10001 +
100*bank
10096 +
100*bank

0 = Local inputs,
1-15 = Remote inputs on RIO or MODBUS/TCP
modules.

Dedicated
inputs 18001

18001 +
100*bank
18096 +
100*bank

0 = Controller inputs,
1-15 = axis inputs.

Software I/O 20001 20001 -
20064 Not used

Reserved 21001 21001 -
100000

Servo Network node n general
outputs

100000*n +
13

100000*n +
20 0 = Local outputs only

Servo Network node n general
inputs

100000*n +
10001

100000*n +
10012 0 = Local inputs only

Servo Network node n dedicated
inputs and outputs

Slave controller dedicated IO cannot be
accessed by the master controller

Table 18-3: Possible Signal Numbers

Copyright © 2024, Brooks Automation 445

18. Signal Class GPL Dictionary
Signal.DIO Property Part Number: 609719 Rev. A

Table 18-4 describes the different types of digital IO signals:

DIO Type Description

Test Channel 0 is a special test value that always reads False no matter what value is written to it.

General These are the “user” DIO signals that are provided in the controller or remote I/O boards. They do
not have a predefined use and can be freely employed. In some cases, general DIO may be
configured to serve as dedicated IO. For example, a general DIO can be configured as a joint over-
travel limit.

Dedicated The dedicated DIO are pre-defined to fixed machine control functions such as a home sensor. Some
of these signals are assigned to specific pins. However, others can be mapped to General DIO pins.

Software These “soft” IO do not drive or read actual hardware output or input signals. They can be used as
semaphores between threads or in place of hardware DIO for testing control algorithms.

Table 18-4: Digital IO Signals

Please consult the hardware specification for your specific version of controller for
information on the maximum number of input and output channels of each type
available on your system

Examples

Dim semaphore As Boolean
Signal.DIO(20001) = True ' Sets soft signal
20001 to True
semaphore = Signal.DIO(-20001) ' Will set semaphore
value to False
Signal.DIO (20001) = 4 ' Sets soft signal
20001 to True

' since 4 is non-zero.
Signal.DIO (20001, 1) = 4 ' Sets soft signal
20001 to False
Signal.DIO (20001, 3) = 4 ' Sets soft signal
20001 to False

' and soft signal 20002
to False

' and soft signal 20003
to True

See Also

Signal Class | Signal.AIO

446 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Statements Summary

19. Statements

Statements Summary

The following pages provide detailed information on the basic statements that are
provided as an integral portion of the Guidance Programming Language. These
statements provide standard functionality found in any programming language such
as control structures, variable declarations, subroutine and function calls, etc. As
much as possible, these statements have been modeled after standard instructions
provide by other variants of the Basic Programming Language.

Table 19-1 summarizes the statements that are described in greater detail in the
following sections.

Statement Description

Call Transfers control to a procedure and ignores its return value.

Case / Case Else Used within a Select...Case...End Select sequence to specify possible matches for the
target value and to delineate the statements to be executed if a match occurs.

Class Begins a Class definition.

Const Declares a read-only variable for use in a procedure.

Delegate Creates a Delegate class that provides a means for indirectly calling a function or
subroutine procedure using an object variable.

Dim Declares a variable for use in a procedure.

Do...Loop Bounds a block of instructions that are repeatedly executed so long as a specified
expression evaluates to True or until the expression value becomes True.

Else, ElseIf Used within an If…Then…Else…End If series of statements to conditionally execute
alternative blocks of instructions.

End Marks the end of a control structure or major project element such as a program or
function.

Exit Terminates the execution of a block of instructions within the innermost control structure
of a specified type or a procedure.

Table 19-1: Table 19-1Statement Summary

Copyright © 2024, Brooks Automation 447

19. Statements GPL Dictionary
Statements Summary Part Number: 609719 Rev. A

Statement Description

For...Next Bounds a block of instructions that are repeatedly executed a specified number of times.

Function Begins a user-defined function procedure.

Get Begins aGet procedure block within a Property procedure definition.

Goto Performs an unconditional branch and continues execution at a specified labeled
instruction.

If...Then...Else...End Conditionally executes a block of embedded statements based upon the value of an
expression.

Loop Marks the end of a Do…Loop block of instructions and in some instances also specifies
the loop termination condition.

Module Begins a user-defined module section. All variable definitions and procedures must be
inside aModule or Class definition.

Next Marks the end of a For…Next block of instructions.

Property Begins a user-defined Property procedure.

ReDim Increases or decreases an array size by changing the array's upper bounds.

Return Causes a user-define procedure to return control to the calling procedure and optionally
return a value.

Select...Case...End
Select

Evaluates a target expression, compares its value to a series of values and executes the
block of statements associated with the first matching value.

Set Begins a Set procedure block within a Property procedure definition.

Sub Begins a user-defined subroutine procedure.

While...End While Bounds a block of instructions that are repeatedly executed so long as a specified
expression evaluates to True.

448 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Call Statement

Call Statement

This statement transfers control to procedure, and ignores its return value.

Call procedure_name([argument_list])
-or-
Call class_name.procedure_name([argument_list])
-or-
Call object_name.procedure_name([argument_list])

Prerequisites

None

Parameters

procedure_name

The name of procedure to be called. This procedure can be either user-
defined or built-in. It can be a function (Function), a subroutine(Sub) or a
method of a built-in class.

class_name

The name of a built-in class of which procedure_name is a member.

object_name

The name of a object that is an instance of a built-in class of which
procedure_name is a member

argument_list

A list of argument values that are passed to the procedure. The
argument_list may be empty, or may be a list of argument values,
separated by “,”, that correspond to the arguments in the called
procedure.

Copyright © 2024, Brooks Automation 449

19. Statements GPL Dictionary
Call Statement Part Number: 609719 Rev. A

argument, argument, argument

The type and number of arguments must match the parameters in the
declaration of the called procedure. For a ByVal parameter, the
argument can be any expression of the matching type. For a ByRef
parameter, the argument must be a variable of the matching type.

Remarks

When a procedure is called, the current procedure is suspended until the called
procedure exits. Some procedures (e.g. Function procedures) can return a value. The
Call statement does not allow the returned value to be accessed.

The Call statement is optional. It can be omitted and the procedure_name specified as
the first item in the statement.

Examples

Call my_subroutine(10, 20, 30)
my_subroutine(10, 20, 30) ' Same as above
Call Move.OneAxis(1, 30, 0, MyProfile)

See Also

Statements |Function Statements | Sub Statements

450 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Case, Case Else Statements

Case, Case Else Statements

These instructions are used within a Select...Case...End Select series of statements.
Each Case specifies possible matches for the value to be matched and delineates the
statements to be executed if a match occurs.

Selectmatch_value
Casetest_expression, ..., test_expression
case_statements
:
[Casetest_expression, ..., test_expression
[case_statements]]
[Case Else
[else_statements]]
End Select

Prerequisites

Can only be specified within a Select...Case...End Select series of statements.

Remarks

Please see the documentation on the Select...Case...End Select statements for an
explanation on the use of the Case and Case Else instructions.

See Also

Statements |Select...CaseStatements

Copyright © 2024, Brooks Automation 451

19. Statements GPL Dictionary
Class Statement Part Number: 609719 Rev. A

Class Statement

This statement begins a Class definition.

[Public | Private] Classclass_name

Prerequisites

A Classmay only be declared at the top level of a file, within aModule, or within
another Class.

Parameters

class_name

The name of the Class being defined.

Remarks

A Class definition must always end with an End Class statement. If a Class is
declared Public, it can be accessed from outside theModule or Class in which it is
defined. A PrivateClass can only be accessed within theModule or Class where it is
defined. If the Public attribute is omitted, the Class defaults to Private. Other
attributes such as Friend or Protected are not supported. Variables, constants, and
procedures defined within the Class are members of the Class and can only be
accessed by first specifying the Class or an object of the Class.

Examples

Public Class cc ' Begin the class
Public x As Single ' Variable x is in cc object
Public y As Single ' Variable y is in cc object

End Class

Sub test
Dim obj As New cc ' Create object of class cc
obj.x = 2.5 ' Set x value in new object

End Sub

See Also

Statements |ModuleStatement

452 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Const Statement

Const Statement

This statement declares a read-only variable for use in a procedure. Use the Dim
statement for normal read-write variables.

[Public | Private] [Dim] Constvariable_name As type = init

Prerequisites

l A Const statement can only appear inside a class, procedure or a module.

l The Public and Private keywords cannot be used inside a procedure.

Parameters

variable_name

The name of the variable to be declared as a constant.

type

The type to be assigned to this variable. The type must be a primitive
type or a String. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

init

An expression that specifies the initial value for the new variable. It must
have a constant value. It may only be composed of numeric or String
constants, other Const variables, or built-in system functions.

Remarks

Only the Const statement can set the value of this variable. Everywhere else, an
error occurs if an attempt is made to modify the value.

The Dim keyword is optional.

Copyright © 2024, Brooks Automation 453

19. Statements GPL Dictionary
Const Statement Part Number: 609719 Rev. A

If both Public and Private are omitted, the default is Private.

Const variables declared within a class definition are implicitly Shared.

Unlike other declarations, only a single variable may be declared in one Const
statement.

Const variables declared within a procedure definition are initialized in the order in
which they occur and are known only within that procedure. Const variables outside
procedures may arbitrarily make forward references to other Const variables.

Examples

Const c1 As Integer = 10
Const c2 As Integer = c1 + 1
Const ascii_a As Integer = ASC("a")

See Also

Statements |Dim statements | ReDim statements

454 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Delegate Statement

Delegate Statement

This statement creates a Delegate class that provides a means for indirectly calling a
function or subroutine procedure using an object variable.

[Public | Private] Delegate Functiondelegate_name([parameter_list]) As type
-or-
[Public | Private] Delegate Subdelegate_name([parameter_list])

Prerequisites

None

Parameters

delegate_name

The name of the Delegate class to be defined.

parameter_list

A template for the parameters that are passed to the procedure when it
is called via a Delegate object. The number and type of the parameters
in this list must match whatever procedure is subsequently associated
with a Delegate object. The list may be empty if the procedure has no
parameters. The names of the parameters in this list are not important.
See the Function or Sub statement definitions for more details on
parameters lists.

type

For Function procedures, this is the type of the value returned by the
procedure associated with the Delegate object. This is not used if this
Delegate is for a Sub procedure.

Remarks

Copyright © 2024, Brooks Automation 455

19. Statements GPL Dictionary
Delegate Statement Part Number: 609719 Rev. A

Each Delegate statement defines a different Class that contains a template for
indirectly executing a type of procedure. A program can create Delegate objects that
contain pointers to Function or Sub procedures. These Delegate objects allow the
associated Function or Sub procedures to be called indirectly.

Delegate statements are equivalent to Class declarations and may occur at the
Module level or Class level.

The AddressOf operator is used when creating new Delegate objects. When a new
Delegate object is created, the type of the procedure and the argument list of the
procedure must be identical to the parameter_list and type specified in the
corresponding Delegate statement. If a non-shared class method is specified, a
reference to the object associated with that method is saved in the Delegate object
and used when the Delegate is referenced.

Examples

Module GPL
Public Delegate Sub SubDel(ByVal arg As String, _

ByRef out As String)
Public Sub Test

Dim del(1) As SubDel
Dim ii As Integer
Dim ss As String
del(0) = New SubDel(AddressOf TypeA)
del(1) = New SubDel("TypeB")
For ii = 0 To 1

del(ii)("message", ss)
Console.WriteLine(ss)

Next ii
' Output is "A message", "B message"

End Sub

Public Sub TypeA(ByVal ins As String, ByRef outs As
String)

outs = "A " & ins
End Sub

Public Sub TypeB(ByVal ins As String, ByRef outs As
String)

outs = "B " & ins
End Sub

End Module

456 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Delegate Statement

Module GPL2
Public Class D_Class

Public value As Double
Public Function Dcfun(ByVal arg As Integer) As

String
Dim ss As String
ss = "Dcfun, value: " & CStr(value) & ",

arg: " & CStr(arg)
Return ss

End Function
End Class

Public Delegate Function FunDel(ByVal arg As
Integer) As String

Public Sub Test
Dim obj As New D_Class
Dim ss As String
Dim dc_del As FunDel
obj.value = 2
dc_del = New FunDel(AddressOf obj.Dcfun)

ss = dc_del(4)
Console.Writeline(ss) ' Output is "Dcfun, value:

2, arg: 4"
Console.Writeline(dc_del(4).Length) ' Output is

"23"
End Sub

End Module

See Also

Statements |FunctionStatement| SubStatement

Copyright © 2024, Brooks Automation 457

19. Statements GPL Dictionary
Dim Statement Part Number: 609719 Rev. A

Dim Statement

This statement declares a variable for use in a class or procedure.

[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [
= [New] init]
-or-
[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [
= [New] init], variable_name [, variable_name …] As [New] type [= [New] init], …

Prerequisites

l A Dim statement can only appear inside a class, procedure or a module.

l The Public and Private keywords cannot be used inside a procedure.

l The Shared keyword cannot be used at the module level.

Parameters

variable_name

The name of the variable to be declared. In addition to the name, this
field may include an array specification of the form: variable_name(dim_
1 [, dim_2 …]), where dim_1 through dim_4 may be blank or contain an
Integer constant defining the maximum index of the corresponding
array dimension. GPL allows up to four dimensions.

type

The type to be assigned to this variable. The type may be a primitive
type, the name of a built-in class, or the name of a user-defined class.
The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the variable becomes an object variable.

init

458 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Dim Statement

An expression that specifies the initial value for the new variable. It does
not need to be a constant.

Remarks

If the Public or Private keywords are present, the Dim keyword may be omitted. If the
Shared keyword is specified, only a single copy of this variable is created. It exists for
all threads and persists even after the procedure in which is was defined has exited.
All variables declared at the module level are implicitly shared, even though the
Shared keyword is not allowed. Shared variables within a procedure can only be
accessed from within that procedure, but their values persist and may be accessed by
a subsequent procedure call.

If the Shared keyword is not specified on a Dim statement within a procedure, the
variable exists only within that procedure, and it is initialized each time the procedure
runs. If the Shared keyword is not specified on a Dim statement within a class
definition, a separate copy of the variable exists in each object of that class type. If
more than one variable_name field is specified, no init clause may be specified.

The New clause can only be specified for objects. If a New keyword is specified
immediately following the As keyword, no initializer value may be specified. If no init
clause is specified, the default value for numeric variables is zero, and for object
variables is Nothing. If an init clause is specified for a Shared variable, the
initialization takes place once when the main thread begins execution. If an init clause
is specified for a non Shared variable, the initialization takes place each time the
defining procedure is executed, or each time a new object of the class is created.

Examples

Dim ii As Integer
Dim ii As Integer = 10
Public ii As Integer = 10
Shared Dim count As Integer
Dim ii, jj As Integer, x As Double
Dim ii As Integer = 10, x As Double = 2.5
Dim start As Location
Dim start As New Location

See Also

Statements |Const Statement | ReDim Statement

Copyright © 2024, Brooks Automation 459

19. Statements GPL Dictionary
Do...Loop Statements Part Number: 609719 Rev. A

Do...Loop Statements

These instructions bound a block of instructions that are repeatedly executed so long
as a specified expression evaluates to True or until the expression value becomes
True.

Do While condition
[statements]

Loop

-or-

Do Until condition
[statements]

Loop

-or-

Do
[statements]

Loop While condition

-or-

Do
[statements]

Loop Until condition

Prerequisites

None

Parameters

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

460 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Do...Loop Statements

statements

Optional statement or list of statements that are repeatedly executed
within the control structure.

Remarks

This control structure either tests a condition at the start or the end of a block of
statements and repeatedly executes the statements so long as the condition is True
or until it becomes True. It can be used to implement program instruction loops.

For the Do While and Do Until forms of this control structure, the condition test is
performed prior to the execution of the statements. If the condition permits the loop to
be executed, the statements will be executed once. At the conclusion of the loop, the
test is repeated to determine if the statements should be executed again. So long as
the condition permits execution, the statements will be repeatedly executed. If not,
execution of the statements is terminated. In any case, if the condition does not permit
the execution of the loop on the first test, the statements are never executed.

In contrast, for the Loop While or Loop Until forms of this control structure, the
statements will always be executed at least one time. For these forms, the test is
performed at the conclusion of the execution of the statements. So long as the
condition permits execution, the statements will be repeated executed. However, if
the condition does not permit the execution of the loop on the first test, the statements
will still have been executed one time.

For all forms of this control structure, when the condition test is not satisfied, program
execution continues at the first statement following the Loop instruction.

If theWhile form of the condition test is specified, the condition is satisfied and
execution of the statements is permitted so long as the value of the condition is True.
For the Until form of the condition test, the condition is satisfied and execution is
permitted until the condition becomes True.

For more complex logic, multiple Do… Loop sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a Do…
Loop can contain an If…Then…End If sequence which can in turn contain a
While…End While sequence.

Execution of the Do loop can be terminated by a number of different methods: the
condition can be set to a value that does not satisfied the test; execution can be
explicitly transferred to an instruction outside of the loop, e.g. by the execution of a
GoTo instruction; or an Exit Do instruction can be executed.

Copyright © 2024, Brooks Automation 461

19. Statements GPL Dictionary
Do...Loop Statements Part Number: 609719 Rev. A

When an Exit Do statement is encountered, execution of the innermost Do…Loop
sequence is immediately terminated and execution continues at the instruction
following the Loop statement. There can be none or several Exit Do statements
within each Do loop.

Examples

Dim count As Integer
count = 10
Do ' Embedded statements always execute
at least once

If count = 5 Then
Exit Do ' Prematurely stops Do loop

End If
count -= 1 ' Same as “count = count-1”

Loop Until count <= 0

See Also

Statements |For…Next Statements |GoTo Statements | If…Then…Else…End If Statements |
While…End While Statements

462 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Else, ElseIF Statements

Else, ElseIF Statements

These instructions are used within an If…Then…Else…End If series of statements to
conditionally execute alternative blocks of instructions.

If condition Then
[statements]
[ElseIf elseif_condition Then
[elseif_statements]]
:

[ElseIf elseif_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

Prerequisites

Can only be specified within an If…Then…End If series of statements.

Remarks

Please see the documentation on the If…Then…Else…End If Statements for an
explanation on the use of the Else and ElseIf instructions.

See Also

Statements |If…Then…Else…End If Statement

Copyright © 2024, Brooks Automation 463

19. Statements GPL Dictionary
End Statements Part Number: 609719 Rev. A

End Statements

These statements mark the end of control structures and major project elements such
as procedures or modules.

End Class
-or-
End Function
-or-
End Get
-or-
End If
-or-
End Module
-or-
End Property
-or-
End Select
-or-
End Set
-or-
End Sub
-or-
End While

Prerequisites

Must always follow and match the type of control structure or procedure that is
referenced.

Remarks

Each of the forms of the End statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the related statements
and program elements for information on the End statements, e.g. see the
While…End While Statements for information on the End While and see Sub for
information on End Sub.

See Also

Statements |Function Statement | If…Then…Else…End If Statements |Module Statement |
Select...Case Statements | Sub Statement |While…End While Statements

464 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Exit Statements

Exit Statements

These statements terminate the execution of a block of instructions within the
innermost control structure of a specified type or a procedure. Execution is continued
after the end of the control structure or the call to the procedure.

Exit Do
-or-
Exit For
-or-
Exit Function
-or-
Exit Property
-or-
Exit Select
-or-
Exit Sub
-or-
Exit Try
-or-
Exit While

Prerequisites

Can only be specified within the control structure or procedure type that is referenced.

Remarks

Each of the forms of the Exit statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the specific
statements and program elements for information on the Exit statements, e.g. see the
While…End While Statements for information on the use of Exit While and Sub for
the use of Exit Sub.

See Also

Statements |Do… Loop Statements| Exit Try Statement | For…Next Statements| Select...Case
Statements | While…End While Statements

Copyright © 2024, Brooks Automation 465

19. Statements GPL Dictionary
For...Next Statements Part Number: 609719 Rev. A

For...Next Statements

These instructions bound a block of instructions that are repeatedly executed a
specified number of times.

For variable = initial_value To final_value Step increment
[statements]

Next variable2

Prerequisites

None

Parameters

variable

Required control variable that is incremented each loop and whose
value determines when looping is to be terminated. The variable can be
any numeric type, i.e.. Byte, Integer, Short, Single or Double. Array
variables as well as object and structure fields are also permitted.
However, object and structure properties are not permitted.

initial_value

Required expression that is evaluated once when the For loop is first
entered. The variable is set to this initial_value and has this value at the
start of the first pass through the execution of the statements.

final_value

Required expression whose value is tested against the variable to
determine when loop execution is to terminate. This expression is
evaluated once when the For statement is executed and its value is
saved for subsequent tests by the Next statement. Therefore, this value
will not change once the For loop is entered.

466 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A For...Next Statements

increment

Optional expression that determines the amount by which the variable is
changed each loop and also whether the variable is tested for being
greater than or less than the final_value as the termination condition.
This expression is evaluated once when the For statement is executed
and its value is saved for subsequent tests by the Next statement.
Therefore, this value will not change once the For loop is entered. If this
expression is not specified, a step of 1 is assumed.

statements

Optional statement or list of statements that are repeatedly executed
during each For loop.

variable2

Optional control variable, which if specified, must exactly match the
control variable in the matching For statement. This is only used when
the program is compiled (and not at runtime) to ensure that the Next and
For statements match.

Remarks

This control structure loops and repeatedly executes the statements a specified
number of times (iterations). It can be used to implement program instruction loops
and is generally more efficient that the other means of looping.

The For statement begins execution by evaluating its arguments and saving their
values for future potential use by the matching Next statement. It then sets the value
of the control variable equal to the initial_value. If the variable’s value does not exceed
the final_value, then the statements are executed for the first time. If the variable’s
value does exceed the final_value, the statements are skipped and execution
continues at the first statement beyond the matching Next.

If the statements are executed, execution proceeds until the Next instruction is
encounter. When the Next statement is executed, the increment is added to the
variable and its value is compared again to the final_value. So long as the final_value
is not exceeded, the for_loop_statements are executed again and the process is
repeated. Otherwise, execution continues at the statement following the Next.

Copyright © 2024, Brooks Automation 467

19. Statements GPL Dictionary
For...Next Statements Part Number: 609719 Rev. A

If the increment is a positive number, looping terminates when the variable’s value is
greater than the final_value. If negative, looping terminates when the variable’s value
is less than the final_value.

For more complex logic, multiple For…Next sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a For
loop can contain an If…Then…End If sequence which can in turn contain another
For…Next sequence.

Execution of the For loop can be terminated by a number of different methods: the
variable’s value can exceed the final_value; execution can be explicitly transferred to
an instruction outside of the loop, e.g. by the execution of aGoTo instruction; or an
Exit For instruction can be executed.

When an Exit For statement is encountered, execution of the innermost For…Next
sequence is immediately terminated and execution continues at the instruction
following the Next. There can be none or several Exit For statements within each For
loop.

Examples

Dim count As Integer
For count = 1 To 10 ' Plan to execute 10 loops

If count = 5 Then
Exit For ' Prematurely stops For on 5

th loop
End If

Next count ' count is optional in the
Next

See Also

Statements |Do… Loop Statements|GoTo Statements | If…Then…Else…End If Statements|
While…End While Statements

468 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Function Statement

Function Statement

This statement begins a user-defined function procedure. It specifies the function
return data type and any parameters that are passed when it is called.

[Public | Private | Shared] Functionfunction_name([parameter_list]) As type

Prerequisites

l Procedures cannot be declared inside of other procedures.

l Procedures can only be declared within modules or classes.

Parameters

function_name

The name of function to be defined.

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the function has no parameters. Multiple
parameter list elements are separated by ",". Each element has the
form:

[ByVal | ByRef] parameter_nameAstype

parameter_name

The name of the variable associated with
this parameter. This name is known only
within the procedure being defined.

Copyright © 2024, Brooks Automation 469

19. Statements GPL Dictionary
Function Statement Part Number: 609719 Rev. A

type

The type of this parameter. The type may be
either a primitive type or the name of a built-
in class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the
called routine can always change an object value, even when passed
using a ByVal parameter.

type

The type of the value returned by this function. The type may be a
primitive type, the name of a built-in class, or the name of a user-defined
class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

A Function procedure returns a value that can be used within an expression where a
value of the proper type is allowed. A Function can also be used with a Call
statement or by itself as a statement when the returned value is not needed.

A Function definition must always end with an End Function statement.

470 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Function Statement

A Function procedure exits when it encounters the End Function statement, an Exit
Function statement, or a Return statement.

The returned value of function is specified by assigning a value to a variable named
function_name, or by a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the module or class where it is defined.

The Shared keyword can only be used within a class definition. If it appears, the
Function is associated with the entire class rather than with a particular object of that
class type.

Examples

Function add_function (x As Integer, y As Integer) As
Integer

add_function = x+y
End Function

a = add_function(4, 5) * 2 ' Variable a gets
value 18

See Also

Statements | Delegate Statement | End Function Statement | Exit Function Statement | Return
Statement | Sub Statement

Copyright © 2024, Brooks Automation 471

19. Statements GPL Dictionary
Get Statement Part Number: 609719 Rev. A

Get Statement

This statement begins aGet procedure block within a Property procedure definition.

Get

Prerequisites

l This statement can only appear within a Property definition.

l The Property definition that contains this statement must not specify theWriteOnly attribute.

Parameters

None

Remarks

TheGet procedure block must always end with an End Get statement. When a
procedure gets the containing Property, theGet procedure is executed. It is up to that
procedure to retrieve or compute the property value and return it. The returned value
of the Property is specified by assigning a value to a variable with the same name as
the Property or by a Return statement.

Examples

Class cc
Private sizex2 As Integer = 44

Public ReadOnly Property size As Integer
Get

Return sizex2/2
End Get

End Property

End Class
:

Dim obj As New cc
Console.WriteLine(obj.size) ' Displays value 22

See Also

Statements |PropertyStatement| SetStatement

472 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A GoTo Statement

GoTo Statement

This statement performs an unconditional branch and continues execution at a
specified labeled instruction.

GoTo label

Prerequisites

None

Parameters

label

Required program instruction label. A label must conform to the naming
conventions for either be a valid variable name (e.g. label3) or an integer
literal (e.g. 1000).

Remarks

This instruction alters the sequence of program statement execution by setting the
label’ed statement as the next instruction to be executed.

The referenced label’ed instruction must be in the same procedure as theGoTo
instruction and can be on an instruction before or after theGoTo instruction. You
should not use aGoTo to jump from the outside of a control structure (e.g. a
For…Next or If…Then…Else…End If) to within a control structure.

To label an instruction, specify the label name followed by a colon (:) followed by any
standard instruction.

In general,GoTo instructions can make code difficult to read and debug. So,
wherever possible software should be written to make use of the other control
structures, e.g. If…Then…Else…End If,While…End While.

Examples

Copyright © 2024, Brooks Automation 473

19. Statements GPL Dictionary
GoTo Statement Part Number: 609719 Rev. A

Dim too_big As Boolean, angle As Single
too_big = False
angle = 175.5
If angle > 360 Or angle < -360 Then

too_big = True
GoTo Error_Exit ' An Else clause

would be better,
End If ' but this shows
how to use GoTo

my_routine(angle)

Error_Exit:

See Also

Statements |Do… Loop Statements| For…Next Statements | If…Then…Else…End If
Statements |While…End While Statements

474 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A If..Then...Else...End If Statements

If..Then...Else...End If Statements

A series of statements that conditionally execute a block of embedded statements
based upon the value of an expression.

If condition Then
[statements]
[ElseIf elseif_condition Then
[elseif_statements]]
:

[ElseIf elseif_condition Then
[elseif_statements]]

[Else
[else_statements]]

End If

-or-

If condition Thenstatement

Prerequisites

None

Parameters

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are executed if the condition
evaluates to True.

Copyright © 2024, Brooks Automation 475

19. Statements GPL Dictionary
If..Then...Else...End If Statements Part Number: 609719 Rev. A

elseif_condition

Expression that is required if an optional ElseIf clause is specified. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

elseif_statements

Optional statement or list of statements that are executed if the
associated elseif_condition evaluates to True.

else_statements

Optional statement or list of statements that are executed if the Else
clause is present and the precedingcondition and elseif_condition
values all test False.

Remarks

This control structure tests one or more expressions and conditionally executes at
most one block of statements or a single statement. It can be used to implement
simple “either-or” types logic or more complex decisions based upon multiple
conditions with multiple possible outcomes.

The If…Then statement begins by first testing the value of the condition. If the
condition is True, the statements are executed, after which, all of the following
program instructions are skipped until the closing End If is encountered. If the
condition is False, the statements are skipped and processing continues at the first
ElseIf, Else, or End If clause that follows the statements. Any condition that evaluates
to <>0 will be interpreted as a True value.

An arbitrary number of ElseIf clauses can optionally follow the statements and
precede the Else. If the condition is False, the first ElseIf clause is processed by
evaluating its elseif_condition. If its elseif_condition is True, its elseif_statements are
executed after which all of the following program instructions are skipped until the
closing End If is encountered. If its elseif_condition is False, its elseif_statements are
skipped and processing continues at the next ElseIf, Else, or End If clause that
follows the elseif_statements.

476 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A If..Then...Else...End If Statements

An If…Then group of statements can contain a single optional Else statement. If the
condition and all optional elseif_conditions have tested false, the optional else_
statements will be executed.

For more complex logic, multiple If…Then…End If statements can be nested to an
arbitrary depth and can be combined with other nested control structures. For
example, a For loop can contain an If…Then…End If sequence which can in turn
contain another If…Then…End If sequence.

Examples

Dim a As Boolean, b As Integer, c As Single
a = True
b = 20
If a AND (b > 10) Then ' This condition eval-
uates to True

c = 3.14159 ' This assignment will be
executed
Else

c = 0 ' This assignment will be
skipped
End If

See Also

Statements | Do… Loop Statements | For…Next Statements |GoTo Statements | Select...Case
Statements |While…End While Statements

Copyright © 2024, Brooks Automation 477

19. Statements GPL Dictionary
Loop Statements Part Number: 609719 Rev. A

Loop Statements

These instructions mark the end of a Do…Loop block of instructions and in some
instances also specify the loop termination condition.

Loop
-or-
Loop Until condition
-or-
Loop While condition

Prerequisites

Must always follow and match a Do statement within a procedure.

Remarks

Please see the documentation on the Do…Loop Statements for an explanation of the
use of the Loop instructions.

See Also

Statements |Do... Loop Statement

478 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Module Statement

Module Statement

This statement begins a user-defined module section. All variable definitions and
procedures must be inside aModule or Class definition.

Modulemodule_name

Prerequisites

Modules can only be declared at the top-level of a file.

Parameters

module_name

The name of module that is being started.

Remarks

A Module must always end with an End Module statement. A Module contains
variable, procedures or class definitions. There can be multiple modules defined in a
single file. All variables, procedures and classes defined within a module can be
accessed anywhere in that module. Only Public variables, procedures and classes
can be accessed outside the module.

Examples

Module main_module
Public Dim Start As Location ' All modules can access Start
Private Dim x1 As Location ' Only this module can access x1

' All modules can access add_function

Public Function add_function (x As Integer,y As Integer) As Integer
add_function = x+y

End Function
End Module

See Also

Statements | Class Statement | Dim Statement| End Module Statement| Function Statement|
Sub Statement

Copyright © 2024, Brooks Automation 479

19. Statements GPL Dictionary
Next Statements Part Number: 609719 Rev. A

Next Statements

This instruction marks the end of a For…Next block of instructions.

Next variable

Prerequisites

Must always follow and match a For statement within a procedure.

Remarks

Please see the documentation on the For…Next Statements for an explanation of the
use of the Next instruction.

See Also

Statements |For…Next Statements

480 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Property Statement

Property Statement

This statement begins a user-defined Property procedure. It specifies the return data
type and any parameters that are passed when it is called.

[Public | Private | Shared | ReadOnly |WriteOnly]Propertyproperty_name ([
parameter_list]) Astype)

Prerequisites

l Properties can only be declared within class definitions.

Parameters

property_name

The name of the Property to be defined.

parameter_list

A list of parameters that are passed to the Property when it is called.
Properties often have an empty parameter list. Each parameter appears
as a locally defined variable and is associated with a value when the
procedure is called. The caller must provide arguments that match the
number and type of the parameters specified in this statement. The list
may be empty if the Property has no parameters. Multiple parameter list
elements are separated by ",". Each element has the form:

[ByVal | ByRef] parameter_nameAstype

parameter_name

The name of the variable associated with
this parameter. This name is known only
within the procedure being defined.

type

Copyright © 2024, Brooks Automation 481

19. Statements GPL Dictionary
Property Statement Part Number: 609719 Rev. A

The type of this parameter. The type may be
a primitive type, the name of a built-in class,
or the name of a user-defined class. The
primitive type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
the argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine. Since object variables
always deal with pointers to object values, the called routine can always
change an object value, even when passed using a ByVal parameter.

type

The type of the value returned by this Property. The type may be either
a primitive type, the name of a built-in class, or the name of a user-
defined class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

Property procedures may set a value or get (return) a value. Property procedures
that set a value must include a set procedure block that begins with a Set statement
and ends with an End Set statement. The property_name and parameter_list may be
used on the left-hand side of an assignment statement. A Property procedure that
gets a value must include a get procedure block that begins with aGet statement and
ends with an End Get statement. AGet Property may be used just like a Function
within an expression or on the right-hand side of an assignment statement, where a
value of the proper type is allowed.

A Property definition must always end with an End Property statement.

482 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Property Statement

If the Property contains only a get procedure, the ReadOnly keyword must be
specified. If the Property contains only a set procedure, theWriteOnly keyword must
be specified. A property procedure exits when it encounters the End Property
statement, an Exit Property statement or a Return statement. If Public is specified,
this procedure can be called from other modules or classes. Otherwise it can only be
called from within the class where it is defined. If the Shared keyword appears, the
property is associated with the entire class rather than with a particular object of that
class type.

Examples

Class cc
Private size_value As Integer

Public Property size As Integer ' Set size, clip value at 10
Set (value As Integer)

If value > 10 Then
value = 10

End If
size_value = value

End Set
Get

Return size_value
End Get

End Property

End Class
:

Dim obj As New cc
obj.size = 20 ' Sets size_value
Console.WriteLine(obj.size) ' Displays 10

See Also

Statements |GetStatement| SetStatement

Copyright © 2024, Brooks Automation 483

19. Statements GPL Dictionary
ReDim Statement Part Number: 609719 Rev. A

ReDim Statement

This statement increases or decreases an array size by changing the array's upper
bounds.

ReDim [Preserve] variable_name (dim_1[, dim_2 …])

Prerequisites

The variable_name parameter must already be declared to be an array, with the same
number of dimensions, in a Dim, Public, or Private statement.

Parameters

variable_name

The name of the array variable that is to have its size changed.

dim_1, dim_2, …

The new upper bounds for each dimension of the array. ReDim cannot
change the number of dimensions, so the number of dimensions must
match the original array declaration.

If the Preserve keyword is specified, all dimensions except the last
(right-most) must remain the same.

Remarks

The previous contents of an array are lost when an ordinary ReDim statement is
executed. If the Preserve keyword is specified, the previous contents of the array are
preserved.

Examples

Dim array(3,4) As Integer
Dim array2() As String

484 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A ReDim Statement

ReDim array(4,6)
ReDim array2(10)
ReDim array2(2,3) ' Invalid, cannot change #
of dimensions
ReDim Preserve array(3, 10)
ReDim Preserve array(4, 10) ' Invalid, can only change
last dimension

See Also

Statements |Dim Statements

Copyright © 2024, Brooks Automation 485

19. Statements GPL Dictionary
Return Statement Part Number: 609719 Rev. A

Return Statement

This statement causes a user-define procedure to return control the the calling
procedure and optionally return a value.
Return[value]

Prerequisites

Return can only appear within a procedure.

Parameters

value

The value to be returned to the calling procedure if the current
procedure is a Function. The value field must be specified in a Function
procedure. It must not be specified in Sub procedure.

Remarks

The current procedure exits when it encounters a Return statement and execution
continues with the calling procedure. If there is no calling procedure, the current
thread is terminated with success. In a function procedure, a Return is equivalent to
assigning a value to the function-name variable followed by an Exit Function
statement.

Examples

Function add_function (x As Integer, y As Integer) As Integer
Return x+y

End Function

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
result = x+y
Return

End Sub

See Also

Statements |Exit Function statement | Exit Sub statement

486 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Select...Case...End Select Statements

Select...Case...End Select Statements

Evaluates a target expression, compares its value to a series of values and executes
the block of statements associated with the first matching value.

Selectmatch_value
Casetest_expression, ..., test_expression
case_statements
[Casetest_expression, ..., test_expression
[case_statements]]
:
[Case Else
[else_statements]]
End Select

Prerequisites

None

Parameters

match_value

Required numeric or String expression that defines the value to be
matched.

test_expression

Required numeric or String expression that is specified with each Case
statement to define the values to be compared to the match_value.
Each Case statement must have at least one test_expression, but can
have more than one.

case_statements

Optional statement or list of statements that are executed if any of the
test_expressions for the associated Case statement match the match_
value.

Copyright © 2024, Brooks Automation 487

19. Statements GPL Dictionary
Select...Case...End Select Statements Part Number: 609719 Rev. A

else_statements

Optional statement or list of statements that are executed if the Case
Else statement is present and none of the test_expressions match the
match_value.

Remarks

This control structure executes one of several blocks of statements based upon
matching a numeric or String expression value. This control structure is similar to the
If…Then...ElseIf statements in that a series of values are compared to determine the
statements that are executed next. However, this control structure is more efficient
and convenient than a series of If statements if a single value is to be compared to
multiple possible values.

The Select statement defines the value to be matched. The match_value is
evaluated once and then sequentially tested against each test_expression specified
in the following Case statements. When the first matching test_expression value is
found, the associated case_statements are executed. Following the execution of the
appropriate case_statements, execution continues at the statement following the End
Select. If no test_expression is matched and a Case Else is present, the else_
statements are executed. If no test_expression is matched and a Case Else is not
defined, none of the case_statements are executed and execution continues after the
End Select

The match_value and each of the test_expressions can be either a numeric or String
expression and can evaluate to any of the basic arithmetic data types (e.g. integer,
real number, byte) or a String type. If the data type of a test_expression does not
match that of the match_value, it is automatically converted to the correct data type. If
a String comparison is performed, the comparison is case sensitive, e.g. "A" and "a"
are considered different.

A Select sequence must contain at least one Case or Case Else statement. Any
number of additional Case statements can be included, but only one Case Else is
permitted and the Case Elsemust occur just prior to the End Select.

If an Exit Select is encountered in either the case_statements or else_statements,
execution of the remaining statements in the block is skipped. Execution continues at
the instruction following the End Select.

Examples

Dim target, s1, s2 As String
target = "ab"

488 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Select...Case...End Select Statements

s1 = "a"
s2 = "b"
Select target

Case s1, "dd"
Console.Writeline("Wrong")

Case s2
Console.Writeline("Wrong")

Case s1 & s2
Console.Writeline("Right")

Case Else
Console.Writeline("Wrong")

End Select

See Also

Statements|Do… LoopStatements | For…NextStatements |GoToStatements |
If…Then…Else…End IfStatements |While…End WhileStatements

Copyright © 2024, Brooks Automation 489

19. Statements GPL Dictionary
Set Statement Part Number: 609719 Rev. A

Set Statement

This statement begins a Set procedure block within a Property procedure definition.

Set (parameter_nameAstype)

Prerequisites

l This statement can only appear within a Property definition.

l The Property definition that contains this statement must not specify the ReadOnly attribute.

Parameters

parameter_name

The name of the parameter that contains the new value to which the
property is being set.

type

The type of the parameter_name parameter. This type must be identical
to the type of the Property that contains the Set statement.

Remarks

The Set procedure block must always end with an End Set statement.

Unlike VB.NET, the clause (parameter_nameAstype) must always be specified.

When a procedure sets the containing Property, the new value for the property is
copied to the parameter_name variable, and the Set procedure is executed. It is up to
that procedure to use or save the new value as desired.

Examples

Class cc
Private size_value As Integer
Public WriteOnly Property size As Integer ' Set

490 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Set Statement

size, clip value at 10
Set (value As Integer)

If value > 10 Then
value = 10

End If
size_value = value

End Set
End Property

End Class
:

Dim obj As New cc
obj.size = 20 ' Sets size_
value

See Also

Statements |PropertyStatement| GetStatement

Copyright © 2024, Brooks Automation 491

19. Statements GPL Dictionary
Sub Statement Part Number: 609719 Rev. A

Sub Statement

This statement begins a user-defined subroutine procedure. It specifies any
parameters that are passed when it is called.

[Public | Private | Shared] Subsubroutine_name([parameter_list])

Prerequisites

l Procedures cannot be declared inside of other procedures.

l Procedures must be declared within modules or classes.

Parameters

subroutine_name

The name of the subroutine to be defined.

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement. The list may be empty if the subroutine has no
parameters. Multiple parameter list elements are separated by “,’. Each
element has the form:

[ByVal | ByRef] parameter_nameAstype

parameter_name

The name of the variable associated with
this parameter. This name is known only
within the procedure being defined.

type

492 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A Sub Statement

The type of this parameter. The type may be
either a primitive type or the name of a built-
in class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine. Since object variables
always deal with pointers to object values, the called routine can always
change an object value, even when passed using a ByVal parameter.

Remarks

A Sub procedure does not return a value and cannot be used within an expression. A
Sub procedure can be used with a Call statement or by itself as a statement. A Sub
definition must always end with an End Sub statement. A subroutine procedure exits
when it encounters the End Sub statement, an Exit Sub statement, or a Return
statement. If Public is specified, this procedure can be called from other modules or
classes. Otherwise it can only be called from the module or class where it is defined.
The Shared keyword can only be used within a class definition. If it appears, the
subroutine is associated with the entire class rather than with a particular object of that
class type.

Examples

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
result = x+y

End Sub

add_sub(4, 5, a) ' Variable a gets value 9

See Also

Statements |Delegate Statement | End Sub Statement | Exit Sub Statement | Return Statement
| Sub Statement

Copyright © 2024, Brooks Automation 493

19. Statements GPL Dictionary
While...End While Statements Part Number: 609719 Rev. A

While...End While Statements

These instructions bound a block of instructions that are repeatedly executed so long
as a specified expression evaluates to True.

While condition
[statements]

End While

Prerequisites

None

Parameters

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are repeatedly executed so
long as the condition evaluates to True.

Remarks

This control structure tests an expression and repeatedly executes a block of
statements. It can be used to implement program instruction loops.

TheWhile statement begins execution by testing the value of the condition. If the
condition is True, the statements are executed. When the End While instruction is
encountered, the condition is tested again. If the condition is still True, the statements
are executed once again. This process is repeated until the condition tests False or
the statements explicitly execute an instruction that continues execution outside of the

494 Copyright © 2024, Brooks Automation

Brooks Automation 19. Statements
Part Number: 609719 Rev. A While...End While Statements

loop. If the condition ever tests False, execution continues at the instruction following
the End While.

If the condition is False when theWhile first begins execution, the statements are
skipped, in which case, the statements are not executed even once.

For more complex logic, multipleWhile…End While sequences can be nested to an
arbitrary depth and can be combined with other nested control structures. For
example, aWhile loop can contain an If…Then…End If sequence which can in turn
contain anotherWhile…End While sequence.

Execution of theWhile loop can be terminated by a number of different methods: the
condition can be set False prior to the execution of the End While statement;
execution can be explicitly transferred to an instruction outside of the loop, e.g. by the
execution of aGoTo instruction; or an Exit While instruction can be executed.

When an Exit While statement is encountered, execution of the innermost
While…End While sequence is immediately terminated and execution continues at
the instruction following the End While. There can be none or several Exit While
statements within eachWhile loop.

Examples

Dim count As Integer
count = 10
While count > 0 ' This condition initially
evaluates to True

If count = 5 Then
Exit While ' Prematurely stops While

loop
End If
count -= 1 ' Same as “count = count-1”

End While

See Also

Statements |Do… Loop Statements| For…Next Statements |GoTo Statements |
If…Then…Else…End If Statements

Copyright © 2024, Brooks Automation 495

20. Strings GPL Dictionary
String Summary Part Number: 609719 Rev. A

20. Strings

String Summary

The following pages provide detailed information on the properties, methods and
functions that are available to assist in manipulating String variables. Internally,
Strings are implemented using much of the same structure and procedures as other
built-in Classes. Therefore, in addition to providing classic Basic functions for
operating on Strings, e.g. Len, String variable properties and methods are also
available for performing many of the same operations.

A number of easy-to-use functions are provided for converting between String values
and numerical values, e.g. CStr, CDbl, CInt, Hex . Each of these built-in operations
is described in the section on Functions.

Table 20-1 summarizes the properties and methods of String variables that are
described in greater detail in the following section.

Member Type Description

String.Compare Method Compares the values of two Strings in either a case sensitive or case
insensitive manner.

string.IndexOf Method Searches for an exact match of a substring within the string variable and returns
the starting position if found (0-n).

string.Length Property Returns the number of characters stored in a String variable.

string.Split Method Divides the string variable value into a series of substrings based upon a
specified separator character and returns the array of substrings.

string.Substring Method Returns a substring of the string variable starting at a specific character position
and with the specified length.

string.ToLower Method Returns a copy of the string with all lower case characters.

string.ToUpper Method Returns a copy of the string with all upper case characters.

Table 20-1: String Variables

496 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A String Summary

Member Type Description

string.Trim Method Trims off characters or white space from the start and end of a String variable
value.

string.TrimEnd Method Trims off characters or white space from the end of a String variable value.

string.TrimStart Method Trims off characters or white space from the start of a String variable value.

Table 20-2 summarizes the String functions that are also described in greater detail in
the subsequent section.

Function Description

Asc (string) Converts the first character of a String to its equivalent ASCII numerical code.

Chr (expression) Given a numerical ASCII code, a String that consists of the equivalent ASCII character
is returned.

Format (expression,
format_s)

Converts a numerical value to a String value based upon a specified output format
specification.

FromBitString (string,
type, big_endian)

Extracts a number that has been packed in its internal bit format into a String and
returns the value of the number.

Instr (start, string_t,
string_s)

Searches for an exact match of a substring within a String expression and returns the
starting position if found (1-n).

LCase (string) Returns a String value that has been converted to lower case.

Len (string) Returns the number of characters in a String.

Mid(string, first, length) Returns a substring of the string starting at the first character position and consisting of
length number of characters.

ToBitString
(expression, type, big_
endian)

Converts the value of an expression to a specific numeric type and returns the internal
bit representation of the number packed into a String value.

UCase (string) Returns a String value that has been converted to upper case.

Table 20-2: String Functions

Copyright © 2024, Brooks Automation 497

20. Strings GPL Dictionary
String.Compare Method Part Number: 609719 Rev. A

String.Compare Method

Compares two String expressions either taking into consideration or ignoring the
case of the characters and returns an indication of the results.

...String.Compare(string_a, string_b, ignore_case)

Prerequisites

None

Parameters

string_a

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

string_b

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

ignore_case

An optional numeric expression. If the value of this expression is True,
the comparison is performed ignoring the case of the characters, i.e. "A"
will be equal to "a". If this value is False or not specified, the comparison
is performed in a case-sensitive manner.

Remarks

This shared method compares the values of two String expressions and returns an
indication of the results of the comparison. Depending upon the value of ignore_case,
the comparison is either performed taking into account the case of characters or

498 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A String.Compare Method

ignoring the case of characters. The returned value is interpreted as shown in Table
20-3.

String Relationship Returned result

 string_a > string_b > 0

 string_a = string_b = 0

 string_a < string_b < 0

Table 20-3: Compared Value of Two String Expressions

String comparisons can also be performed using the standard comparison operators,
i.e. =, <>, <, >, <=, >=. When two Strings are compared using the comparison
operators, the comparison is always performed taking into consideration the case of
the characters.

Examples

Dim stg As String ' Create a new
string variable
Dim ii As Integer
stg = "aBcdef"
ii = String.Compare(stg, "abcdef") ' ii will be set <0

See Also

Strings

Copyright © 2024, Brooks Automation 499

20. Strings GPL Dictionary
string.IndexOf Method Part Number: 609719 Rev. A

string.IndexOf Method

Searches for an exact match of a substring within a string variable and returns the
starting position if found (0-n).

...string.IndexOf(string_s, start)

Prerequisites

None

Parameters

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string value.

start

An optional numeric expression. This value specifies the first character
position that is tested in the string. If undefined, match testing begins
with the first character in string. Unlike the Instr function, a 0 specifies
the first character position in the string.

Remarks

This method searches the value of the string variable for an exact, case sensitive
match to the specified string_s value. The search begins at the character specified by
start and continues with successive characters until either the first match is found or
the end of the string is encountered.

Depending upon the outcome of the search, the following values in Table 20-4 are
returned by this method.

500 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A string.IndexOf Method

String Values Returned Value

string_s is found in
string

Character position where the match begins. 0 indicates matched started at the first
character of string.

string has a zero
length

-1

string_s has a zero
length

start value

string_s not found in
string

-1

Table 20-4: String Value, Case Sensitive Match

Examples

Dim stg_a As String ' Create string
variable
Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPqRsTuVwXyZaBcDeFgHiJk"
pos = stg_a.IndexOf("Fg") ' pos will be set
to 5
pos = stg_a.IndexOf("FG") ' pos will be set
to -1
pos = stg_a.IndexOf("Fg", 10) ' pos will be set
to 31

See Also

Strings | Instr Function

Copyright © 2024, Brooks Automation 501

20. Strings GPL Dictionary
string.Length Property Part Number: 609719 Rev. A

string.Length Property

Returns the count of the number of characters stored in a String variable.

...string.Length

Prerequisites

None

Parameters

None

Remarks

Returns the Integer count of the number of characters that are stored in a String
variable. If the value of the String is empty, a count of 0 is returned.

Examples

Dim stg As String ' Create a new string vari-
able
Dim ii As Integer
stg = "123456"
ii = stg.Length ' ii will be set to 6

See Also

Strings | Len Function

502 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A string.Split Method

string.Split Method

Divides a String variable value into a series of substrings based upon a specified
separator character and returns the array of substrings.
...string.Split(separator_string)

Prerequisites

None

Parameters

separator_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. The first character of this expression defines the
separator character. For example, to split a line containing substrings
separated by commas, this String should be set to ",".

Remarks

This method scans the value of the string variable searching for the specified
separator character. Each time the separator is found, the text after the previous
separator (or from the start of the string if this is the first separator) and up to the new
separator is taken as a substring and stored in a String array that is returned by this
method. If the string variable does not contain a separator character, the entire
contents of the string are copied to first element of the output array.

Examples

Dim stg_arr() As String ' Create array string variable
Dim stg As String
stg = "1,2 ,this is the 3rd string"
stg_arr = stg.Split(",") ' stg_arr(0) = "1"

' stg_arr(1) = "2 "
' stg_arr(2) = "this is the 3rd string"

See Also

Strings

Copyright © 2024, Brooks Automation 503

20. Strings GPL Dictionary
string.Substring Method Part Number: 609719 Rev. A

string.Substring Method

Extracts and returns a substring of the string variable starting at a specific character
position and with a specified length.
...string.Substring(first_pos, length)

Prerequisites

None

Parameters

first_pos

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike theMid function,
the first character position is 0 rather than 1.

length

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string starting at the first_pos will be copied.

Remarks

This method extracts a substring from the value of a String variable and returns the
results. The substring is specified by its starting character position in the string and
the number of characters to be extracted.

Examples

Dim stg_a, stg_result As String ' Create two string variables
stg_a = "aBcdef"
stg_result = stg_a.Substring(3, 2) ' stg_result will be set to "de"

See Also

Strings | Mid Function

504 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A string.ToLower Method

string.ToLower Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to lower case.

...string.ToLower

Prerequisites

None

Parameters

None

Remarks

This method copies the value of a String variable and converts all of the alphabetic
characters to lower case while leaving all of the non-alphabetic characters
unchanged.

Examples

Dim stg_a, stg_b As String ' Create two string vari-
ables
stg_a = "aBcDeF"
stg_b = stg_a.ToLower ' stg_b set to "abcdef"

See Also

Strings | LCase Function |string.ToUpper| UCase Function

Copyright © 2024, Brooks Automation 505

20. Strings GPL Dictionary
string.ToUpper Method Part Number: 609719 Rev. A

string.ToUpper Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to upper case.

...string.ToUpper

Prerequisites

None

Parameters

None

Remarks

This method copies the value of a String variable and converts all of the alphabetic
characters to upper case while leaving all of the non-alphabetic characters
unchanged.

Examples

Dim stg_a, stg_b As String ' Create two string vari-
ables
stg_a = "aBcDeF"
stg_b = stg_a.ToUpper ' stg_b set to "ABDCEF"

See Also

Strings | LCase Function |string.ToLower| UCase Function

506 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A string.Trim Method

string.Trim Method

Trims off characters or white space from the start and end of a String variable value.

...string.Trim(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start and the
end of the string. If a trimming character String is not specified, any
white space (e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value.
If multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at both the start and at the end of
the string variable.

Examples

Dim stg_a, stg_t As String ' Create string vari-
ables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this
is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this
is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to

Copyright © 2024, Brooks Automation 507

20. Strings GPL Dictionary
string.Trim Method Part Number: 609719 Rev. A

"112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to
"another test"

See Also

Strings |string.TrimEnd|string.TrimStart

508 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A string.TrimEnd Method

string.TrimEnd Method

Trims off characters or white space from the end of a String variable value.
...string.TrimEnd(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the end of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value.
If multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the end of the string variable.

Examples

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings |string.Trim|string.TrimStart

Copyright © 2024, Brooks Automation 509

20. Strings GPL Dictionary
string.TrimStart Method Part Number: 609719 Rev. A

string.TrimStart Method

Trims off characters or white space from the start of a String variable value.
...string.TrimStart(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value.
If multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the start of the string variable.

Examples

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings |string.Trim|string.TrimEnd

510 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A Asc Function

Asc Function

Converts the first character in a String variable or expression into its equivalent ASCII
numerical code and returns the Integer result.

...Asc (string)

Prerequisites

None

Parameters

string

A required String value. The string can be a String variable, constant,
method or concatenated value.

Remarks

Given a String variable or expression, the first character in the String is extracted and
its equivalent numerical value is returned as an Integer. This routine is convenient if
you have a string that contains non-printable characters and you wish to operate on
their values.

Examples

Dim ii As Integer
Dim ss As String
ss = Chr(10) ' Line feed character
ii = Asc(ss) ' ii will be set to 10

See Also

Strings |Chr Function

Copyright © 2024, Brooks Automation 511

20. Strings GPL Dictionary
Chr Function Part Number: 609719 Rev. A

Chr Function

Given a numerical ASCII code, a String that consists of the equivalent ASCII
character is constructed and returned.

...Chr (expression)

Prerequisites

None

Parameters

expression

A required numerical expression. The expression must have an Integer
value that ranges from 0 to 255.

Remarks

Given a numerical expression whose Integer value defines one of 256 possible ANSI
ASCII character codes, a String is constructed and returned that contains a single
character set to the ASCII code.

This routine is convenient if you wish to construct a String value that contains non-
printable characters.

Examples

Dim ii As Integer
Dim ss As String
ss = Chr(10) ' Line feed character
ss = Chr(GPL_CR) ' Carriage return character
ii = Asc(ss) ' ii will be set to 10

See Also

Strings |Asc Function

512 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A Format Function

Format Function

Converts a numerical value to a String value based upon a specified output format
specification.

...Format(expression, format_s)

Prerequisites

None

Parameters

expression

A required numeric expression. This defines the numerical value that is
to be converted to a string. This value can be any numeric type, e.g.
Integer, Double, Boolean, etc.

format_s

An optional String expression. This String expression defines the
output format to generate. If format_s is not specified or is an empty
String value, the default format ("G") is utilized.

Remarks

This function converts a numerical value to a String in a specified format. The
format_s value specifies one of several pre-defined formats or defines a custom
format. If the format specification is not recognized, the contents of format_s are
copied to the output in place of a converted numerical value.

To specify a pre-defined formats, format_s must contain one of the single character
specifications described in Table 20-5.

Copyright © 2024, Brooks Automation 513

20. Strings GPL Dictionary
Format Function Part Number: 609719 Rev. A

Predefined
Formats Output Format

"G" or "g" General purpose format. Displays a maximum of 17 characters including the sign character.
Includes at least one integer digit with no leading space characters or trailing zero's in the
fractional part. If the number is too large to display in 17 characters, this format automatically
switches to scientific notation.

"F" or "f" Fixed format. Always displays two fractional digits plus at least one integer digit and more as
required. No leading or trailing space characters are generated.

"E" or "e" Scientific notation. Generates a value in the form of "[s]n.nnnnnnesxx" where "s" is a "+" or "-"
sign character and "xx" is the base 10 exponent.

Table 20-5: Format Function

The custom format definition is a character by character literal description of the
output format. For example, "0.00#" specifies that the output is to contain as least one
integer digit and two fractional digits with an optional third fractional digit. If the
numerical value contains more integer digits than specified by the format, additional
digits are added to the left to fully display the numerical value. If additional fractional
digits exist, the fractional part is rounded to the specified number of fractional digits
and only the specified fractional digits are displayed. Leading and trailing space
characters are not included in the output.

Table 20-6 defines the character placeholders permitted in a custom format.

Custom
Formats Output Format

"0" Displays a digit or "0" if none. If a "0" is to the left of the decimal point, sufficient leading zeros are
generated to display the specified number of decimal digits. Likewise, a "0" to the right of the
decimal point always results in a digit or a "0" character. For instance, when the number 23 is
displayed using the format "0000.0", the output of the Format function is "0023.0".

"#" Displays a digit or nothing. If a "#" is to the left of the decimal point, a digit is displayed if it is non-
zero else nothing is added to the output stream. Likewise, if a "#" is to the right of the decimal
point, only non-zero digits are displayed. For instance, when the number 23 is displayed using
the format "###0.#", the output of this function is "23.".

"." Decimal point placeholder. Separates integer and fractional placeholders. Also, results in a "."
being included in the output stream.

"E" or "e" Scientific notation. Outputs a number in scientific notation. This format always generates one
digit to the left of the decimal point and a sign character and two digits in the exponent, e.g. "
[s]n.nnnnesxx". The significance of the custom format is to specify the number of fractional digits
to be included.

Table 20-6: Custom Formats

Examples

514 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A Format Function

Dim stg_a As String ' Create string vari-
able
stg_a = Format(2323) ' Default ("G")
format, "2323"
stg_a = Format(2323,"G") ' General ("G")
format, "2323"
stg_a = Format(2323,"F") ' Fixed ("F") format,
"2323.00"
stg_a = Format(2323,"E") ' Exponential ("E")
format, "2.323000e+03"

stg_a = Format(.2,".0#") ' Outputs ".2"
stg_a = Format(.23,".0#") ' Outputs ".23"
stg_a = Format(-.23,".0#") ' Outputs "-.23"
stg_a = Format(2.1,".##") ' Outputs "2.1"
stg_a = Format(23.23,".000") ' Outputs "23.230"
stg_a = Format(23.23,"0000") ' Outputs "0023"
stg_a = Format(23.23,"0") ' Outputs "23"
stg_a = Format(-.23,"0.00e000") ' Outputs "-2.30e-01"

See Also

Strings |CStr Function | Hex Function

Copyright © 2024, Brooks Automation 515

20. Strings GPL Dictionary
FromBitString Function Part Number: 609719 Rev. A

FromBitString Function

Extracts a number that has been packed in its internal bit format into a String and
returns the value of the number.

...FromBitString (string, type, big_endian)

Prerequisites

None

Parameters

string

A required String expression whose 8-bit characters contain a
sequence of bits that are converted according to the type parameter to
produce the returned numeric value. The minimum length of this String
depends on the type parameter.

type

A required keyword that determines how the bit sequence in the string
parameter is interpreted. Must be one of the following: Byte, Short,
Integer, Single, Double.

big_endian

A required numeric expression that determines the order in which bytes
in the string parameter are processed. If the value is zero or False, the
bytes are assumed to be in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are assumed to be in "big-
endian" order, which means the most significant bytes in the value
appear first in the String (Motorola format).

Remarks

516 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A FromBitString Function

This function operates on a String that contains a numeric value that has been
packed in a internal number format. This function extracts the value of the packed
number by converting the bits in the string according to the type specification. The 8-
bit characters in the string are concatenated together to form an 8, 16, 32, or 64-bit
internal representation of the number. The interpretation of the type parameter and
the required number of bytes in the string are presented in Table 20-7.

Keyword Bytes Returned Value

Byte 1 Unsigned 8-bit value from 0 to 255

Short 2 Signed 16-bit integer

Integer 4 Signed 32-bit integer

Single 4 Single-precision IEEE floating point

Double 8 Double-precision IEEE floating point

Table 20-7: FromBitString Function

The first byte of the string and any required successive bytes are used to obtain the
bits. The string parameter must be at least as long as the number of bytes required for
the data type.

When more than one byte is required, the order in which the bytes were packed into
the string is specified by the big_endian parameter. If this parameter is True, the first
byte of the string is the most-significant byte in the value. This is the typical format for
Motorola processors such as PowerPC's. If this parameter is False, the first byte of
the string is the least-significant byte in the value. This is the normal format for PC’s
(Intel) processors.

Examples

Dim stg As String
stg = ToBitString(23, Byte, True) ' Packs hex 17
Console.Writeline(FromBitString(stg, Byte, True)) '
Prints 23

stg = ToBitString(-321, Short, True) ' Packs hex
FE,BF
Console.Writeline(FromBitString(stg, Short, True)) '
Prints -321

stg = ToBitString(56720, Integer, True) ' Packs hex

Copyright © 2024, Brooks Automation 517

20. Strings GPL Dictionary
FromBitString Function Part Number: 609719 Rev. A

0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) '
Prints 56720

stg = ToBitString(123.4, Single, True) ' Packs hex
42,F6,CC,CD
Console.Writeline(FromBitString(stg, Single, True)) '
Prints 123.4

stg = ToBitString(123.4, Double, True) ' Packs hex
40,5E,D9,99,99,99,99,9A
Console.Writeline(FromBitString(stg, Double, True)) '
Prints 123.4

See Also

Strings |ToBitString Function

518 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A Instr Function

Instr Function

Searches for an exact match of a substring within a String expression and returns the
starting position if found (1-n).

...Instr(start, string_t, string_s)

Prerequisites

None

Parameters

start

A required numeric expression. This value specifies the first character
position that is tested in string_t. Unlike the IndexOfmethod, a 1
specifies the first character position in string_t.

string_t

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the target String that is searched for
the substring, string_s.

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string_t value.

Remarks

This method searches the value of the string_t expression for an exact, case sensitive
match to the specified string_s value. The search begins at the character specified by

Copyright © 2024, Brooks Automation 519

20. Strings GPL Dictionary
Instr Function Part Number: 609719 Rev. A

start and continues with successive characters until either the first match is found or
the end of the string_t is encountered.

Depending upon the outcome of the search, the values in Table 20-8 are returned by
this method.

String Values Returned Value

string_s is found in
string_t

Character position where the match begins. 1 indicates matched started at the first
character of string.

string_t has a zero
length

0

string_s has a zero
length

start value

string_s not found in
string_t

0

Table 20-8: Instr Function

Examples

Dim stg_a As String ' Create string
variable
Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPqRsTuVwXyZaBcDeFgHiJk"
pos = Instr(1, stg_a, "Fg") ' pos will be set
to 6
pos = Instr(1, stg_a, "FG") ' pos will be set
to 0
pos = Instr(10, stg_a, "Fg") ' pos will be set
to 32

See Also

Strings |string.IndexOf

520 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A LCase Function

LCase Function

Returns a copy of a String expression where all of the alphabetic characters have
been converted to lower case.

...LCase(string_exp)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

Remarks

This function evaluates a String expression, converts all of the alphabetic characters
to lower case leaving all of the non-alphabetic characters unchanged, and returns the
resulting String value.

Examples

Dim stg_result As String ' Create a string
variable
stg_result = LCase("aBcDeF") ' stg_result set to
"abcdef"

See Also

Strings |string.ToLower|string.ToUpper| UCase Function

Copyright © 2024, Brooks Automation 521

20. Strings GPL Dictionary
Len Function Part Number: 609719 Rev. A

Len Function

Returns the count of the number of characters contained in a String variable or
expression.

...Len (string)

Prerequisites

None

Parameters

string

A required String value. The string can be a String variable, constant,
method or concatenated value.

Remarks

Returns the Integer count of the number of characters contained in the specified
string. If the value of the string is empty, a count of 0 is returned.

Examples

Dim ii As Integer
ii = Len("123456") ' ii will be set to 6

See Also

Strings |string.Length

522 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A Mid Function

Mid Function

Returns a substring of a String expression starting at the specified character position
and consisting of a specified number of characters.

...Mid(string_exp, first_pos, length)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

first_pos

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Substring
method, the first character position is 1 rather than 0.

length

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string_exp starting at the first_pos will be
copied.

Remarks

This function evaluates a String expression, extracts a substring from its value, and
returns the results. The substring is specified by its starting character position in
string_exp and the number of characters to be extracted.

Copyright © 2024, Brooks Automation 523

20. Strings GPL Dictionary
Mid Function Part Number: 609719 Rev. A

Examples

Dim stg_result As String ' Create a string
variable
stg_result = Mid("aBcdef", 4, 2) ' stg_result will
be set to "de"

See Also

Strings |string.Substring

524 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A ToBitString Function

ToBitString Function

Converts the value of an expression to a specific numeric type and returns the internal
bit representation of the number packed into a String value.

...ToBitString (expression, type, big_endian)

Prerequisites

None

Parameters

expression

A required numeric expression whose value is converted.

type

A required keyword that determines how the numeric value is
interpreted and how many bytes the output String will contain. Must be
one of the following: Byte, Short, Integer, Single, Double.

big_endian

A required numeric expression that determines the order in which bytes
in the String output are generated. If the value is zero or False, the
bytes are packed in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are packed in "big-endian"
order, which means the most significant bytes in the value appear first in
the String (Motorola format).

Remarks

This function evaluates a numeric expression, converts the results to a specified
numeric type and packs the bits of the value into a String that is returned. The

Copyright © 2024, Brooks Automation 525

20. Strings GPL Dictionary
ToBitString Function Part Number: 609719 Rev. A

numeric value is written in the bit format used to internally represent the specified
numeric type. Depending upon the type, the converted value may have 8, 16, 32, or
64-bits, which correspond to an output String that will consist of 1, 2, 4, or 8 bytes.

Table 20-9 describes the output of this function.

Keyword Bytes Numeric Type Conversion

Byte 1 Unsigned 8-bit value from 0 to 255

Short 2 Signed 16-bit integer

Integer 4 Signed 32-bit integer

Single 4 Single-precision IEEE floating point

Double 8 Double-precision IEEE floating point

Table 20-9: ToBitString Function

When more than one byte is returned, the order of the bytes in the resulting String is
determined by the big_endian parameter. If this parameter is True, the first byte of the
String is the most-significant byte in the value. This is the typical format for Motorola
processors, e.g. PowerPC’s. If it is False, the first byte of the String is the least-
significant byte in the value. This is the normal format for PC’s (Intel processors).

Examples

Dim stg As String
stg = ToBitString(23, Byte, True) ' Packs hex 17
Console.Writeline(FromBitString(stg, Byte, True)) '
Prints 23

stg = ToBitString(-321, Short, True) ' Packs hex
FE,BF
Console.Writeline(FromBitString(stg, Short, True)) '
Prints -321

stg = ToBitString(56720, Integer, True) ' Packs hex
0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) '
Prints 56720

stg = ToBitString(123.4, Single, True) ' Packs hex

526 Copyright © 2024, Brooks Automation

Brooks Automation 20. Strings
Part Number: 609719 Rev. A ToBitString Function

42,F6,CC,CD
Console.Writeline(FromBitString(stg, Single, True)) '
Prints 123.4

stg = ToBitString(123.4, Double, True) ' Packs hex
40,5E,D9,99,99,99,99,9A
Console.Writeline(FromBitString(stg, Double, True)) '
Prints 123.4

See Also

Strings |FromBitString Function

Copyright © 2024, Brooks Automation 527

20. Strings GPL Dictionary
UCase Function Part Number: 609719 Rev. A

UCase Function

Returns a copy of a String expression where all of the alphabetic characters have
been converted to upper case.

...UCase(string_exp)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

Remarks

This function evaluates a String expression, converts all of the alphabetic characters
to upper case leaving all of the non-alphabetic characters unchanged, and returns the
resulting String value.

Examples

Dim stg_result As String ' Create a string
variable
stg_result = UCase("aBcDeF") ' stg_result set to
"ABCDEF"

See Also

Strings | LCase Function | string.ToLower|string.ToUpper

528 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread Class Summary

21. Thread Class

Thread Class Summary

The following pages provide detailed information on the methods of the Thread
Class. This class provides the means for starting, stopping, and monitoring the
execution of independent threads.

The GPL system supports the simultaneous execution of up to 64 GPL program
threads. Each thread has its own execution stack and runs independently of all other
threads. If multiple threads are active, each thread executes for up to 1 millisecond
before control passes to the next ready thread.

When a GPL project is loaded, one procedure is designated as the main procedure in
the project file settings. This main procedure is started by the GDE interface, the web
Operator Control Panel, the Start console command, or automatically when the
system is restarted.

The main procedure can then start additional procedures as separate threads.

Table 21-1 summarizes the methods and properties that are described in greater
detail in the following sections

Member Type Description

New Thread Constructor
Method Creates a thread object and associates it with a procedure.

thread_object.Abort Method Stops execution of a thread such that it cannot be resumed.

thread_object.Argument Property Sets or gets a numeric value that can be used as a parameter for a
thread.

Thread.CurrentThread Shared
Method

Returns a thread object for the currently executing thread.

thread_object.Join Method Waits for a thread to complete execution, with a timeout.

Table 21-1: Thread Class Summary

Copyright © 2024, Brooks Automation 529

21. Thread Class GPL Dictionary
Thread Class Summary Part Number: 609719 Rev. A

Member Type Description

thread_object.Name Get Property Returns a String containing the name of the thread associated with
this object.

thread_object.Project Get Property Returns a String containing the name of the project associated with
this object.

thread_object.Resume Method Resumes execution of a thread that was suspended.

Thread.Schedule Shared
Method

Changes the execution priority and thread scheduling algorithm for
the current thread.

thread_
object.SendEvent Method Sends an event to a thread to notify it that a significant transition has

occurred.

Thread.Sleep Shared
Method

Causes the current thread to stop execution for a specified amount of
time.

thread_object.Start Method Initializes and starts execution of a procedure as an independent
thread.

thread_
object.StartProcedure Get Property Returns a String containing the name of the start procedure

associated with this object.

thread_object.Suspend Method Suspends execution of a thread so that it can be resumed.

Thread.TestAndSet Shared
Method

Atomically reads a numeric variable and writes a new value. Used for
restricting access to data shared between threads.

thread_
object.ThreadState Get Property Returns an integer indicating the execution state of a thread.

Thread.WaitEvent Shared
Method Causes the current thread to wait for an event.

530 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A New Thread Constructor

New Thread Constructor

Constructor for creating a thread object and associating it with the procedure
executed by the thread.

New Thread(procedure_name, project_name, thread_name, stack_size)

Prerequisites

None

Parameters

procedure_name

A required String expression that specifies the name of the procedure
to be executed by the thread. This procedure must be declared as
Public. That is, the Public keyword must be specified in its definition.

This procedure must be stored in a module or in a top-level user class. If
it is in a class, it must be declared as both Public and Shared. That is,
the Public and Shared keywords must both be specified in its definition.
In addition, it must be preceded by the class name and a "." character in
this parameter specification.

project_name

An optional String expression that specifies the name of the project that
contains procedure_name. If this parameter is omitted, the name of the
current project is assumed. Specifying this parameter is not supported
by GPL at this time.

thread_name

An optional String expression that specifies the name of the thread to
be created. If this parameter is omitted, the procedure_name value is
used as the thread name.

Copyright © 2024, Brooks Automation 531

21. Thread Class GPL Dictionary
New Thread Constructor Part Number: 609719 Rev. A

stack_size

An optional numeric expression that specifies the number of kilobytes of
stack to allocate for this thread. If zero or omitted, the default stack size
for this project is used.

Remarks

This method does not actually create the thread in the system. It simply records the
names for use by the Startmethod. If the procedure or project does not exist, no
errors occur until the Startmethod is called.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread
object to execute the

' Public procedure
Test in the current project
Dim thread1 As New Thread(“Test”,,“Thread1”) ' Create a
thread object to execute

' Public procedure
Test with thread name Thread1
Dim thread1 As New Thread("MyClass.Start") ' Create a
thread object

' to execute the
Public Shared procedure

' named Start in the
class MyClass.

See Also

Thread Class | thread_object.Start

532 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.Abort Method

thread_object.Abort Method

Stops a thread’s execution immediately and does not allow it to be resumed. The
thread must be restarted from the beginning.

thread_object.Abort()

Prerequisites

None

Parameters

None

Remarks

This method stops the thread associated with the object and deallocates internal
resources, just as if a console Stop command were issued. The thread cannot be
resumed, but can only be restarted using the Startmethod. If you wish to be able to
resume a thread, use the Suspendmethod instead. If a thread executes the Abort
method for itself, the thread exits with an error, but it is not deallocated in the same
way as a separate thread

Examples

Dim thread1 As New Thread(“Test”)' Create a thread object to execute the
' procedure Test in the current project

thread1.Start() ' Start the thread
thread1.Abort() ' Stop the thread and prevent resumption.
Thread.CurrentThread.Abort() ' Stops thread in which it is executed

See Also

Thread Class | thread_object.Start|thread_object.Suspend

Copyright © 2024, Brooks Automation 533

21. Thread Class GPL Dictionary
thread_object.Argument Property Part Number: 609719 Rev. A

thread_object.Argument Property

Sets or gets a numeric value that can be used as a parameter for a thread.

thread_object.Argument = <numeric_value>
-or-
... thread_object.Argument

Prerequisites

None

Parameters

None

Remarks

This property associates a numeric value with a particular thread. The value may be
set prior to the execution of a thread and can be accessed by the thread during its
execution, thus serving as a parameter for the thread. This value may also be
changed while the thread is executing, but that is not its intended use.

For example, this value can be interpreted as an index to access an element of an
array that contains data for a thread.

Examples

Public ThreadData(16) As String

Public Sub MAIN
Dim t1 As New Thread("Test", , "Thread1")
Dim t2 As New Thread("Test", , "Thread2")
ThreadData(1)= "Thread data 1"
ThreadData(2)= "Thread data 2"
t1.Argument = 1
t1.Start
t2.Argument = 2
t2.Start

534 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.Argument Property

End Sub

' The following thread writes "Thread data 1" then
' "Thread data 2"

Public Sub Test
Dim index As Integer
index = Thread.CurrentThread.Argument
Console.WriteLine(ThreadData(index))

End Sub

See Also

Thread Class | Thread.CurrentThread | thread_object.Name|thread_object.Start

Copyright © 2024, Brooks Automation 535

21. Thread Class GPL Dictionary
Thread.CurrentThread Shared Method Part Number: 609719 Rev. A

Thread.CurrentThread Shared Method

Returns a thread object that corresponds to the currently running thread.

thread_object = Thread.CurrentThread()

Prerequisites

None

Parameters

None

Remarks

This shared method returns an object that corresponds to the currently running
thread. This object may be used to abort or suspend the current thread. It does not
need to be associated with a thread object, only the thread class.

Examples

Dim mythread As Thread = Thread.CurrentThread() ' Create
a thread object

' for the current
thread.
Thread.CurrentThread.Suspend () ' Suspend the cur-
rent thread.

See Also

Thread Class

536 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.Join Method

thread_object.Join Method

Waits for a thread to become idle, with a timeout. Returns -1 (True) if the thread is now
idle or 0 (False) if the timeout time was exceeded.

status = thread_object.Join(millisecond_timeout)

Prerequisites

None

Parameters

millisecond_timeout

The maximum time to wait for the thread associated with thread_object
to become idle. A value of 0 means do not wait, just test if the thread is
idle. A value of -1 means do not timeout, wait forever for the thread.

Remarks

When this method is called, the calling thread waits until the thread associated with
thread_object becomes idle, or until the specified timeout value is exceeded. The
returned value of the method is -1 (True) if the thread is idle or if the thread does not
exist. The returned value is 0 (False) if the thread exists and is not idle. Normally a
returned value of 0 indicates that the timeout time has been exceeded. If the calling
thread is suspended externally and then resumed during the Joinmethod, the value 0
is returned even though the timeout time may not have been exceeded.

If the referenced thread is suspended or stops with an error, the Joinmethod
continues waiting. It only completes with True when the thread is idle or deleted.

Examples

Dim thread1 As New Thread(“Test”)' Create a thread
object to execute the

' procedure Test in the
current project
Dim status As Integer

Copyright © 2024, Brooks Automation 537

21. Thread Class GPL Dictionary
thread_object.Join Method Part Number: 609719 Rev. A

thread1.Start() ' Start the thread
status = thread1.Join(10000) ' Wait for the thread
to complete with a

' 10-second timeout.
If status Then

Console.Writeline(“thread1 is complete”)
End If

See Also

Thread Class | thread_object.ThreadState

538 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.Name Property

thread_object.Name Property

Returns a String value indicating the name of the thread associated with a Thread
object.

name_string = thread_object.Name

Prerequisites

None

Parameters

None

Remarks

This property returns a String containing the thread name as originally established
when the Thread object was created by its constructor.

Examples

Dim thread1 As New Thread("Test", , "Thread1") '
Create thread object
Console.Writeline ("Created thread: " & thread1.Name)

' Displays "Created
thread: Thread1"

See Also

Thread Class | Thread Constructor |thread_object.Project | thread_object.StartProcedure

Copyright © 2024, Brooks Automation 539

21. Thread Class GPL Dictionary
thread_object.Project Property Part Number: 609719 Rev. A

thread_object.Project Property

Returns a String value indicating the name of the project associated with a Thread
object.

name_string = thread_object.Project

Prerequisites

None

Parameters

None

Remarks

This property returns a string containing the project name as originally established
when the Thread object was created by its constructor.

Examples

Dim thread1 As New Thread("Test", "Myproject") '
Create thread object
Console.Writeline ("Thread project: " & thread1.Project)

' Displays "Thread
project: Myproject"

See Also

Thread Class | Thread Constructor | thread_object.Name | thread_object.StartProcedure

540 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.Resume Method

thread_object.Resume Method

Resumes execution of a thread that was previously suspended.

thread_object.Resume()

Prerequisites

None

Parameters

None

Remarks

This method resumes the thread associated with the object, just as if a console
Continue command were issued. The thread may have been stopped by the
Suspendmethod, or by a break point, or by the console Break command.

If the thread is not suspended, this method does nothing.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread
object to execute the

' procedure Test in
the current project
thread1.Start() ' Start the thread
thread1.Suspend() ' Suspend the thread
for now.
Thread.Sleep(1000) ' Wait for 1 second
thread1.Resume() ' Resume the thread

See Also

Thread Class | thread_object.Suspend

Copyright © 2024, Brooks Automation 541

21. Thread Class GPL Dictionary
Thread.Schedule Shared Method Part Number: 609719 Rev. A

Thread.Schedule Shared Method

Changes the execution priority and thread scheduling algorithm for the current thread.

Thread.Schedule(priority, period, high_priority_time, phase)

Prerequisites

None

Parameters

priority

A required numeric expression that evaluates to an Integer that
specifies a new execution priority for the current thread. This value can
range from 0 to 16. A value of 0 specifies that the current thread is to
execute at the normal user thread priority and using the standard thread
scheduling. Values > 0 specify a higher than normal priority using an
alternate scheduling algorithm. Larger values indicate higher execution
priority.

period

A required numeric expression that evaluates to a Double value that
specifies the scheduling repetition rate in milliseconds. This value must
be an even power of 2, multiplied by 0.125 msec, and greater than
0.125. Valid values are: 0.250, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, etc. This
value is ignored if priority is zero.

high_priority_time

A required numeric expression that evaluates to a Double value that
specifies the duration, in milliseconds, during which the thread runs at
the priority level. This value must be greater than zero and less than the
period parameter. It may be a fractional value and will be quantized to a
multiple of 0.125. This value is ignored if priority is zero.

542 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread.Schedule Shared Method

phase

A required numeric expression that evaluates to a Double value that
specifies the phase offset, in milliseconds, when the thread begins to
runs at the priority level. This value must be non-negative and less than
the period parameter. It may be a fractional value and will be quantized
to a multiple of 0.125. The trajectory generator thread always runs at
phase offset 0. This value is ignored if priority is zero.

Remarks

This shared method is associated with the Thread class, not a specific Thread
Object. This method allows a thread to change when it executes (how it is scheduled)
relative to other threads. This allows a thread to run more often or with greater
regularity than it would otherwise run. However, since the GPL system contains a
number of system threads that can never be preempted by user threads, the response
of a user thread cannot be absolutely guaranteed. The standard thread scheduling
algorithm for normal user threads is a simple round-robin scheme where each
standard thread gets to run for one millisecond before it is moved to the back of the list
of all other standard threads. User threads compete with each other and with standard
and higher-priority system threads as shown in Table 21-2. If the system is heavily
loaded, a given user thread may only get to run for 1 out of 8 or more milliseconds.
That may be undesirable for time-critical applications.

Thread
Priority Thread Type Specific Threads

> 16 (Highest) High-Priority System Threads Servos, trajectory generator, most device drivers

1-16 (High) User Threads that execute
Thread.Schedule User Threads that execute Thread.Schedule

0 (Standard) Standard Priority Threads Standard user threads, web server, FTP, serial
console, disk driver

Table 21-2: Schedule Shared Method

An alternate scheduling algorithm, enabled by the Thread.Schedulemethod, allows a critical user
thread to run in a timely manner, ahead of all other standard-priority threads. This algorithm is
based on the POSIX sporadic scheduling policy, with the addition of a phase parameter. The
algorithm schedules threads as follows:

1. Every period milliseconds, offset by phase, a high priority user thread has its priority raised to the

priority level above the standard thread priority.

Copyright © 2024, Brooks Automation 543

21. Thread Class GPL Dictionary
Thread.Schedule Shared Method Part Number: 609719 Rev. A

2. After the thread has run for high_priority_time milliseconds, the thread's priority is returned to the

standard level, and it is placed at the end of the round-robin queue of standard-level threads.

3. The thread may run at standard priority if it gets to the front of the round-robin queue before the start

of its next high priority period.

The diagrams below show how the Thread.Schedulemethod affects thread execution. In these
examples, we assume there are four user threads that are executing continuously. Figure 21-1
shows standard round-robin scheduling where each vertical division represents 125 usec.

Figure 21-1: Thread Schedule Method, Time in Milliseconds

Each thread runs for 1 msec, which consists of eight 125 µsec clock ticks. At the end of the 1 msec,
the next thread begins, and the previous one goes to the end of the queue.

Figure 21-2 shows the results of Thread C issuing Thread.Schedule(1, 2, 0.25, 1).

Figure 21-2: Thread Schedule Method, Time in Milliseconds

This diagram shows Thread C having its priority raised every 2 msec, with a phase offset of 1 msec.
So it runs at times 1, 3, 5, and 7. The thread's priority remains high for 0.25 msec (or 2 clock ticks).
At the end of each interval, the thread's priority drops back to the standard value and the thread is
placed at the end of the round-robin queue. The other threads each continue to run for a total of 1
msec each. Note that the real time from the start of Thread D at time 2.25 to the end of Thread D at
3.5, greater than 1 msec because Thread C preempts Thread D for 2 ticks.

Figure 21-3 shows the results of Thread C issuing Thread.Schedule(1, 4, 0.25, 0.5).

544 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread.Schedule Shared Method

Figure 21-3: Thread Schedule Method, Time in Milliseconds

This diagram shows Thread C having it priority raised every 4 msec, with a phase offset of 0.5 msec.
So it runs at times 0.5 and 4.5. The thread priority remains high for 0.25 msec (or 2 clock ticks). At
the end of each interval, the thread's priority drops back to the standard value and the thread is
placed at the end of the round-robin queue. The other threads each continue to run for a total of 1
msec each. Note that at time 3.25, Thread C runs at its normal priority because all the other threads
in the round-robin queue ran after Thread C completed at time 0.75. Thread C still runs at high
priority at time 4.5, its next scheduling interval. Thread.Schedule can be used to synchronize a
thread with the trajectory generator when doing procedural motions or using the
Move.SetRealTimeModmethod. See the Examples section below.

Additional notes and cautions:

l When using Thread.Schedule, it is possible to incorrectly specify parameters so that all standard-
priority threads never get any time to run. If this happens, the serial console and the web interface will
hang, and you will not be able to stop your application. If the high priority thread is using the robot,
pressing the E-STOP button may cause the thread to stop. Otherwise you will need to reboot your
controller.

l If a high priority user thread is blocked because of I/O or robot motions, or if it issues a Thread.Sleep or
Controller.SleepTickmethod, when it wakes up, it can still use the remainder of its high_priority_time
interval.

l If a high priority user thread is preempted by a higher priority user thread or a system thread, it can still
use the remainder of its high_priority_time interval once the preempting thread is complete.

l The standard round-robin scheduling provides a good balance for most applications. Do not use the
Thread.Schedulemethod unless necessary.

Examples

' Synchronize with the trajectory generator.
' Set period to be same as trajectory generator.
Thread.Schedule(1, Controller.Tick * 1000, 0.5, 0)
While True
... ' Compute trajectory changes
Move.SetRealTimeMod(changes)
Controller.SleepTick(1) ' Wait until next trajectory tick

End While

See Also

Thread Class| Thread.Sleep | Controller.SleepTick | Move.SetRealTimeMod

Copyright © 2024, Brooks Automation 545

21. Thread Class GPL Dictionary
thread_object.SendEvent Method Part Number: 609719 Rev. A

thread_object.SendEvent Method

Sends an event to a specific thread to notify it that a significant transition has
occurred.
thread_object.SendEvent(event_mask)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the events to be sent. Each
bit in event_mask corresponds to a different event. Bit 0 (mask value
&H0001) corresponds to event 1. Multiple events may be specified. The
maximum event is 16, so the maximum value for event_mask is
&HFFFF.

Remarks
Events are messages that are sent to synchronize one thread that is executing a GPL project with
another GPL project thread. Utilizing events has several advantages over setting and polling a
global variable:

l The thread waiting for an event uses almost no CPU time, as opposed to polling a global
variable.

l There is very little latency between when a message is sent and when the target thread wakes
up and handles the event, as opposed to a polling method where the worst-case latency is the
polling period.

For more details on events and event handling, see theWaitEventmethod

Examples

Dim tl As New Thread(“TestThread”)
tl.Start
:

tl.SendEvent(&H10) ' Send event 5 to thread

See Also

546 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.SendEvent Method

Thread Class | Thread.WaitEvent

Copyright © 2024, Brooks Automation 547

21. Thread Class GPL Dictionary
Thread.Sleep Shared Method Part Number: 609719 Rev. A

Thread.Sleep Shared Method

Makes the current thread wait until a specified number of milliseconds have passed.

Thread.Sleep(milliseconds)

Prerequisites

None

Parameters

milliseconds

The number of milliseconds that this thread should wait before
continuing execution with the next statement. May contain a fractional
component. A value of 0 means allow another thread to execute, but
continue execution of the current thread immediately if no other thread is
ready. A value < 0 means wait forever, and is equivalent to invoking the
Suspendmethod for the current task.

Remarks

This shared method is normally associated with the thread class, not an object. If it is
used with an object, the current thread always waits, regardless of the thread object
contents.

The milliseconds parameter may contain a fractional component that permits waiting
for less than 1 millisecond. Any fraction is rounded up to a multiple of 0.125
milliseconds, which is the minimum wait time on a Precise controller.

Because of interactions between user threads and higher priority system threads,
sleep times can be subject to milliseconds of jitter. Software should not be used to
generate short time-critical intervals. The Thread.Schedulemethod can be used to
minimize interactions with other threads of equal priority.

If a sleeping thread is suspended and resumed, the wait period restarts from the time
that the thread was resumed.

Examples

548 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread.Sleep Shared Method

Thread.Sleep(5000) ' The current thread
waits for 5 seconds

Dim thread1 As New Thread(“Test”) ' Create an object for
a different thread
thread1.Sleep(1000) ' The current thread
waits for 1 second

See Also

Thread Class | Thread.Schedule | thread_object.SendEvent | Thread.WaitEvent

Copyright © 2024, Brooks Automation 549

21. Thread Class GPL Dictionary
thread_object.Start Method Part Number: 609719 Rev. A

thread_object.Start Method

Starts the execution of an independent thread.

thread_object.Start()

Prerequisites

The procedure associated with thread_object must be declared Public. The
procedure associated with thread_object must be loaded into memory and compiled
without errors.

Parameters

None

Remarks

This method begins a new thread that executes the procedure associated with the
thread_object, just as if a console Start command were issued. If the thread is
currently active, this method does nothing and returns without error. If the thread is
currently paused, it is restarted by clearing the execution stack and executing the
procedure associated with the object. If a thread is stopped by using the Abort
method, it can only be restarted by using Start. If the project or procedure associated
with the object does not exist, or if there were any errors compiling the project, this
method issues an error. To pass a numeric argument to the thread, see the thread_
object.Argument property.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
' Public procedure Test in the current

project
thread1.Start() ' Start the thread

See Also

Thread Class | thread_object.Abort| thread_object.Argument

550 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.StartProcedure Property

thread_object.StartProcedure Property

Returns a String value indicating the name of the start procedure associated with a
Thread object.

name_string = thread_object.StartProcedure

Prerequisites

None

Parameters

None

Remarks

This property returns a String containing the name of the start procedure as originally
established by the Thread object constructor.

Examples

Dim thread1 As New Thread("Test", "Myproject") '
Create thread object
Console.Writeline ("Start procedure: " &
thread1.StartProcedure)

' Displays "Start pro-
cedure: Test"

See Also

Thread Class | Thread Constructor | thread_object.Name | thread_object.Project

Copyright © 2024, Brooks Automation 551

21. Thread Class GPL Dictionary
thread_object.Suspend Method Part Number: 609719 Rev. A

thread_object.Suspend Method

Suspends the execution of an independent thread.

thread_object.Suspend()

Prerequisites

None

Parameters

None

Remarks

This method suspends the thread associated with thread_object, just as if a console
Break command were issued. The thread stops at the end of the current GPL
instruction. The thread may be resumed where it left off by the Resumemethod or by
a console Continue command. If the thread does not exist, an error occurs. If the
thread exists but is not currently active, no error is generated. This method does not
wait until the thread actually stops. Use the ThreadState property to determine when
the thread is suspended.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
' procedure Test in the current project

thread1.Start() ' Start the thread
thread1.Suspend() ' Suspend the thread for now.
Thread.Sleep(1000) ' Wait for 1 second
thread1.Resume() ' Resume the thread

See Also

Thread Class | thread_object.Resume

552 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread.TestAndSet Shared Method

Thread.TestAndSet Shared Method

Atomically reads a numeric value from a variable and writes a new value. Used for
restricting access to data shared between threads.

old_value =Thread.TestAndSet(variable, new_value)

Prerequisites

None

Parameters

variable

A required numeric variable whose old value is first read and then
overwritten.

new_value

A required numeric expression whose value is written to variable.

Remarks

This method permits a thread to read and write a variable value, without any possibility
that another thread will change the value between the time it is read and the time it is
written.

In a multi-threaded application, this permits procedures to be developed that interlock
data structures that are accessed by more than one thread. This interlocking can
avoid problems created by having one thread access a data structure that is invalid
because its data is in the process of being modified by another thread.

Examples

' Thread-safe lock using Test and Set

Copyright © 2024, Brooks Automation 553

21. Thread Class GPL Dictionary
Thread.TestAndSet Shared Method Part Number: 609719 Rev. A

Sub Lock (ByRef lock_var As Integer)
' Loop while someone else has the lock
While Thread.TestAndSet(lock_var, 1) <> 0

Thread.Sleep (0)
End While

End Sub

' Thread-safe unlock after using Test and Set

Sub Unlock (ByRef lock_var As Integer)
lock_var = 0

End Sub

' Thread-safe increment using Test and Set

Sub Inc_variable (ByRef inc_var As Integer)
Dim old_value As Integer
Do

old_value = inc_var
Loop While Thread.TestAndSet(inc_var,old_value+1) <>

old_value
End Sub

See Also

Thread Class

554 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A thread_object.ThreadState Property

thread_object.ThreadState Property

Gets a numeric value indicating the execution state of the thread specified by thread_
object.

state_var = thread_object.ThreadState

Prerequisites

None

Parameters

None

Remarks

This property returns information about a thread’s execution state. The numeric value
returned by this property is described in Table 21-3.

ThreadState
Value Description

-1 The thread does not exist. Either it was never started or it was stopped and deleted by an
Abortmethod.

0 The thread has completed execution normally and is idle. It cannot be resumed, but it can be
restarted with Start.

1 The thread is stopping execution. This state is transient.

2 The thread is executing normally.

3 The thread is paused without error and can be resumed.

4 The thread is paused with an error. If it is resumed, it will retry the instruction that caused the
error.

Table 21-3: ThreadState Property

Examples

Copyright © 2024, Brooks Automation 555

21. Thread Class GPL Dictionary
thread_object.ThreadState Property Part Number: 609719 Rev. A

Dim thread1 As New Thread(“Test”) ' Create a thread
object to execute the

' procedure Test
in the current project
thread1.Start() ' Start the
thread
Console.Writeline(thread1.ThreadState) ' Display the
state code for thread1

See Also

Thread Class

556 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread.WaitEvent Shared Method

Thread.WaitEvent Shared Method

Wait for, test and clear events received by the current thread. Returns a mask
indicating the received events.

received_events =Thread.WaitEvent(event_mask, time_out)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the set of events to wait
for. Each bit in event_mask corresponds to a different event. Multiple
events may be specified. The maximum event is 16, so the maximum
value for event_mask is &HFFFF.

If event_mask is 0, no wait occurs, no events are cleared, and all
received events are returned.

time_out

A required numeric expression that specifies the maximum time, in
milliseconds, to wait if no matching events are received. The maximum
wait time is 2147 seconds.

If 0, this method does not wait, but only tests pending events against the
event_mask. If < 0, this method does not timeout and waits forever.

Remarks

The returned value is a bit mask indicating events that have been received. Bit 0
(mask value &H0001) corresponds to event 1. The mask indicates either all pending
events, or only those matched by event_mask, as described below.

Copyright © 2024, Brooks Automation 557

21. Thread Class GPL Dictionary
Thread.WaitEvent Shared Method Part Number: 609719 Rev. A

The behavior of this method depends on the combination of parameters as described
in Table 21-4.

event_
mask
Value

time_
out
Value

Description

 0 N.A. The method does not wait for or clear any events, but simply returns a bit mask indicating
all received events.

 <> 0 0
The method does not wait. It clears all events that match the bits in event_mask. It returns
a bit mask indicating the events that were cleared. This parameter combination may be
used to return and clear specific received events without waiting.

 <> 0 > 0

The method waits until at least one event corresponding to a bit in event_mask has been
received. If a matching event was previously received and not cleared, the method does
not wait.

Before returning, it clears all pending events that match the bits in event_mask, and
returns a bit mask indicating the events that were cleared.

If no matching event is received before the timeout period, this method returns a value of
0.

 <> 0 < 0 This case is the same as "event_mask <> 0, time_out > 0" case except that it waits
indefinitely for the events, and never times out.

Table 21-4: WaitEvent Shared Method

Events are synchronization messages that are sent from one thread executing a GPL project to
another thread that is executing a GPL project. Utilizing events has several advantages over setting
and polling a global variable:

l The thread waiting for an event uses almost no CPU time, as opposed to polling a global variable.

l There is very little latency between when a message is sent and when the target thread wakes up and
handles the event, as opposed to a polling method where the worst-case latency is the polling period.

Each thread can handle up to 16 different events. These 16 events are independent of the events
for all other threads. An event is specified by the target thread and a bit within the thread’s event_
mask.

Events handled byWaitEvent are automatically cleared, except for the special case when event_
mask = 0. A receiving thread can simply loop waiting for events, checking the returned bit mask, and
servicing whatever events bits are set. If theWaitEventevent_mask specifies more than one event,
be sure to check all possible events, since more than one event may be returned simultaneously
and be cleared.

In a client-server situation, a client thread can place a command in a global variable, and then send
an event to the server. When the server receives the event, it can examine the global variable to
determine the detailed command.

558 Copyright © 2024, Brooks Automation

Brooks Automation 21. Thread Class
Part Number: 609719 Rev. A Thread.WaitEvent Shared Method

Examples

Public main_thread As Thread

Public Sub Main
Dim t1 As New Thread("Testthread")
main_thread = Thread.CurrentThread
t1.Start
t1.SendEvent(&H10) ' Send event 5

to thread
Thread.WaitEvent(&H8, -1) ' Wait for event

4, clear it
Console.Writeline ("Main thread event received")

End Sub

Public Sub Testthread
Dim events As Integer
events = Thread.WaitEvent(&H10,100) ' Wait with

timeout
If events = 0 Then

Console.Writeline ("Testthread event timeout")
Else

Console.Writeline ("Testthread event received")
End If
main_thread.SendEvent(&H8) ' Send event 4

back to main thread
End Sub

See Also

Thread Class |thread_object.SendEvent

Copyright © 2024, Brooks Automation 559

22. Vision Classes GPL Dictionary
Vision Classes Summary Part Number: 609719 Rev. A

22. Vision Classes

Vision Classes Summary

The following pages provide detailed information on the properties and methods for
the classes that implement the interface to the PreciseVision machine vision system.

This interface includes two classes: the Vision Class that manages communications
between GPL and PreciseVision and the VisResult Class that stores a single set of
results from a single vision tool. As a convenience, there is no explicit method for
connecting to PreciseVision. Whenever the Vision methods Process, Result or
ResultCount are executed, GPL automatically establishes a connection to the vision
system. Table 22-1 and Table 22-2 summarize the properties and methods for each
Class, which are described in greater detail in the following sections.

Vision Class
Member Type Description

New Vision Constructor
Method Creates an empty Vision object. Does not communicate with PreciseVision.

vision_
obj.Disconnect Method Closes any open connection associated with a vision object.

vision_
obj.ErrorCode Property Returns the numeric error code for the last executed vision process. A value of

0 indicates success; a negative value indicates an error.

vision_
obj.Instance Property Sets and gets the number of the PreciseVision instance that is associated with

a vision object.

vision_
obj.IPAddress Property Sets and gets the IP address of the PC that is running the PreciseVision

application software associated with a vision object.

vision_
obj.Process Method Requests that PreciseVision execute a vision process and waits for it to

complete. Connects to PreciseVision if there is currently no connection.

vision_
obj.Result Method

Returns a VisResult object that contains a single set of results from a
previously executed vision tool. Connects to PreciseVision if there is currently
no connection.

Table 22-1: Vision Classes Member

560 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision Classes Summary

Vision Class
Member Type Description

vision_
obj
.ResultCount

Method
Returns the number of sets of vision results created by a vision tool the last time
it was executed. Connects to PreciseVision if there is currently no connection.

vision_
obj.Status Property

Returns a numeric value indicating the status of a vision process:

0 = No vision process for this object,
1 = Process is running,
2 = Process complete but with error,
3 = Process complete with success.

vision_
obj
.ToolProperty

Property Sets or gets a property value of a PreciseVision tool or a general "system"
property for the vision server connected to a vision object.

VisResult
Class
Member

Type Description

New VisResult Constructor
Method

Creates an empty VisResult object. Not useful since VisResult objects are
normally created by the vision_object.Resultmethod.

visresult_
obj.ErrorCode Property

Returns the numeric error code for this result. A value of 0 indicates success;
a negative value indicates an error. A positive value indicates success with a
warning.

visresult_obj.Info Property Returns the nth numeric information field contained in this set of results.

visresult_
obj.InfoCount Property Returns the number of numeric information items in this set of results.

visresult_
obj.InfoString Property Returns a String value if the set of vision results includes text information.

visresult_
obj
.InspectActual

Property
Returns the value of the tool property that was tested in the vision inspection
process.

visresult_
obj
.InspectPassed

Property
Returns True if a property of the vision results satisfied the tool's vision
inspection criteria.

visresult_obj.Loc Property Returns the position and orientation from a set of results as a Cartesian
Location object.

visresult_
obj.ProcessID Property Returns the ID of the vision process that generated the result.

visresult_
obj.Type Property Returns the type of this set of results. Currently always zero.

Table 22-2: VisResult Class Member

Copyright © 2024, Brooks Automation 561

22. Vision Classes GPL Dictionary
Vision_Object Disconnect Method Part Number: 609719 Rev. A

Vision_Object Disconnect Method

Closes the network connection associated with a vision object.

vision_objectDisconnect

Prerequisites

None

Parameters

None

Remarks

This method closes the TCP/IP connection to PreciseVision that is associated with a
vision object. No error occurs if there is currently no connection.

When a vision object is no longer referenced anywhere, the TCP/IP connection is
automatically closed.

Examples

Dim vobject As New Vision
vobject.Disconnect

See Also

Vision Classes

562 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object.ErrorCode Property

Vision_Object.ErrorCode Property

Gets the Integer error code for the last executed vision process.

...vision_object.ErrorCode

Prerequisites

A Processmethod must have been executed using the vision_object and the
execution must be completed.

Parameters

None

Remarks

This property returns the Integer error code for the last vision process executed by the
vision_object. A value of 0 indicates success; a negative value indicates an error. If no
process was ever run, a value of 0 is returned. Please see the section on System
Error Codes in the Precise PreciseFlex Library for a list of vision error codes and their
interpretation. This property is different from the visresults_object.ErrorCode. The
visresults_object.ErrorCode indicates if a specific Vision Tool encountered an error
during execution, e.g. it didn't find what it was searching for. The vision_
object.ErrorCode indicates if a vision process could not be found or if a
communication error occurred between GPL and PreciseVision. This property never
signals an error if an individual tool fails for whatever reason. If the vision_
object.Status property returns a value of 2, indicating that an error has occurred, the
ErrorCode property contains the specific error code that describes the type of error.

Examples

Dim vobject As New Vision
vobject.Process("find_part") ' Execute find_part process
If vobject.ErrorCode <> 0 Then

' Handle error
End If

See Also

Vision Classes |vision_object.Status | visresult_object.ErrorCode

Copyright © 2024, Brooks Automation 563

22. Vision Classes GPL Dictionary
Vision_Object Instance Property Part Number: 609719 Rev. A

Vision_Object Instance Property

Sets and gets the number of the PreciseVision instance that is associated with a
vision object.

vision_object.Instance= <integer_value>
-or-
… vision_object.Instance

Prerequisites

When this property is set, the vision object must not be connected to PreciseVision.

Parameters

None

Remarks

Multiple, independent instances (copies) of the PreciseVision application software
can be run on a single PC. When each copy of PreciseVision is started, its instance
number must be explicitly specified if it is not the first instance. By default the first copy
of PreciseVision is instance 1. For some applications, a single Precise Controller may
need to communicate with multiple instances of PreciseVision or with a specific
instance. This property allows a GPL program to select the instance that is used as a
vision server for the specified vision object. If the Instance property is not set, the
default value is 1.

Examples

Dim vobject As New Vision
vobject.Instance = 2 ' Select server instance 2
vobject.Process("find_part")

See Also

Vision Classes | vision_object.IPAddress

564 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object IPAddress Property

Vision_Object IPAddress Property

Sets and gets the IP address (as a String value) of the PC that is running the
PreciseVision application software associated with a vision object.

vision_object.IPAddress= <string_value>
-or-
…vision_object.IPAddress

Prerequisites

When this property is set, the vision object must not be connected to PreciseVision.

Parameters

None

Remarks

By default, a Precise Controller connects to its PreciseVision server at the IP address
specified by the configuration parameter "Vision server IP address" (DataID 424). For
some applications, a single Precise Controller may need to communicate with more
than one PreciseVision server on different PCs. This property overrides the IP
address specified by DataID 424 for the connection made by the current vision object.
The properties String value contains the IP address in the form nnn.nnn.nnn.nnn
where each nnn field is a decimal number representing 8 bits of the 32-bit IP address.
If the IPAddress property is not set, the value from DataID 424 is used.

Examples

Dim vobject As New Vision
vobject.IPAddress = "192.168.0.20"
vobject.Process("find_part")

See Also

Vision Classes | vision_object.Instance

Copyright © 2024, Brooks Automation 565

22. Vision Classes GPL Dictionary
Vision_Object Process Method Part Number: 609719 Rev. A

Vision_Object Process Method

Issues a request to PreciseVision to execute a vision process and waits for the
process to complete.

vision_object.Process(vision_process_name, vision_process_id)

Prerequisites

The specified vision process must already be defined within the PreciseVision system.

Parameters

vision_process_name

A required String expression that specifies the name of the
PreciseVision process that is to be executed. This corresponds to the
name that is displayed in the "Process Manager" window in
PreciseVision.

vision_process_id

An optional numeric expression that defines a positive integer number to
be used by the vision process as its ID code. This value may range from
0 to 2147483647. If omitted, an ID code of zero is assumed.

Remarks

This method requests PreciseVision to execute the specified vision process. It then
waits until PreciseVision has completed the process. If PreciseVision does not
respond within 30 seconds, an error exception is thrown.

Executing a vision process is the basic method that GPL employs to command
PreciseVision to take a picture and analyze it. From GPL's point of view, a vision
process is a single, indivisible operation. That is, after GPL starts a vision process, no
results are available until after the process completes its execution. When the
process is done running, GPL can interrogate PreciseVision for information on the
output of any tool. Normally, a vision process consists of a command to take a picture

566 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object Process Method

(i.e. an Acquisition Tool) followed by additional tools to process and analyze the
picture. In the simplest case, a process can consist of a single tool that operates on
an existing picture. At other times, a process can be quite complex and may consist of
dozens of tools that inspect multiple features of parts to verify that the part is correct.

In order for GPL to execute a process and retrieve the results, GPL has to know the
name that has been assigned to the vision process in PreciseVision and the names of
any tools for which results are desired.

Each time that a vision process is executed, all of the previous results of its tools are
lost and replaced by the newly computed results. However, if a different vision
process is executed using another Vision object, the results of first vision process are
preserved.

The Status property can be used to determine if the process completed successfully.

The Processmethod performs communications with PreciseVision. If an Ethernet
network connection does not exist, a connection is automatically established. If a
connection cannot be setup or the communication link fails for any reason, this
method will throw an exception.

If the optional vision_process_id is specified, all of the results generated by the vision
process will be tagged with this ID number. The ID number of any result can be
fetched by obtaining the value of the visresult_object.ProcessId property.

Examples

Dim vobject As New Vision
vobject.Process("find_part")
If vobject.Status <> 3 Then

' Deal with error
End If

See Also

Vision Classes |vision_object.Status |visresult_object.ProcessID

Copyright © 2024, Brooks Automation 567

22. Vision Classes GPL Dictionary
Vision_Object Result Method Part Number: 609719 Rev. A

Vision_Object Result Method

Returns a VisResult Object that contains a single set of results from a vision tool.

...vision_object.Result(vision_tool_name, index, location_object)

Prerequisites

A Processmethod must have been executed using the vision_object and the
execution must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, a single set of results generated by that tool will
be returned. If omitted, a single set of results from the final tool in the
vision process is returned.

index

An optional numeric expression indicating which set of results to return
for the selected tool. The numeric value can range from 1 to vision_
object.ResultCount. If omitted, the first set is returned.

location_object

(Future enhancement) An optional Cartesian Location Object whose
value is sent to PreciseVision when the result is requested. Depending
on where the camera is mounted and the particular vision tool, this
location value may be used to determine the returned vision result.
Details on what value to pass in this parameter are described in the
PreciseVision documentation for specific vision tools.

568 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object Result Method

Remarks

This method requests PreciseVision to return a set of results from a tool that was part
of the previously executed vision process. If the vision tool generated multiple sets of
results, the index parameter is utilized to specify the set of results to be returned. The
results data can be fetched any number of times from any tool that is part of the vision
process until the vision process is executed again. When a vision process is executed
again, all of the old results are lost and a new set of results data will be available.

When this method is executed, it returns a VisResult Object whose data can be
accessed by the standard properties and methods available for that object class.

For cameras mounted on a robot or for pictures of an object held by the robot, it may
be necessary to pass camera or robot location information to PreciseVision so that the
result location may be determined. In this case, the optional location_object
parameter must be specified.

The Status property can be used to determine if the previous vision process
completed successfully.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw
an exception.

Examples

Dim vobject As New Vision
Dim result As VisResult
vobject.Process("find_part")
result = vobject.Result() ' Get result 1 of final
vision tool
result = vobject.Result("hole1") ' Get result 1 of vis-
ion tool "hole1"
result = vobject.Result(, 2) ' Get result 2 of final
vision tool

See Also

Vision Classes |vision_object.Process

Copyright © 2024, Brooks Automation 569

22. Vision Classes GPL Dictionary
Vision_Object.ResultCount Method Part Number: 609719 Rev. A

Vision_Object.ResultCount Method

Gets the number of results generated by a vision tool in the last executed vision
process.

...vision_object.ResultCount(vision_tool_name)

Prerequisites

A Processmethod must have been executed using the vision_object and the
execution must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, the number of sets of results generated by that
tool will be returned. If omitted, the number of sets of results for the final
tool in the vision process is returned.

Remarks

This property returns the number of sets of results generated by a vision tool. This is
the same value as the PreciseVision ResultCount tool property.

A value of 0 indicates that no results are available or that some type of error occurred
when the tool was executed. Depending upon the basic type for the vision tool, zero,
one, or multiple sets of results may be generated each time the tool is executed. For
example, the tool that extracts the best fit line (i.e. the Line Fitter) will return at most
one set of results if a line can be fit or none if it is unsuccessful. On the other hand, the
general tool that locates parts (i.e. the Finder) can generate dozens of sets of results if
multiple identical parts are in the camera's field of view.

If one or more sets of results can be accessed, the Resultmethod should be called as
many times as necessary to fetch the data for each set of results.

570 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object.ResultCount Method

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw
an exception.

Examples

Dim vobject As New Vision
Dim vresults As VisResult
Dim ii As Integer
Dim results As Integer
vobject.Process("find_part")

results = vobject.ResultCount()

For ii = 1 To results

vresults = vobject.Result(,ii)
' Process results

Next ii

See Also

Vision Classes |vision_object.Status

Copyright © 2024, Brooks Automation 571

22. Vision Classes GPL Dictionary
vision_object.Status Property Part Number: 609719 Rev. A

vision_object.Status Property

Gets the numeric status code for a vision process.

...vision_object.Status

Prerequisites

None

Parameters

None

Remarks

This method returns the status code for the vision process associated with the vision_
object. Table 22-3 shows the returned status codes.

Status Code Description

0 No vision process for this object

1 Vision process is running

2 Vision process completed but with error

3 Vision process completed with success

Table 22-3: Status Property

At this time, the value 1 is not seen because the Process method always waits until
the vision process is complete. A no-wait vision process may be added as a future
enhancement.

If Status has a value is 2, the ErrorCode property can be used to determine the
specific type of error that has occurred. Note, this property returns an error if the
process did not exist or if a communication error occurs. However, if a specific tool
fails, such as when a Line Fitter cannot find enough edges to fit a line, Status does not
indicate an error. For tool analysis errors, please see the visresults_
object.ErrorCode property.

572 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A vision_object.Status Property

Examples

Dim vobject As New Vision
vobject.Process("find_part")
If vobject.Status <> 3 Then

' Handle non-successful pro-
cess
End If

See Also

Vision Classes |vision_object.ErrorCode | visresults_object.ErrorCode

Copyright © 2024, Brooks Automation 573

22. Vision Classes GPL Dictionary
Vision_Object ToolProperty Property Part Number: 609719 Rev. A

Vision_Object ToolProperty Property

Sets or gets a property value of a PreciseVision tool or a general "system" property for
the vision server connected to a vision object.

vision_object.ToolProperty (property_name_string) = <property_value_string>
-or-
…vision_object.ToolProperty (property_name_string)

Prerequisites

None

Parameters

property_name_string

A required String expression that contains the name of the tool property
to get or set. This String is normally in the form: tool_name.property_
name, where tool_name is the name of a tool defined in PreciseVision,
and property_name is the name of a property within that tool.

Remarks

This property permits a GPL program to dynamically change the properties of a tool
defined within PreciseVision. This capability allows a GPL program to use the results
of a previous vision process to adjust or refine the tools used by a future vision
process.

The vision tools available depend on what has been defined in your particular vision
application. The properties associated with each tool, and the possible property
values are described fully in the PreciseVision documentation.

Each time a ToolProperty procedure is invoked, messages are exchanged between
the Precise Controller and the PreciseVision system connected to the vision object. If
an Ethernet network connection does not exist when this property is referenced, a
connection is automatically established. If a connection cannot be setup or the
communication link fails for any reason, this method will throw an exception.

574 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object ToolProperty Property

As a means for transmitting system information to and from Precise Vision, Tool
Property recognizes "System" as a special tool name. The information that can be
exchanged using this special name is defined in Table 22-4.

System.<property> Operation Description

Clear Calibration
Sets the calibration data for the specified camera (1-n) to the identity (cleared) value
so that returned position values are in pixels instead of mm. Should be executed
before loading new calibration data.

DisplayMode

Defines the contents of the PreciseVision main window in the PC screen. It accepts a
single parameter, mode, that is interpreted as follows:

0 - Resets the display mode to the standard default PV display. All standard
windows, toolbars, menus, etc. are visible and available for use.
1 - Displays only the camera window and the current Tool's window. The PV form
border, title, and status bars are hidden.
2 - Displays only the camera window. The PV form border, title, status bars and all
dockable controls are hidden.
3 - Minimizes the PV main window.

Info
Returns "{PV Version},{CameraAcquireType},{Camera Status1, …,Camera
Status6}. This indicates the version of PV that is being executed together with
indications of which cameras have been properly connected to the system.

ImportProject

Loads in the PreciseVision project contained in the file specified by <property_value_
string> and merges its contents with the currently loaded project. If the new project
contains any processes or tools whose names conflict with items that are already
loaded, "_r" is appended to the name of the new item. Also, any camera calibration
information that is contained in the new project is ignored.

LastProcessTime
Returns the total execution time for the last vision process that was run, in seconds.
This is the same information that is displayed in the Application Status Bar at the
bottom of the PreciseVision window.

LayOut

Selects one of the predefined panel layouts to be displayed within the main PV
window. Requires a single parameter, layout, whose value is interpreted as follows:

1 - Edit mode
2 - Runtime mode
3 - Calibration mode

LoadCal1
Dynamically loads a specified calibration file into PreciseVision and assigns it to
camera #1. To load camera #n, specify "LoadCaln". If the calibration file cannot be
located, a -4022 error code will be returned.

LoadImage Loads an image from the file specified by <property_value_string> into the camera
display buffer.

LoadProject

Deletes the currently loaded PreciseVision project and loads in the project contained
in the file specified by <property_value_string>. If the currently loaded project has
been modified, a -4023 error code will be returned and the load will not be attempted.
To ignore the any project modifications, please see the System.ProjectModified
property.

Table 22-4: System.<property>

Copyright © 2024, Brooks Automation 575

22. Vision Classes GPL Dictionary
Vision_Object ToolProperty Property Part Number: 609719 Rev. A

System.<property> Operation Description

Lock

Performs the same function as the "Lock/Unlock Application" button in the
PreciseVision Main Menu bar. If set to the string value "true", the user interface
prohibits any changes from being made. If set to "false", changes are again
permitted.

MMToPixelTrans1
(Superceded by new CamCal properties) Read the values of the calibration
matrices for camera #1. The elements of each 3x3 transformation are return as 9
numeric values delimited by commas (",") in a String. The values are returned in the
following order: t11, t12, t13, t21, t22, t23, t31, t32, t33. To access the data for
camera #n, specify ...Transn.

PixelToMMTrans1

Position

Positions and sizes the main PV window relative to the PC's screen. This property
requires four parameters whose values are delimited by ",":

<xpos> - X position relative to the top-left of the screen
<ypos> - Y position relative to the top-left of the screen
<width> - Width of the main PV window (optional)
<height> - Height of the main PV window (optional)

All units are in pixels.

ProjectModified

Returns or sets a True/False flag that indicates if the currently loaded vision project
has been modified. If the current project has been modified and you wish to load in a
new project without saving the new changes, you can set this property to False. If
this flag is True and you attempt to load a new project, a -4023 error code will be
returned.

ProjectName
Returns the name of the currently loaded vision project or its file path including the
project name or its user settable version number.ProjectPath

ProjectVersion

RefreshGraphics
Equivalent to pressing the "Refresh Camera Display Window Graphics" button in
PreciseVision. It redraws any graphics generated by vision tools in the Camera
Display window.

SaveImage{n} Stores the image contained in the specified camera buffer into the file specified by
<property_value_string>.

SaveProject Stores the currently loaded PreciseVision project into the file specified by <property_
value_string>.

TopMost

Specifies whether the main PV window is on top of other windows on the PC's
screen. It requires a single parameter, mode, which is defined as follows:

0 - Normal (resets topmost property)
1 - Keeps window on top

This property permits PV to stay on top of other applications while the user clicks or
drags other windows on the screen.

Zoom

Sets the "zoom" scale factor for the camera display window. It requires a single
parameter, scale_factor, that ranges from 0 to 5 in steps of 0.1. A value of 0 will
automatically set the zoom so that the entire frame buffer will be displayed within the
camera display window.

576 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object ToolProperty Property

In situations where a GPL program wishes to trigger the execution of a camera
calibration procedure, ToolProperty recognizes "Camcal" as a special tool name.
For a "Camera only" area calibration, the information that can be exchanged using the
Camcal tool name is defined in Table 22-5.

Camcal.<property> Operation Description>

Camera Sets the number of the camera to be used, "1" to "n".

CalType Indicates the type of camera calibration to be performed. This must be set to "1" for
the simple stationary camera area calibration.

CalErrorNum Returns an indication of whether or not the calibration process executed without an
error. CalErrorNum will be 0 if the calibration was successful.CalErrorString

CalFileName
Saves the calibration results into the specified disk file.

CalSave

Execute Initiates the calibration procedure.

SquareIsDark
When the standard calibration target is utilized that consists of a grid of squares,
these parameters define the size and the pitch of the squares in mm. The
SquareDark indicates if the squares are dark (1) or white (0). The SquareMinArea
specifies the minimum acceptable area of each square in pixels.

SquareMinArea

SquarePitch

SquareSize

ResultMaxError

Returns statistical results of the calibration process. This includes the maximum and
RMS error that indicate how well the calibration target was matched, and information
on the number of corners of the grid of squares that were located and utilized.

ResultNumCornerFound

ResultNumCornerUsed

ResultRMS

Threshold Defines the binary threshold applied during the calibration process to initially locate
the squares in the grid (0-255).

Width

Defines the size and center of the AOI to be processed during the calibration
procedure. These parameters are in units of pixels.

Height

X

Y

Table 22-5: Camcal.<property

If the calibration scale factors for a camera are to be explicitly set, the following
information in Table 22-6 can be exchanged using the Camcal tool name.

Copyright © 2024, Brooks Automation 577

22. Vision Classes GPL Dictionary
Vision_Object ToolProperty Property Part Number: 609719 Rev. A

Camcal.<property> Operation Description

Camera Sets the number of the camera to be used, "1" to "n".

CalType Indicates the type of camera calibration to be performed. This is must be set to "0" for
explicitly setting the values of the calibration matrix.

CalErrorNum Returns an indication of whether or not the calibration process executed without an
error. CalErrorNum will be 0 if the calibration was successful.CalErrorString

CalFileName
Saves the calibration results into the specified disk file.

CalSave

dxPixPerMM
Explicitly specifies the pixel per MM scale factors in both the X and Y directions.

dyPixPerMM

Execute Initiates the calibration procedure.

Table 22-6: Camcal.<property>

Independent of the camera calibration method, the following properties in Table 22-7
can be utilized to retrieve camera setup and calibration results information.

Camcal.<property> Operation Description

Camera Sets the number of the camera to be accessed, "1" to "n".

CameraFrameSize Returns the camera frame buffer size as "Width, Height" in pixels. The actual camera
image may be smaller than the frame buffer size.

PixelPerMM Returns the average pixel per mm ratio for the specified camera.

PixelToMMTrans

Returns the calibration matrices that convert between camera pixels and units of
millimeters. These matrices are computed as a result of performing the camera
calibration using the standard grid of squares.

The elements of each 3x3 transformation are return as 9 numeric values delimited by
commas (",") in a String. The values are returned in the following order: t11, t12,
t13, t21, t22, t23, t31, t32, t33. These matrices are 3x3's to include perspective
distortion correction.

For example, given a PixelToMMTrans value, a camera pixel coordinate (Px,Py) can
be converted to millimeters (adjusted for perspective distortion) using the following
equations:

Cx = (t11*Px+t12*Py+t13)/pscale
Cy = (t21*Px+t22*Py+t23)/pscale
where
pscale = (t31*Px+t32*Py+t33)

MMToPixelTrans

Table 22-7: Camcal.<property>

578 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Vision_Object ToolProperty Property

Camcal.<property> Operation Description

CameraToRobot

Returns the calibration matrices that convert between a camera's frame of reference
and a robot's frame of reference. These matrices are computed as a result of
performing a "robot vision camera calibration". After a camera pixel coordinate has
been transformed to mm and corrected for perspective distortion using the
PixelToMMTrans, the camera coordinate value can be multiplied times the
CameraToRobot transformation to compute the equivalent position in the coordinate
system of a robot.

The elements of each 4x4 homogeneous calibration transformation are return as 16
numeric values delimited by commas (",") in a String. The values are returned in the
following order: t11, t12, t13, t14, t21, t22, t23, t24, t31, t32, t33, t34, t41, t42, t43,
t44.

For example, given a CameraToRobot value, a camera X, Y position (Cx, Cy) in
millimeters can be converted to a robot XYZ position using the following equations:

Rx = t11*Cx+t12*Cy+t14
Ry = t21*Cx+t22*Cy+t24
Rz = t31*Cx+t32*Cy+t34

RobotToCamera

Examples

Dim prop As String
Dim vobject As New Vision
prop = vobject.ToolProperty("hist.angle")
vobject.ToolProperty("system.loadcal1") = "C:\cal1.dat"
prop = vobject.ToolProperty("system.mmtopixeltrans1")

See Also

Vision Classes

Copyright © 2024, Brooks Automation 579

22. Vision Classes GPL Dictionary
Visresult_Object ErrorCode Property Part Number: 609719 Rev. A

Visresult_Object ErrorCode Property

Gets the Integer error code for a vision results object.

...visresult_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

This property returns the Integer error code for the visresult_object. This is the same
value as the PreciseVision ResultErrorCode tool property. A value of 0 indicates that
the result was computed successfully and is valid. A positive value indicates a non-
critical error occurred during processing, but the result information is valid. A negative
value is a standard GPL error code and indicates an error occurred when
PreciseVision was computing the result. Please see the section on System Error
Codes in the PreciseFlex™ PreciseFlex Library for a list of vision error codes and their
interpretation. When a critical error occurs, the associated tool and all of the tools that
are dependent upon that tool are not processed. The dependent tools will also return
a critical error condition when they are queried. When a critical error is indicated, the
other properties for the visresult_object may not contain valid information.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
If vresult.ErrorCode <> 0 Then
 ' Handle error
End If

See Also

Vision Classes |vision_object.ErrorCode

580 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Visresult_Object Info Property

Visresult_Object Info Property

Returns a Double value from the vision result object's numeric information array.
...visresult_object.Info(index)

Prerequisites

None

Parameters

index

A required numeric expression that specifies the array index for the
information element that is to be returned. The first array element has an
index of 0. This parameter must have a value greater than or equal to
zero.

Remarks

The common results values returned from the Vision Tools are accessed via standard
properties of the VisResults Objects, e.g. the position and orientation of the results
are available from visresult_object.Loc. However, some tools return special numeric
data that is specific to the tool. For example, the Finder Tool returns the X and Y scale
factors for the parts that it has located. This type of tool specific information is returned
in the visresult_object.Info array property. For information on what data a tool returns
in this property and the index of the data, please consult the "PreciseVision Machine
Vision System, Introduction and Reference Manual". In the detailed descriptions for
each tool, properties that are returned in the Info array and their array index values
are highlighted.

Examples

Dim vresult As VisResult
vresult = vobject.Result() ' Get a tool's results
If vresult.Info(2) > .5 Then

…

See Also

Vision Classes | visresult_object.InfoCount | visresult_object.InfoString | visresult_object.Type

Copyright © 2024, Brooks Automation 581

22. Vision Classes GPL Dictionary
Visresult_Object InfoCount Property Part Number: 609719 Rev. A

Visresult_Object InfoCount Property

Returns, as an Integer value, the number of elements in the vision result object's
numeric information array.

...visresult_object.InfoCount

Prerequisites

None

Parameters

None

Remarks

The visresult_object.InfoCount property returns the number of elements in the
visresult_object.Info array for the current vision result. The index values for
accessing the Info array range from 0 to InfoCount - 1. Some tools return special
numeric data, which is specific to the tool, in the visresult_object.Info array property.
Some of these tools, for example the Edge Finder tool, can return a variable number
of numeric values. The InfoCount property allows a program to determine how many
values are actually returned. For information on what data a tool returns in this
property and the index of the data, please consult the "PreciseVision Machine Vision
System, Introduction and Reference Manual". In the detailed descriptions for each
tool, properties that are returned in the Info array and their array index values are
highlighted.

Examples

Dim vresult As VisResult
Dim ii As Integer
vresult = vobject.Result() ' Get a tool's results
For ii = 0 To vresult.InfoCount-1

Console.WriteLine(vresult.Info(ii))
Next ii

See Also

Vision Classes |vision_object.Info

582 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Visresult_Object.InfoString Property

Visresult_Object.InfoString Property

Returns a String value if the vision result object includes text results.

...visresult_object.InfoString

Prerequisites

None

Parameters

None

Remarks

The common results values returned from the Vision Tools are accessed via standard
properties of the VisResult Objects, e.g. the position and orientation of the results
are available from visresult_object.Loc. However, some tools return String data that
is specific to the tool. For example, the Barcode Reader tool returns a String that
contains the type and value of the barcode that was found. This property is used to
access such tool specific text data. For information on what data a tool returns in this
property, please consult the "PreciseVision Machine Vision System, Introduction and
Reference Manual". If a vision tool does not return any text data, this property returns
an empty String ("").

Examples

Dim vis As New Vision
Dim visRes As New VisResult
vis.Process("main")
visRes = vis.Result("read_barcode",1)
Console.WriteLine("Barcode Value = " & visRes.InfoString)

See Also

Vision Classes |visresult_object.Info|visresult_object.InfoCount|visresult_object.Type

Copyright © 2024, Brooks Automation 583

22. Vision Classes GPL Dictionary
Visresult_Object InspectActual Property Part Number: 609719 Rev. A

Visresult_Object InspectActual Property

Returns a Double that indicates the value of the tool property that was tested in the
vision inspection process.

...visresult_object.InspectActual

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output
includes the InspectActual property in PreciseVision.

Parameters

None

Remarks

This property returns the value of the vision tool property that was tested for the
PreciseVision inspection process. This is the same value as the PreciseVision
InspectActual tool property. For many PreciseVision tools, a range of acceptable
values can be set for a single results property for the tool. For example, for the
general object Finder Tool, the orientation angle of any located parts can be tested to
ensure that they fall within a specified range. When the inspection criteria is set, each
time the tool is executed, it automatically tests each set of results to see if it satisfies
the criteria. InspectActual is the property value that was tested during this process.
InspectPassed indicates the results of the test.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.InspectPassed = False Then ' Inspection failed?
If vresult.InspectActual < 10 Then ' By how much?

...

See Also

Vision Classes |visresults_object.InspectPassed

584 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Visresult_Object.InspectPassed Property

Visresult_Object.InspectPassed Property

Returns a Boolean that indicates if a property of the vision results satisfied the tool's
vision inspection criteria.

...visresult_object.InspectPassed

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output
includes the InspectPassed property in PreciseVision.

Parameters

None

Remarks

This property returns a True or False indication of whether or not the set of results
from a vision tool satisfied the specified inspection criteria. This is the same value as
the PreciseVision InspectPassed tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single
results property for the tool. For example, for the general object Finder Tool, the
orientation angle of any located parts can be tested to ensure that they fall within a
specified range.

When the inspection criteria is set, each time the tool is executed, it automatically
tests each set of results to see if it satisfies the criteria and sets the value of
InspectPassed appropriately. If the inspection fails, the tool is still processed in the
normal fashion as well as any tools that are dependent upon the failed result.
However, both the failed tool and any dependent tools will have their InspectPassed
set to False.

As a convenience, the tool property value that was tested is returned in visresults_
object.InspectActual.

Examples

Copyright © 2024, Brooks Automation 585

22. Vision Classes GPL Dictionary
Visresult_Object.InspectPassed Property Part Number: 609719 Rev. A

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.InspectPassed = False Then ' Inspection
failed?

If vresult.InspectActual < 10 Then ' By how much?
...

See Also

Vision Classes |visresults_object.InspectActual

586 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Visresult_Object Loc Property

Visresult_Object Loc Property

Returns a Location Object containing the position and orientation information from a
vision result object.

...visresult_object.Loc

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output
includes the ResultAngle, ResultXPos, and ResultYPos properties in PreciseVision.

Parameters

None

Remarks

This property returns the position and orientation results data from a vision tool and
provides the information in the form of a Cartesian Location Object. The position
and orientation data are derived from the PreciseVision ResultXPos, ResultYPos
and ResultAngle tool properties.

While not all vision tools generate position and orientation data, many do. For
example, the general purpose object Finder tool returns the position and orientation of
matched parts. Likewise, the Point-Line Frame tool returns the position and
orientation of its computed reference frame.

To allow this data to be easily utilized within a GPL procedure, the Loc property
returns a Cartesian Location Object that is computed from the PreciseVision tool
results but has been translated into the robot's world reference frame. This translation
is a defined by PreciseVision's camera calibration data and the camera mounting
(e.g., stationary, or mounted on the robot). This Location can then be used as the
reference frame for gripping a part or can be combined with other data to perform
further analysis.

Please see the PreciseVision manual for information on which vision tools return
these properties and how to interpret this data.

Examples

Copyright © 2024, Brooks Automation 587

22. Vision Classes GPL Dictionary
Visresult_Object Loc Property Part Number: 609719 Rev. A

Dim vresult As VisResult
Dim visloc As Location
Dim x, y, z As Double
vresult = vobject.Result() ' Get a tool's results
visloc = vresult.Loc ' Get position/orientation
output
x = visloc.X ' Vision "ResultXPos"
y = visloc.Y ' Vision "ResultYPos"
z = visloc.Roll ' Vision "ResultAngle"

See Also

Vision Classes | visresult_object.Info

588 Copyright © 2024, Brooks Automation

Brooks Automation 22. Vision Classes
Part Number: 609719 Rev. A Visresult_Object ProcessID Property

Visresult_Object ProcessID Property

Returns the ID of the vision process (as an Integer value) that generated the vision
result.

...visresult_object.ProcessID

Prerequisites

Requires PreciseVision version 3.1.0.11 or later to obtain meaningful values.

Parameters

None

Remarks

This property allows you to retrieve the ID of the vision process that generated the
vision result. This ID allows you to keep track of which process generated which result
in situations where multiple vision processes are being run by your application. The
process ID will be the same value as the ID supplied as an optional argument when
the process was executed by the Vision Process method. You must be using
PreciseVision version 3.1.0.11 or later to obtain meaningful values. If you are using an
older PreciseVision system, this property always returns 0.

Examples

Dim vobject As New Vision
Dim result As VisResult
vobject.Process("find_part", 123)
result = vobject.Result()
Console.Writeline("Process ID = " & CStr(result.ProcessId))

' Outputs "Process ID = 123"

See Also

Vision Classes | vision_object .Process

Copyright © 2024, Brooks Automation 589

22. Vision Classes GPL Dictionary
Visresult_Object Type Property Part Number: 609719 Rev. A

Visresult_Object Type Property

Returns an Integer type code from a vision result object.

...visresult_object.Type

Prerequisites

None

Parameters

None

Remarks

This method returns the numeric Type code for a vision result object. Currently, all
vision results are of type 0, so this property always returns 0.

This property will be used in the future to enhance the VisResult class.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
If vresult.Type = 0 Then
...

See Also

Vision Classes

590 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A XML Classes Summary

23. XMLClasses

XML Classes Summary

The following pages provide detailed information on the classes used to create, parse,
and modify XML (eXtensible Markup Language) documents. These classes handle
XML text documents by converting them to and from a tree structure that is stored in
the controller’s memory. A parsed XML document tree consists of nodes for items in
the document, arranged in a tree that reflects how items in the text document are
nested. The tree is constructed using a subset of the Document Object Model (DOM)
Core Interfaces as described in: http://www.w3.org/TR/REC-DOM-Level-1 and
methods similar to those found in Visual Basic.NET.

There are two built-in classes in GPL to handle XML document objects.

XmlDocClass objects operate on the top-level of a DOM tree, which contains an
entire XML document. The nodes within the tree contain the data from the document.
The XmlDocmethods deal with the document as a whole, for example loading it into
memory or saving it to a file. There is one and only one XmlDoc object for each
separate XML document, although there can be multiple pointers to this object. An
XML DOM tree cannot exist without an XmlDoc object.

XmlNodeClass objects point to individual nodes in a DOM document tree. Its
methods support accessing or modifying node data or properties, and adding or
removing nodes in the tree structure. These objects point to DOM nodes but do not
actually contain the DOM nodes. When an XmlNode object is created or destroyed,
the underlying DOM nodes are not affected provided that they are part of a DOM tree.
See Table 23-1.

XmlDoc Class
Member Type Description

New Constructor
Method Creates a new document tree with the specified name.

Table 23-1: XML Classes Summary

Copyright © 2024, Brooks Automation 591

http://www.w3.org/TR/REC-DOM-Level-1

23. XMLClasses GPL Dictionary
XML Classes Summary Part Number: 609719 Rev. A

XmlDoc Class
Member Type Description

xmldoc_obj.CreateNode Method Returns a new XmlNode object for this document with the specified
type, and name.

XmlDoc.DecodeEntities Shared
Method Converts a String containing encoded XML entities into raw text.

xmldoc_obj.
DocumentElement Method Returns the XmlNode element that is the root of the document.

XmlDoc.EncodeEntities Shared
Method Converts special characters in a String to XML entities.

xmldoc_obj.ErrorCode Get Property Returns the last parser error code number, or 0 if no error.

XmlDoc.LoadFile Shared
Method

Loads and parses an XML text document from a file and returns the
created XmlDoc DOM tree object.

XmlDoc.LoadString Shared
Method

Parses an XML text document from a String and returns the created
XmlDoc DOM tree object.

xmldoc_obj.Message Get Property Returns the last parser error message, or “” if no error.

xmldoc_obj.SaveFile Method Converts a DOM tree document to the XML text format and writes
the data to a file.

xmldoc_obj.SaveString Method Converts a DOM tree document to the XML text format and writes
the data to a String.

The XmlNode class interface is summarized in Table 23-2:

XmlNode Class
Member Type Description

xmlnode_
obj.AddAttribute Method Adds an attribute node as a child of this node.

xmlnode_
obj.AddElement Method Adds an element node as a child of this node. Includes an optional value.

xmlnode_
obj.
AddElementNode

Method Adds an element node as a child of this node. Returns an XmlNode object for
the new node. Includes an optional value.

xmlnode_
obj.AppendChild Method Appends a new child node as the last child of this node. Merges text nodes.

xmlnode_
obj.
ChildNodeCount

Get
Property Returns the number of children of this node.

Table 23-2: XmlNode Class Interface

592 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A XML Classes Summary

XmlNode Class
Member Type Description

xmlnode_obj.Clone Method Returns a clone of this node. Optionally recursively clones the subtree under
this node.

xmlnode_
obj.FirstChild Method Returns the first child of this node.

xmlnode_
obj.GetAttribute Method Returns a String containing the value of the specified attribute that is a child of

this node.

xmlnode_
obj.
GetAttributeNode

Method Returns the node corresponding to the specified attribute that is a child of this
node.

xmlnode_
obj.GetElement Method Returns a String containing the value of the specified element that is a child of

this node.

xmlnode_
obj.
GetElementNode

Method Returns the node corresponding to the specified element that is a child of this
node.

xmlnode_
obj.HasAttribute Method Returns True if the specified attribute is a child of this node.

xmlnode_
obj.HasChildNodes

Get
Property Returns True if the node has any non-attribute child nodes.

xmlnode_
obj.HasElement Method Returns True if a specified element is a child of this node.

xmlnode_
obj.InsertAfter Method Inserts a new node as a child of this node after a referenced child node.

Merges text nodes.

xmlnode_
obj.InsertBefore Method Inserts a new node as a child of this node before a referenced child node.

Merges text nodes.

xmlnode_
objLastChild Method Returns the last child of this node.

xmlnode_obj.Name Get
Property Returns the node name as a String.

xmlnode_
obj.NextSibling Method Returns the next sibling of this node.

xmlnode_
obj.
OwnerDocument

Method Returns the XmlDoc associated with this node.

xmlnode_
obj.ParentNode Method Returns the parent of this node.

xmlnode_
obj.PreviousSibling Method Returns the previous sibling of this node.

xmlnode_
obj.
RemoveAttribute

Method Removes a specified attribute from this node's children.

Copyright © 2024, Brooks Automation 593

23. XMLClasses GPL Dictionary
XML Classes Summary Part Number: 609719 Rev. A

XmlNode Class
Member Type Description

xmlnode_
obj.RemoveChild Method Removes a child node from the list of children for this node.

xmlnode_
obj.
RemoveElement

Method Removes a specified element from this node's children.

xmlnode_
obj.ReplaceChild Method Replaces an old child node with a new child node.

xmlnode_
obj.SetAttribute Method Sets the value of an existing specified attribute that is a child of this node.

xmlnode_
obj.SetElement Method Sets the value of an existing specified element that is a child of this node.

xmlnode_obj.Type Get
Property Returns the node type as a String.

xmlnode_obj.Value Get/Set
Property Returns the node value as a String or sets the node value.

594 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A New XmlDoc Constructor

New XmlDoc Constructor

Constructor for creating a new XML document tree object.

xmldoc_object = New XmlDoc(document_name)

Prerequisites

None

Parameters

document_name

A required String expression that specifies the name of the top-level
section in the new document. The name must not contain any special
characters.

Remarks

This method creates a new XML DOM document tree including its top-level document
node. It also creates a single element node with the name document_name as a child
of the document node.

The New constructor only needs to be called if you are creating a new document from
within GPL. You do not need to invoke it before calling XmlDoc.LoadFile or
XmlDoc.LoadString, which automatically create a new document tree object.

Examples

Dim doc As XmlDoc
doc = New XmlDoc("my_doc")

See Also

XML Classes | XmlDoc.LoadFile | XmlDoc.LoadString

Copyright © 2024, Brooks Automation 595

23. XMLClasses GPL Dictionary
Xmldoc_Object CreateNode Method Part Number: 609719 Rev. A

Xmldoc_Object CreateNode Method

Creates and returns a new node object that can be added to a DOM tree.

… xmldoc_object.CreateNode(type, name)

Prerequisites

None

Parameters

type

A required String expression that specifies the type of the node to be
created. The String value must be one of those shown below in the
Remarks section.

name

A String expression that specifies the name of the node to be created.
The name is required for some node types and ignored for others. See
the table below in the Remarks section.

Remarks

This method creates a new node for a DOM tree, but does not add it to the tree. The
node type is specified by the type parameter as shown in Table 23-3.

Type String value name
parameter Description

attribute Required

An attribute. Normally has either a document or element as its parent.
In XML data, attributes are embedded inside the element name start
tag. For example an attribute named color of element sample appears
as <sample color="value">

Table 23-3: type Parameter

596 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmldoc_Object CreateNode Method

Type String value name
parameter Description

cdatasection Ignored
A CDATA text node permits special characters in its data section
without requiring that they be encoded. The data starts with “<!CDATA
[” and ends with “]]>”

comment Ignored
A special text node that contains a comment not considered part of the
document data. The comment data begins with “<?--“ and ends with “--
>”.

element Required
The basic node type. An element corresponds to an XML tag that
begins with “<”. For example the element named sample begins with
“<sample>” and ends with “</sample>”

processinginstruction Required A special text node that contains processor-specific information. The
information data begins with "<?" and ends with "?>".

text Ignored The data contents of an element or attribute. It holds whatever is
between two element tags or the “value” of an attribute.

To be meaningful, the new node must be added to the tree using one of the XmlNode
methods: AppendChild, InsertAfter, InsertBefore,or ReplaceChild.

For most applications, it is easier to build a tree by using the XmlNodemethods
(AddElement, AddElementNode and AddAttribute) rather than using CreateNode.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")
text.value = "This is the data for section 1"
elem.AppendChild(text)
root.AppendChild(elem)

See Also

XML Classes | xmlnode_object.AddAttribute | xmlnode_object.AddElement | xmlnode_
object.AddElementNode

Copyright © 2024, Brooks Automation 597

23. XMLClasses GPL Dictionary
XmlDoc.DecodeEntities Shared Method Part Number: 609719 Rev. A

XmlDoc.DecodeEntities Shared Method

Returns a String produced by decoding an XML entry that contains special
characters that have been encoded to avoid errors in XML text files.

…XmlDoc.DecodeEntities(input_string)

Prerequisites

None

Parameters

input_string

A required String expression that contains the text to be decoded.

Remarks

Names and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to
be included in an XML entry. For efficiency the XML methods in GPL do not
automatically check for these characters since their use is not very common.

If you need to include these characters, this method can be used to decode any data
obtained from a GPL DOM document tree that includes encoded versions of these
special characters. To encode data before placing it in an XML document, see the
method XmlDoc.EncodeEntities.

This method converts the input_string value, decoding any encoded characters that it
encounters into standard UTF-8 characters according to Table 23-4 and returns the
result as a String value. This method does not convert 8-bit ASCII (e.g. ISO-8859-1)
to UTF-8.

Character Hex value Name Encoding

" &H22 double quote "

Table 23-4: input_string Value and UTF-8 Characters

598 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A XmlDoc.DecodeEntities Shared Method

Character Hex value Name Encoding

& &H26 ampersand &

' &H27 apostrophe '

< &H3C less than <

> &H3E greater than >

Examples

Dim root As XmlNode
Dim ss As String
. . .
ss = root.GetElement("section1")
ss = XmlDoc.DecodeEntities(ss)

See Also

XML Classes |XmlDoc.EncodeEntities

Copyright © 2024, Brooks Automation 599

23. XMLClasses GPL Dictionary
Xmldoc_Object DocumentElement Method Part Number: 609719 Rev. A

Xmldoc_Object DocumentElement Method

Returns the DOM document tree top-level element as an XmlNode object.

…xmldoc_object.DocumentElement

Prerequisites

None

Parameters

None

Remarks

All DOM documents, whether created by the XmlDoc constructor (New),
XmlDoc.LoadFile, or XmlDoc.LoadString, have a single top-level (or root) element
whose descendents contain the rest of the document tree.

This method returns that top-level element as an XmlNode object.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
Console.Writeline(root.Name) ' Displays "my_doc"

See Also

XML Classes | XmlDoc New | XmlDoc.LoadFile | XmlDoc.LoadString

600 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A XmlDoc.EncodeEntities Shared Method

XmlDoc.EncodeEntities Shared Method

Returns a String generated by encoding any special characters in an input String
expression, which permits their use in XML entity values.

… XmlDoc.EncodeEntities(input_string)

Prerequisites

None

Parameters

input_string

A required String expression that contains the characters to be
encoded.

Remarks

Names and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to
be included in an XML entry. For efficiency the XML methods in GPL do not
automatically check for these characters since their use is not very common.

If you need to include these characters, this method can be used to encode the
special characters before they are inserted into a GPL DOM document tree. To
decode data after it has been extracted from a GPL DOM tree, see the method
XmlDoc.DecodeEntities.

This method converts the input_string value, automatically encoding any special UTF-
8 characters that it encounters into equivalent values according to Table 23-5, and
returns the result as a String value. This method does not convert UTF-8 to 8-bit
ASCII (e.g. ISO-8859-1).

Character Hex value Name Encoding

" &H22 double quote "

Table 23-5: input_string Value

Copyright © 2024, Brooks Automation 601

23. XMLClasses GPL Dictionary
XmlDoc.EncodeEntities Shared Method Part Number: 609719 Rev. A

Character Hex value Name Encoding

& &H26 ampersand &

' &H27 apostrophe '

< &H3C less than <

> &H3E greater than >

Examples

Dim root As XmlNode
Dim ss As String
. . .
ss = XmlDoc.EncodeEntities(ss)
ss = root.SetElement("section1", ss)

See Also

XML Classes |XmlDoc.DecodeEntities

602 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmldoc_Object ErrorCode Property

Xmldoc_Object ErrorCode Property

Returns the error code for the most recent major operation on a DOM document tree.

…xmldoc_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

When a major operation is performed on an XML document tree, for example creating
it or storing it, the error status is saved within the corresponding XmlDoc object. This
property returns the GPL error code corresponding to that status or 0 if the last major
operation was successful. This property should always be checked after using the
XmlDoc.LoadStringmethod. Many internal XML processing errors are returned as -
799, "XML error". If this error occurs, the property xmldoc_object.Message should be
used to determine the details of the error.

Examples

Dim doc As XmlDoc
Dim instr As String
. . .
doc = XmlDoc.LoadString(instr) ' Parse the input
If (doc.ErrorCode <> 0) Then ' Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _

& ", " & doc.Message)
End If

See Also

XML Classes | xmldoc_object.Message

Copyright © 2024, Brooks Automation 603

23. XMLClasses GPL Dictionary
XmlDoc.LoadFile Shared Method Part Number: 609719 Rev. A

XmlDoc.LoadFile Shared Method

Loads and parses an XML text document from a file and returns the created XmlDoc
DOM tree object.

…XmlDoc.LoadFile(input_file, options)

Prerequisites

None

Parameters

input_file

A required String expression that contains the name of the XML data
file to be read and parsed.

options

An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates a DOM tree in memory from a file containing XML text data. If it
completes successfully, it returns the XmlDoc object for the DOM tree that contains
all of the parsed data. The various XmlNodemethods may then be used to access the
data.

This method only throws an exception in the case of severe errors. Otherwise, it
returns the XmlDoc object that includes any parsing errors. To check if the XML data
has been properly parsed, you must verify that the xmldoc_object.ErrorCodemethod
value is 0. If non-zero, check the error code and the xmldoc_object.Message values
to determine why the parsing failed.

604 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A XmlDoc.LoadFile Shared Method

The options parameter is composed of bit flags that are defined in Table 23-6. Bits not
shown in the table should be set to 0.

Bit Mask Name Description

&H01 Recover Attempt to continue parsing even if an error occurs.

&H20 Suppress errors Suppress error reporting.

&H40 Suppress warnings Suppress warning reporting.

&H100 Remove blank nodes Remove nodes that contain only white space.

Table 23-6: options Parameter

Examples

Dim doc As XmlDoc
doc = XmlDoc.LoadFile("/flash/test.xml") ' Parse the
file
If doc.ErrorCode <> 0 Then ' Check for
errors

Console.Writeline("Input error " & CStr
(doc.ErrorCode) _

& ", " & doc.Message)
End If

See Also

XML Classes | XmlDoc New | xmldoc_object.ErrorCode | XmlDoc.LoadString | xmldoc_
object.Message

Copyright © 2024, Brooks Automation 605

23. XMLClasses GPL Dictionary
XmlDoc.LoadString Shared Method Part Number: 609719 Rev. A

XmlDoc.LoadString Shared Method

Parses an XML text document from a String and returns the created XmlDoc DOM
tree object.

… XmlDoc.LoadString(input_string, options)

Prerequisites

None

Parameters

input_file

A required String expression that contains the XML data to be parsed.
The string may be very long.

options

An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates a DOM tree in memory from the XML text data contained in a
String. If it completes successfully, it returns the XmlDoc object for the DOM tree that
contains all of the parsed data. The various XmlNodemethods may then be used to
access the data.

This method only throws an exception in the case of severe errors. Otherwise, it
returns an XmlDoc object that includes any parsing errors. To check if the XML data
has been properly parsed, you must verify that the xmldoc_object.ErrorCodemethod
value is 0. If non-zero, check the error code and the xmldoc_object.Message values
to determine why the parsing failed.

606 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A XmlDoc.LoadString Shared Method

The options parameter is composed of bit flags that are defined in Table 23-7. Bits not
shown in the table should be set to 0.

Bit Mask Name Description

&H01 Recover Attempt to continue parsing even if an error occurs.

&H20 Suppress errors Suppress error reporting.

&H40 Suppress warnings Suppress warning reporting.

&H100 Remove blank nodes Remove nodes that contain only white space.

Table 23-7: options Parameter

Examples

Dim doc As XmlDoc
Dim instr As String = ""
Dim line As String

' Read the input file

Dim inf As New StreamReader("/flash/test.xml")
While inf.Peek() >=0 ' Check if end-of-file

line = inf.Readline()
instr &= line

End While
inf.Close()
doc = XmlDoc.LoadString(instr) ' Parse the input
If (doc.ErrorCode <> 0) Then ' Check for errors

Console.Writeline("Input error " & CStr
(doc.ErrorCode) _

& ", " & doc.Message)
End If

See Also

XML Classes | XmlDoc New | xmldoc_object.ErrorCode | XmlDoc.LoadFile | xmldoc_
object.Message

Copyright © 2024, Brooks Automation 607

23. XMLClasses GPL Dictionary
Xmldoc_Object.Message Property Part Number: 609719 Rev. A

Xmldoc_Object.Message Property

Returns the detailed error message for the most recent major operation on a DOM
document tree.

…xmldoc_object.Message

Prerequisites

None

Parameters

None

Remarks

When a major operation is performed on an XML document tree, for example creating
it or storing it, the error status is saved within the corresponding XmlDoc object. If an
error occurs, as indicated by xmldoc_object.ErrorCode being non-zero, this property
returns a detailed message. Many internal XML processing errors return an xmldoc_
object.ErrorCode of -799, "XML error". If this error occurs, the xmldoc_
object.Message property should be used to determine the details of the error.

Examples

Dim doc As XmlDoc
Dim instr As String
. . .
doc = XmlDoc.LoadString(instr) ' Parse the input
If (doc.ErrorCode <> 0) Then ' Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _

& ", " & doc.Message)
End If

See Also

XML Classes | xmldoc_object.ErrorCode

608 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmldoc_Object SaveFile Method

Xmldoc_Object SaveFile Method

Converts a DOM tree document to the XML text format and writes the data to a file.

xmldoc_object.SaveFile(output_file, options)

Prerequisites

None

Parameters

output_file

A required String expression that contains the name of the file to
receive the XML text output data.

options

An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates XML text data from a DOM tree and writes it to a file. It throws an
exception if any error occurs during conversion. If an error occurs, check the values of
xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the
conversion failed.

The options parameter is composed of bit flags that are defined in Table 23-8. Bits not
shown in the table should be set to 0.

Copyright © 2024, Brooks Automation 609

23. XMLClasses GPL Dictionary
Xmldoc_Object SaveFile Method Part Number: 609719 Rev. A

Bit
Mask Name Description

&H01 Format Format the output by adding new-lines and indenting nested elements.

&H02 Suppress
declarations

Suppress output of the standard XML declarations comments at the start of the
output.

&H04 Suppress empty
tags Suppress output of empty sections.

Table 23-8: options Parameter, Bit Flags

Examples

Dim doc As XmlDoc
doc = New XmlDoc("My_doc")
. . .
doc.SaveFile("/flash/xml/test.xml")

See Also

XML Classes | xmldoc_object.ErrorCode | XmlDoc.LoadFile | xmldoc_object.Message | xmldoc_
object.SaveString

610 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmldoc_Object SaveString Method

Xmldoc_Object SaveString Method

Converts a DOM tree document to the XML text format and writes the data to a String.

xmldoc_object.SaveString(output_string, options)

Prerequisites

None

Parameters

output_string

A required ByRefString variable that receives the XML formatted text
output. The string value may be very long.

options

An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates XML text data from a DOM tree and writes it to a String. It throws
an exception if any error occurs during conversion. If an error occurs, check the values
of xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the
conversion failed.

The options parameter is composed of bit flags that are defined in Table 23-9. Bits not
shown in the table should be set to 0.

Copyright © 2024, Brooks Automation 611

23. XMLClasses GPL Dictionary
Xmldoc_Object SaveString Method Part Number: 609719 Rev. A

Bit
Mask Name Description

&H01 Format Format the output by adding new-lines and indenting nested elements.

&H02 Suppress
declarations

Suppress output of the standard XML declarations comments at the start of the
output.

&H04 Suppress empty
tags Suppress output of empty sections.

Table 23-9: options Parameter, Bit Flags

Examples

Dim doc As XmlDoc
Dim ss As String
doc = New XmlDoc("My_doc")
. . .
doc.SaveString(ss)
Console.Writeline(ss)

See Also

XML Classes | xmldoc_object.ErrorCode | XmlDoc.LoadString | xmldoc_object.Message |
xmldoc_object.SaveFile

612 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object AddAttribute Method

Xmlnode_Object AddAttribute Method

Creates a new XML attribute and appends it as a child of the current tree node.
xmlnode_object.AddAttribute(attribute, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to
be created.

value

An optional String expression that specifies the value of the attribute to
be created.

Remarks

This is a convenience method that creates, initializes, and links a node to add an
attribute to a DOM tree. The new attribute appears as the new last child of xmlnode_
object.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AddElement | xmlnode_
object.SetAttribute

Copyright © 2024, Brooks Automation 613

23. XMLClasses GPL Dictionary
Xmlnode_Object.AddElement Method Part Number: 609719 Rev. A

Xmlnode_Object.AddElement Method

Creates a new XML element and appends it as a child of the current tree node.
xmlnode_object.AddElement(element, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to
be created.

value

An optional String expression that specifies the value of the element to
be created.

Remarks

This is a convenience method that creates, initializes, and links a node to add an
element to a DOM tree. The new element appears as the new last child of xmlnode_
object.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AddAttribute | xmlnode_
object.SetElement

614 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object.AddElementNode Method

Xmlnode_Object.AddElementNode Method

Creates a new XML element and appends it as a child of the current node. Returns an
XmlNode object for the newly created element node.

…xmlnode_object.AddElementNode(element, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to
be created.

value

An optional String expression that specifies the value of the element to
be created.

Remarks

This method is identical to AddElement except that it also returns an XmlNode object
for the newly created element. This new node may be useful in creating additional
levels in your document tree.

This is a convenience method that creates, initializes, and links a node to add an
element to a DOM tree. The new element appears as the new last child of xmlnode_
object.

Examples

Dim doc As XmlDoc
Dim root As XmlNode

Copyright © 2024, Brooks Automation 615

23. XMLClasses GPL Dictionary
Xmlnode_Object.AddElementNode Method Part Number: 609719 Rev. A

Dim elem As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = root.AddElementNode("section1", "Data for section
1")
elem.AddElement("section1-1", "Data for sub-section 1-
1")

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AddElement | xmlnode_
object.SetElement

616 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object.AppendChildMethod

Xmlnode_Object.AppendChildMethod

Appends a new node as the new last child of the current node. Text nodes are merged
as appropriate.

xmlnode_object.AppendChild(new_node)

Prerequisites

None

Parameters

new_node

A required XmlNode object that is to be appended.

Remarks

This method appends a node to the specified node. The new node becomes the last
child of the specified node. If a text node is being appended to an element whose last
child is already a text node, the new text is merged with the old text node and the new
node is freed.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild. If you are appending a new attribute or
element, it is more convenient to use AddAttribute or AddElement.

You cannot append a node that is a member of one document tree to a different
document tree. Use the Clonemethod to make a copy of a node from a different
document.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")

Copyright © 2024, Brooks Automation 617

23. XMLClasses GPL Dictionary
Xmlnode_Object.AppendChildMethod Part Number: 609719 Rev. A

root = doc.DocumentElement
elem = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")
text.value = "This is the data for section 1"
elem.AppendChild(text)
root.AppendChild(elem)

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AddAttribute | xmlnode_
object.AddElement

618 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object.ChildNodeCount Property

Xmlnode_Object.ChildNodeCount Property

Returns the number of children of the current node.

…xmlnode_object.ChildNodeCount

Prerequisites

None

Parameters

None

Remarks

This property counts the number of children of a node. Attributes are not considered
children and are not included in this count.

The method xmlnode_object.HasChildNodes is more efficient if you only want to
know if a node has children but do not care how many it has.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
Console.Writeline(root.ChildNodeCount) ' Output is
"1"

See Also

XML Classes | xmlnode_object.HasChildNodes

Copyright © 2024, Brooks Automation 619

23. XMLClasses GPL Dictionary
Xmlnode_Object Clone Method Part Number: 609719 Rev. A

Xmlnode_Object Clone Method

Creates a new XML node that is a clone of the current node.

…xmlnode_object.Clone(deep, xmldoc_object)

Prerequisites

None

Parameters

deep

A required Boolean numeric expression that determines if a deep or
shallow copy of the node should be made.

xmldoc_object

An optional XmlDoc object that specifies the document tree that will
contain the new node. If omitted, the clone will be a member of the same
document tree as the original copied node.

Remarks

This method creates a copy of an existing node and also provides a means for
copying nodes to a new document tree.

If the deep parameter is False, only the current node is copied. If the deep parameter
is True, all nodes beneath the current node are copied recursively to create a new
subtree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode

620 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object Clone Method

Dim elem2 As XmlNode
Dim sub1 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for sec-
tion 1")
sub1 = elem1.AddElementNode("section-a", "Sub-section
data")
elem2 = root.AddElementNode("section2", "Data for sec-
tion 2")
' Duplicate section-a under section 2
elem2.AppendChild(sub1.Clone(True))

See Also

XML Classes | xmldoc_object.CreateNode

Copyright © 2024, Brooks Automation 621

23. XMLClasses GPL Dictionary
Xmlnode_Object FirstChild Method Part Number: 609719 Rev. A

Xmlnode_Object FirstChild Method

Returns the first child node of the current node.

…xmlnode_object.FirstChild

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the first child node of
the current node. If the current node does not have any children, the returned object is
Nothing. This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(root.FirstChild.Name) ' Displays "section1"

See Also

XML Classes | xmlnode_object.LastChild | xmlnode_object.NextSibling | xmlnode_
object.ParentNode| xmlnode_object.PreviousSibling

622 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object GetAttribute Method

Xmlnode_Object GetAttribute Method

Returns a String containing the value of an existing attribute of the current node.

… xmlnode_object.GetAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to
be accessed.

Remarks

This is a convenience method that finds a named attribute and returns the value of the
attribute. The attribute must be an immediate child of the current node.

If the name is not found, an exception is thrown.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
Console.Writeline(root.GetAttribute("color")) 'Output is
"orange"

See Also

XML Classes | xmlnode_object.GetAttributeNode | xmlnode_object.GetElement | xmlnode_
object.SetAttribute

Copyright © 2024, Brooks Automation 623

23. XMLClasses GPL Dictionary
Xmlnode_Object GetAttributeNode Method Part Number: 609719 Rev. A

Xmlnode_Object GetAttributeNode Method

Returns the attribute node that is a child of the current node and has the specified
attribute name.
… xmlnode_object.GetAttributeNode(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

An optional String expression that specifies the name of the attribute to
be found. If the String is omitted or empty (""), the node for the first
attribute is returned.

Remarks

This is a convenience method that finds an attribute node that has a specified attribute
name. A new XmlNode object corresponding to the attribute is returned. If the
attribute parameter is omitted or empty, the first attribute of the current node is
returned. If there are no attributes for the current node, a Nothing object is returned. If
the attribute parameter is specified but no matching attribute is found, an exception is
thrown. The attribute node must be an immediate child of the current node.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim attr As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
attr = root.GetAttributeNode("color")
Console.Writeline(attr.Name) 'Output is "color"

See Also

XML Classes | xmlnode_object.GetAttribute | xmlnode_object.GetElementNode | xmlnode_
object.SetAttribute

624 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object GetElement Method

Xmlnode_Object GetElement Method

Returns a String that contains the value of a child element of the current node.

…xmlnode_object.GetElement(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the child
element to be found.

Remarks

This is a convenience method that finds a named element. The element must be an
immediate child of the current node.

If an element with the specified name is not found, an exception is thrown.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "data")
Console.Writeline(root.GetElement("section1")) ' Output
is "data"

See Also

XML Classes | xmlnode_object.GetAttribute | xmlnode_object.GetElementNode | xmlnode_
object.SetElement

Copyright © 2024, Brooks Automation 625

23. XMLClasses GPL Dictionary
Xmlnode_Object GetElementNode Method Part Number: 609719 Rev. A

Xmlnode_Object GetElementNode Method

Returns the element node that is a child of the current node and has the specified
element name.

…xmlnode_object.GetElementNode(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

An optional String expression that specifies the name of the child
element to be found. If the String is omitted or empty (""), the node for
the first child element is returned.

Remarks

This is a convenience method that finds a named child element node. A new
XmlNode object corresponding to the element is returned.

If the element parameter is omitted or empty, the first child element of the current node
is returned. If there are no child elements for the current node, a Nothing object is
returned.

If the element parameter is specified but no such element is found, an exception is
thrown.

The element must be an immediate child of the current node.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("my_doc")

626 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object GetElementNode Method

root = doc.DocumentElement
root.AddElement("section1", "data")
elem = root.GetElementNode("section1")
Console.Writeline(elem.Name) ' Output is "section1"

See Also

XML Classes | xmlnode_object.GetAttributeNode | xmlnode_object.GetElement | xmlnode_
object.SetElement

Copyright © 2024, Brooks Automation 627

23. XMLClasses GPL Dictionary
Xmlnode_Object HasAttribute Method Part Number: 609719 Rev. A

Xmlnode_Object HasAttribute Method

Returns True if the named attribute node is a child of this node.

… xmlnode_object.HasAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the child
attribute to be found.

Remarks

This is a convenience method that finds a named attribute node. The attribute must be
an immediate child of the current node.

If the name is found, a True value is returned. Otherwise, a False value is returned.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
Console.Writeline(root.HasAttribute("color")) ' Output
is "-1"

See Also

XML Classes | xmlnode_object.GetAttribute | xmlnode_object.GetAttributeNode | xmlnode_
object.HasElement

628 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object HasChildNodes Property

Xmlnode_Object HasChildNodes Property

Returns True if the current node has any non-attribute child nodes.

… xmlnode_object.HasChildNodes

Prerequisites

None

Parameters

None

Remarks

This property returns True if the current node has any children, otherwise it returns
False. Attributes are not considered children and are not included in this test.

To determine how many children a node has, use the method xmldoc_
object.ChildNodeCount.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
Console.Writeline(root.HasChildNodes) ' Output is "-1"

See Also

XML Classes | xmlnode_object.ChildNodeCount

Copyright © 2024, Brooks Automation 629

23. XMLClasses GPL Dictionary
Xmlnode_Object HasElement Method Part Number: 609719 Rev. A

Xmlnode_Object HasElement Method

Returns True if a specified element is a child of the current node.

… xmlnode_object.HasElement(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to
be found.

Remarks

This is a convenience method that finds a named element. The element must be an
immediate child of the current node. If an element with the specified name is found, a
True value is returned. Otherwise, a False value is returned.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
Console.Writeline(root.HasElement("section1")) ' Output is "-1"

See Also

XML Classes | xmlnode_object.GetElement | xmlnode_object.GetElementNode | xmlnode_
object.HasAttribute

630 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object InsertAfter Method

Xmlnode_Object InsertAfter Method

Inserts a new node, after a specified node, in the list of children of the current node.
Text nodes are merged as appropriate.

xmlnode_object.InsertAfter(new_child, ref_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that is to be inserted into the list of children.

ref_child

An optional XmlNode object. If specified, it must be an existing child of
the current node.

Remarks

The new_child node is inserted as a child of the current node, and a sibling of the ref_
child node. It is inserted immediately after the ref_child node in the DOM tree.

If ref_child is omitted, the new_child is added to the end of the list of children.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clonemethod if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Copyright © 2024, Brooks Automation 631

23. XMLClasses GPL Dictionary
Xmlnode_Object InsertAfter Method Part Number: 609719 Rev. A

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")
text.Value = "This is the data for section 1"
elem1.AppendChild(text)
root.AppendChild(elem1)
elem2 = doc.CreateNode("element", "section2")
root.InsertAfter(elem2, elem1)

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AppendChild | xmlnode_
object.InsertBefore

632 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object InsertBefore Method

Xmlnode_Object InsertBefore Method

Inserts a new node, before a specified node, in the list of children of the current node.
Text nodes are merged as appropriate.

xmlnode_object.InsertBefore(new_child, ref_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that is to be inserted into the list of children.

ref_child

An optional XmlNode object. If specified, it must be an existing child of
the current node.

Remarks

The new_child node is inserted as a child of the current node, and a sibling of the ref_
child node. It is inserted immediately before the ref_child node in the DOM tree.

If ref_child is omitted, the new_child is added to the beginning of the list of children.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clonemethod if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Copyright © 2024, Brooks Automation 633

23. XMLClasses GPL Dictionary
Xmlnode_Object InsertBefore Method Part Number: 609719 Rev. A

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")
text.Value = "This is the data for section 1"
elem1.AppendChild(text)
root.AppendChild(elem1)
elem2 = doc.CreateNode("element", "section2")
root.InsertBefore(elem2, elem1)

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AppendChild | xmlnode_
object.InsertAfter

634 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object LastChild Method

Xmlnode_Object LastChild Method

Returns the last child node of the current node.

…xmlnode_object.LastChild

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the last child node of
the current node. If the current node does not have any children, the returned object is
Nothing. This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(root.LastChild.Name) ' Displays "section2"

See Also

XML Classes | xmlnode_object.FirstChild | xmlnode_object.NextSibling | xmlnode_
object.ParentNode | xmlnode_object.PreviousSibling

Copyright © 2024, Brooks Automation 635

23. XMLClasses GPL Dictionary
Xmlnode_Object Name Property Part Number: 609719 Rev. A

Xmlnode_Object Name Property

Returns the name of the current node, if it has a name.

…xmlnode_object.Name

Prerequisites

None

Parameters

None

Remarks

Returns the name of the current node or an empty string ("") if the node has no name.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
Console.Writeline(root.Name) ' Displays "my_doc"

See Also

XML Classes | xmlnode_object.Type | xmlnode_object.Value

636 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object NextSibling Method

Xmlnode_Object NextSibling Method

Returns the next sibling node of the current node.

…xmlnode_object.NextSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the next sibling of the
current node. If there is no next sibling, the returned object is Nothing. A sibling is a
node that has the same parent as the current node. The order of siblings corresponds
to the order of data items in the XML text document. This method does not create a
new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(elem1.NextSibling.Name) ' Displays "section2"

See Also

XML Classes | xmlnode_object.ParentNode| xmlnode_object.PreviousSibling

Copyright © 2024, Brooks Automation 637

23. XMLClasses GPL Dictionary
Xmlnode_Object OwnerDocument Method Part Number: 609719 Rev. A

Xmlnode_Object OwnerDocument Method

Returns the XmlDoc object for the DOM tree that contains the current node.

…xmlnode_object.OwnerDocument

Prerequisites

None

Parameters

None

Remarks

This method provides a back-pointer for the current node to the XmlDoc object for the
node’s DOM tree. Normally, all nodeobjects have an associated XmlDoc object,
unless the document tree was freed by some other method.

If the current object has no associated document, an exception is thrown.

Examples

Dim doc1 As XmlDoc
Dim doc2 As XmlDoc
Dim root As XmlNode
doc1 = New XmlDoc("my_doc")
root = doc1.DocumentElement
doc2 = root.OwnerDocument
' doc1 and doc 2 point to same object, doc1 Is doc2

See Also

XML Classes | xmlnode_object.ParentNode

638 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object ParentNode Method

Xmlnode_Object ParentNode Method

Returns the parent node of the current node.

…xmlnode_object.ParentNode

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the parent of the
current node. If the current node is not part of a DOM tree, it will not have a parent and
the returned object is Nothing. This method does not create a new node in the DOM
tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim sub1 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
sub1 = elem1.AddElementNode("section-a", "Sub-section data")
Console.Writeline(sub1.ParentNode.Name) ' Output is "section1"

See Also

XML Classes | xmlnode_object.NextSibling | xmlnode_object.OwnerDocument | xmlnode_
object.PreviousSibling

Copyright © 2024, Brooks Automation 639

23. XMLClasses GPL Dictionary
Xmlnode_Object PreviousSibling Method Part Number: 609719 Rev. A

Xmlnode_Object PreviousSibling Method

Returns the previous sibling node of the current node.

…xmlnode_object.PreviousSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the previous sibling of
the current node. If there is no previous sibling, the returned object is Nothing. A
sibling is a node that has the same parent as the current node. The order of siblings
corresponds to the order of data items in the XML text document. This method does
not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(elem2.PreviousSibling.Name) ' Displays "section1"

See Also

XML Classes| xmlnode_object.NextSibling | xmlnode_object.ParentNode

640 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object RemoveAttribute Method

Xmlnode_Object RemoveAttribute Method

Removes specified child attribute node and its subtrees from a DOM tree.

xmlnode_object.RemoveAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required string expression that specifies the name of the attribute to
be removed.

Remarks

This is a convenience method that finds and removes a child node that contains a
specified attribute. The removed attribute node and any nodes beneath it are deleted
and are no longer accessible. If an attribute is not found, an exception is thrown. The
attribute must be immediate child of the current node.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
root.RemoveAttribute("color") ' Attribute is removed

See Also

XML Classes | xmlnode_object.AddAttribute | xmlnode_object.RemoveChild | xmlnode_
object.RemoveElement

Copyright © 2024, Brooks Automation 641

23. XMLClasses GPL Dictionary
Xmlnode_Object RemoveChild Method Part Number: 609719 Rev. A

Xmlnode_Object RemoveChild Method

Remove a specified child node and its subtree from the DOM tree.

xmlnode_object.RemoveChild(old_child)

Prerequisites

None

Parameters

old_child

A required XmlNode object that indicates the DOM tree node to
remove.

Remarks

The DOM node (and its subtree) associated with the old_child object is removed from
the tree. This node and its subtree can then be placed in the same tree at a different
location.

The old_child object must be an immediate child of the current node.

If a node is removed from the DOM tree and not placed somewhere else in the same
tree, it and its subtree are lost once the corresponding XmlNode object is destroyed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for

642 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object RemoveChild Method

section 1")
elem2 = root.AddElementNode("section2", "Data for sec-
tion 2")
root.RemoveChild(elem1) ' "section1" is removed from
the tree

See Also

XML Classes | xmlnode_object.RemoveAttribute| xmlnode_object.RemoveElement

Copyright © 2024, Brooks Automation 643

23. XMLClasses GPL Dictionary
Xmlnode_Object RemoveElement Method Part Number: 609719 Rev. A

Xmlnode_Object RemoveElement Method

Removes a specified child element node and its subtree from the DOM tree.

xmlnode_object.RemoveElement(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required string expression that specifies the name of the element to be
removed.

Remarks

This is a convenience method that finds and removes a specified child element node
in a DOM tree. The removed element node and the nodes beneath it are deleted and
are no longer available. If the element is not found, an exception is thrown. The
element must be an immediate child of the current node.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
root.RemoveElement("section1") ' Removes "section1"

See Also

XML Classes | xmlnode_object.AddElement|xmlnode_object.RemoveAttribute| xmlnode_
object.RemoveChild

644 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object ReplaceChild Method

Xmlnode_Object ReplaceChild Method

Replaces a child of the current node with a new node.

xmlnode_object.ReplaceChild(new_child, old_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that specifies a new node in the current
node’s DOM tree. This new node will be inserted as a child of the current
node.

old_child

A required XmlNode object that specifies a child of the current node.
This child will be removed from the DOM tree.

Remarks

The old_child node and its subtree are removed from the DOM tree and the new_child
node and its subtree are put in its place. The old_child node and its subtree can then
be placed at a different location in the same tree or they can be deleted.

The old_child node must be an immediate child of the current node.

You cannot place a node that is a member of one document tree into a different
document tree. Use the Clonemethod if you wish to make a copy of a node for a
different document tree.

If a node is removed from a DOM tree and is not placed somewhere else in the tree, it
is deleted once the corresponding XmlNode object is destroyed.

Copyright © 2024, Brooks Automation 645

23. XMLClasses GPL Dictionary
Xmlnode_Object ReplaceChild Method Part Number: 609719 Rev. A

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for sec-
tion 1")
elem2 = doc.CreateNode("element", "section2")
text = doc.CreateNode("text")
text.Value = "Data for section 2"
elem2.AppendChild(text)
root.ReplaceChild(elem2, elem1) ' Replace section1 with
section2

See Also

XML Classes | xmlnode_object.RemoveAttribute| xmlnode_object.RemoveChild | xmlnode_
object.RemoveElement

646 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object SetAttribute Method

Xmlnode_Object SetAttribute Method

Changes the value of an existing attribute.
xmlnode_object.SetAttribute(attribute, new_value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to
be changed.

new_value

A required String expression that specifies the new value of the
attribute.

Remarks

This is a convenience method that modifies an attribute value in a DOM tree. The
new_value replaces the old value of the attribute. The attribute must be an immediate
child of the current node. If the attribute is not found, an exception is thrown.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
root.SetAttribute("color", "green") ' Change color to "green"

See Also

XML Classes | xmlnode_object.GetAttribute | xmlnode_object.SetElement

Copyright © 2024, Brooks Automation 647

23. XMLClasses GPL Dictionary
Xmlnode_Object SetElement Method Part Number: 609719 Rev. A

Xmlnode_Object SetElement Method

Changes the value of an existing child element.
xmlnode_object.SetElement(element, new_value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to
be changed.

new_value

A required String expression that specifies the new value of the
element.

Remarks

This is a convenience method that modifies an element value in a DOM tree. The
new_value replaces the old value of the element. The element must be an immediate
child of the current node. If the element is not found, an exception is thrown.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "Data for section 1")
root.SetElement("section1", "New data for section 1")

See Also

XML Classes | xmlnode_object.GetElement | xmlnode_object.SetAttribute

648 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object Type Property

Xmlnode_Object Type Property

Returns the type of the current node as a String.

… xmlnode_object.Type

Prerequisites

None

Parameters

None

Remarks

Returns one of the type Strings from Table 23-10.

Type String Description

attribute An attribute. Normally has a text node child with the attribute value.

cdatasection A CDATA text node that allows special characters in the data without encoding
them.

comment A special text node that contains a comment not considered part of the
document data.

element
The basic node type. An element corresponds to an XML text tag that begins
with “<name>” and ends with “</name>”. Normally has a text node child with the
element value.

processinginstruction A text node that contains processor-specific information.

text The data contents of an element or attribute. It holds whatever is between two
element tags, or the “value” of an attribute.

Table 23-10: Type Strings

Copyright © 2024, Brooks Automation 649

23. XMLClasses GPL Dictionary
Xmlnode_Object Type Property Part Number: 609719 Rev. A

Type String Description

attributedeclaration
document

documentfragment
documenttype

dtd
elementdeclaration

entity
entitydeclaration
entityreference
htmldocument
namespace
notation

xincludeend
xincludestart

You cannot create nodes of these types within the GPL classes,
but they may appear in externally created XML text documents.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
Console.Writeline(root.Type) ' Displays "element"

See Also

XML Classes | xmlnode_object.Name | xmlnode_object.Value

650 Copyright © 2024, Brooks Automation

Brooks Automation 23. XMLClasses
Part Number: 609719 Rev. A Xmlnode_Object Value Property

Xmlnode_Object Value Property

Returns the value of the current node as a String or sets the value of the current node.

… xmlnode_object.Value
-or-
xmlnode_object.Value =string_value

Prerequisites

None

Parameters

None

Remarks

If a node does not have a value directly, any child text nodes are accessed
transparently and their values are set or returned.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = root.AddElementNode("section1", "Data for section
1")
Console.Writeline(elem.Value) ' Writes "Data for sec-
tion 1"

See Also

XML Classes | xmlnode_object.Name | xmlnode_object.Type

Copyright © 2024, Brooks Automation 651

	1. Safety
	Safety Setup
	Authorized Personnel Only
	Explanation of Hazards and Alerts
	Safety Text
	Safety Icons
	Signal Words and Color
	Alert Example

	General Safety Considerations
	Mechanical Hazards
	Electrical Hazards
	Ergonomic Hazards
	Emergency Stop Circuit (E-Stop)
	Recycling and Hazardous Materials

	2. GPL Dictionary Pages Summary
	3. Array Class
	Array Class Summary
	array.GetUpperBound Property
	array.Length Property
	array.Rank Property

	4. Console Class
	Console Class Summary
	Console.Write Method
	Console.WriteLine Method

	5. Controller Class
	Controller Class Summary
	Controller.Command Method
	Controller.ErrorLog Property
	Controller.Load Method
	Controller.PDb Property
	Controller.PDbNum Property
	Controller.PowerEnabled Property
	Controller.PowerState Property
	Controller.RecordButton Property
	Controller.ShowDialog Method - Basic Modes
	Controller.ShowDialog Method - Advanced Mode
	Controller.ShowDialogMCP Method
	Controller.SleepTick Method
	Controller.SoftEStop Property
	Controller.SystemMessage Method
	Controller.SystemSpeed Property
	Controller.Tick Property
	Controller.Unload Method

	6. Exception Handling
	Exception Handling Summary
	Catch Statement
	End Try Statement
	Exit Try Statement
	Finally Statement
	Throw Statement
	Try..Catch..Finally..End Try Statements
	exception_object.Axis Property
	exception_object.Clone Method
	exception_object.ErrorCode Property
	exception_object.Message Method
	exception_object.Qualifier Property
	exception_object.RobotError Property
	exception_object.RobotNum Property
	exception_object.UpdateErrorCode Method

	7. File and Serial I/O Classes
	File and Serial I/O Classes Summary
	File.ComputeCRC Function
	File.ComputeLength Function
	File.Copy Method
	File.CreateDirectory Method
	File.DeleteDirectory Method
	File.DeleteFile Method
	File.GetDirectories Method
	File.GetFiles Method
	File.Length Function
	New StreamReader Constructor
	streamreader_object.Close Method
	streamreader_object.Peek Method
	streamreader_object.Read Method
	streamreader_object.ReadLine Method
	New StreamWriter Constructor
	streamwriter_object.AutoFlush Property
	streamwriter_object.Close Method
	streamwriter_object.Flush Method
	streamwriter_object.NewLine Property
	streamwriter_object.Write Method
	streamwriter_object.WriteLine Method

	8. Functions
	Function Summary
	CBool Function
	CByte Function
	CDbl Function
	CInt Function
	CShort Function
	CSng Function
	CStr Function
	Fix Function
	Hex Function
	Int Function
	Rnd Function

	9. Latch Class
	Latch Class Summary
	latch_object.Angle Property
	Latch.Count Shared Property
	latch_object.ErrorCode Property
	Latch.Flush Shared Method
	latch_object.Location Method
	Latch.Result Shared Method
	latch_object.Signal Property
	Latch.ThreadEvent Shared Property
	latch_object.Timestamp Property

	10. Location Class
	Location Class Summary
	location_object.Angle Property
	location_object.Angles Method
	location_object.Clone Method
	location_object.Config Property
	location_object.ConveyorLimit Method
	Location.Distance Method
	location_object.Here Method
	location_object.Here3 Method
	location_object.Inverse Method
	location_object.KineSol Method
	location_object.Mul Method
	location_object.Normalize Method
	location_object.Pitch Property
	location_object.Pos Property
	location_object.PosWrtRef Property
	location_object.RefFrame Property
	location_object.Roll Property
	location_object.Text Property
	location_object.Type Property
	location_object.X Property
	location_object.XYZ Method
	location_object.XYZInc Method
	Location.XYZValue Method
	location_object.Y Property
	location_object.Yaw Property
	location_object.Z Property
	location_object.ZClearance Property
	location_object.ZWorld Property

	11. Math Class
	Math Class Summary
	Math.Abs Method
	Math.Acos Method
	Math.Asin Method
	Math.Atan Method
	Math.Atan2 Method
	Math.Ceiling Method
	Math.Cos Method
	Math.Cosh Method
	Math.E Method
	Math.Exp Method
	Math.Floor Method
	Math.Log Method
	Math.Log10 Method
	Math.Max Method
	Math.Min Method
	Math.PI Method
	Math.Pow Method
	Math.Sign Method
	Math.Sin Method
	Math.Sinh Method
	Math.Sqrt Method
	Math.Tan Method
	Math.Tanh Method

	12. Modbus Class
	Modbus Class Summary
	modbus_object.Close Method
	modbus_object.ReadCoils Method
	modbus_object.ReadDeviceID Method
	modbus_object.ReadDiscreteInputs Method
	modbus_object.ReadHoldingRegisters Method
	modbus_object.ReadInputRegisters Method
	modbus_object.Timeout Property
	modbus_object.WriteMultipleCoils Method
	modbus_object.WriteMultipleRegisters Method
	modbus_object.WriteSingleCoil Method
	modbus_object.WriteSingleRegister Method

	13. Move Class
	Move Class Summary
	Move.Approach Method
	Move.Arc Method
	Move.Circle Method
	Move.Delay Method
	Move.Extra Method
	Move.ForceOverlap Method
	Move.Loc Method
	Move.OneAxis Method
	Move.Rel Method
	Move.SetJogCommand Method
	Move.SetRealTimeMod Method
	Move.SetSpeeds Method
	Move.SetTorques Method
	Move.StartJogMode Method
	Move.StartRealTimeMod Method
	Move.StartSpeedDAC Method
	Move.StartTorqueCntrl Method
	Move.StartVelocityCntrl Method
	Move.StopSpecialModes Method
	Move.Trigger Method
	Move.WaitForEOM Method

	14. Networking Classes
	Networking Classes Summary
	New IPEndPoint Constructor
	ipendpoint_object.IPAddress Property
	ipendpoint_object.Port Property
	socket_object.Available Property
	socket_object.Blocking Property
	socket_object.Close Method
	socket_object.Connect Method
	socket_object.KeepAlive Property
	socket_object.Receive Method
	socket_object.ReceiveFrom Method
	socket_object.ReceiveTimeout Property
	socket_object.RemoteEndPoint Property
	socket_object.Send Method
	socket_object.SendTimeout Property
	socket_object.SendTo Method
	New TcpClient Constructor
	tcpclient_object.Client Method
	tcpclient_object.Close Method
	New TcpListener Constructor
	tcplistener_object.AcceptSocket Method
	tcplistener_object.Close Method
	tcplistener_object.Pending Property
	tcplistener_object.Start Method
	tcplistener_object.Stop Method
	New UdpClient Constructor
	udpclient_object.Client Method
	udpclient_object.Close Method

	15. Profile Class
	Profile Class Summary
	profile_object.Accel Property
	profile_object.AccelRamp Property
	profile_object.Clone Method
	profile_object.Decel Property
	profile_object.DecelRamp Property
	profile_object.InRange Property
	profile_object.Speed Property
	profile_object.Speed2 Property
	profile_object.Straight Property
	profile_object.Text Property

	16. Reference Frame Class
	RefFrame Class Summary
	refframe_object.ConveyorOffset Property
	refframe_object.ConveyorRobot Property
	refframe_object.Loc Property
	refframe_object.PalletIndex Property
	refframe_object.PalletMaxIndex Property
	refframe_object.PalletNextPos Method
	refframe_object.PalletOrder Property
	refframe_object.PalletPitch Property
	refframe_object.PalletRowColLay Method
	refframe_object.Pos Method
	refframe_object.PosWrtRef Method
	refframe_object.Text Property
	refframe_object.Type Property

	17. Robot Class
	Robot Class Summary
	Robot.Attached Property
	Robot.Base Property
	Robot.CartMode Property
	Robot.Custom Property
	Robot.DefLinComp Method
	Robot.Dest Property
	Robot.DestAngles Property
	Robot.Home Method
	Robot.HomeAll Method
	Robot.JointToMotor Method
	Robot.LastProfile Property
	Robot.MotorTempStatus Property
	Robot.MotorToJoint Method
	Robot.Payload Property
	Robot.RapidDecel Property
	Robot.RealTimeModAcm Property
	Robot.RestartBase Property
	Robot.RestartTool Property
	Robot.Selected Property
	Robot.Source Property
	Robot.SourceAngles Property
	Robot.SpeedAngles Property
	Robot.Tool Property
	Robot.TrajState Property
	Robot.Where Property
	Robot.WhereAngles Property

	18. Signal Class
	Signal Class Summary
	Signal.AIO Property
	Signal.DIO Property

	19. Statements
	Statements Summary
	Call Statement
	Case, Case Else Statements
	Class Statement
	Const Statement
	Delegate Statement
	Dim Statement
	Do...Loop Statements
	Else, ElseIF Statements
	End Statements
	Exit Statements
	For...Next Statements
	Function Statement
	Get Statement
	GoTo Statement
	If..Then...Else...End If Statements
	Loop Statements
	Module Statement
	Next Statements
	Property Statement
	ReDim Statement
	Return Statement
	Select...Case...End Select Statements
	Set Statement
	Sub Statement
	While...End While Statements

	20. Strings
	String Summary
	String.Compare Method
	string.IndexOf Method
	string.Length Property
	string.Split Method
	string.Substring Method
	string.ToLower Method
	string.ToUpper Method
	string.Trim Method
	string.TrimEnd Method
	string.TrimStart Method
	Asc Function
	Chr Function
	Format Function
	FromBitString Function
	Instr Function
	LCase Function
	Len Function
	Mid Function
	ToBitString Function
	UCase Function

	21. Thread Class
	Thread Class Summary
	New Thread Constructor
	thread_object.Abort Method
	thread_object.Argument Property
	Thread.CurrentThread Shared Method
	thread_object.Join Method
	thread_object.Name Property
	thread_object.Project Property
	thread_object.Resume Method
	Thread.Schedule Shared Method
	thread_object.SendEvent Method
	Thread.Sleep Shared Method
	thread_object.Start Method
	thread_object.StartProcedure Property
	thread_object.Suspend Method
	Thread.TestAndSet Shared Method
	thread_object.ThreadState Property
	Thread.WaitEvent Shared Method

	22. Vision Classes
	Vision Classes Summary
	Vision_Object Disconnect Method
	Vision_Object.ErrorCode Property
	Vision_Object Instance Property
	Vision_Object IPAddress Property
	Vision_Object Process Method
	Vision_Object Result Method
	Vision_Object.ResultCount Method
	vision_object.Status Property
	Vision_Object ToolProperty Property
	Visresult_Object ErrorCode Property
	Visresult_Object Info Property
	Visresult_Object InfoCount Property
	Visresult_Object.InfoString Property
	Visresult_Object InspectActual Property
	Visresult_Object.InspectPassed Property
	Visresult_Object Loc Property
	Visresult_Object ProcessID Property
	Visresult_Object Type Property

	23. XMLClasses
	XML Classes Summary
	New XmlDoc Constructor
	Xmldoc_Object CreateNode Method
	XmlDoc.DecodeEntities Shared Method
	Xmldoc_Object DocumentElement Method
	XmlDoc.EncodeEntities Shared Method
	Xmldoc_Object ErrorCode Property
	XmlDoc.LoadFile Shared Method
	XmlDoc.LoadString Shared Method
	Xmldoc_Object.Message Property
	Xmldoc_Object SaveFile Method
	Xmldoc_Object SaveString Method
	Xmlnode_Object AddAttribute Method
	Xmlnode_Object.AddElement Method
	Xmlnode_Object.AddElementNode Method
	Xmlnode_Object.AppendChildMethod
	Xmlnode_Object.ChildNodeCount Property
	Xmlnode_Object Clone Method
	Xmlnode_Object FirstChild Method
	Xmlnode_Object GetAttribute Method
	Xmlnode_Object GetAttributeNode Method
	Xmlnode_Object GetElement Method
	Xmlnode_Object GetElementNode Method
	Xmlnode_Object HasAttribute Method
	Xmlnode_Object HasChildNodes Property
	Xmlnode_Object HasElement Method
	Xmlnode_Object InsertAfter Method
	Xmlnode_Object InsertBefore Method
	Xmlnode_Object LastChild Method
	Xmlnode_Object Name Property
	Xmlnode_Object NextSibling Method
	Xmlnode_Object OwnerDocument Method
	Xmlnode_Object ParentNode Method
	Xmlnode_Object PreviousSibling Method
	Xmlnode_Object RemoveAttribute Method
	Xmlnode_Object RemoveChild Method
	Xmlnode_Object RemoveElement Method
	Xmlnode_Object ReplaceChild Method
	Xmlnode_Object SetAttribute Method
	Xmlnode_Object SetElement Method
	Xmlnode_Object Type Property
	Xmlnode_Object Value Property

