

Guidance Programming Language

G
Version 3.2.0, February 11, 2013

FINAL RELEASE
P/N: GPL0-DI-00110

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

PL Dictionary Pages

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc. assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2013 by Precise Automation Inc. All rights reserved.

The Precise Logo is a registered trademark of Precise Automation Inc.

Trademarks

GIO, GSB, Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2600, Guidance 2400, Guidance
2300, Guidance 2200, Guidance 1400, Guidance 1300, Guidance 1200, Guidance 0200 Slave Amplifier,
Guidance 0006, Guidance 0004, Guidance Controller, Guidance Development Environment, GDE,
Guidance Development Suite, GDS, Guidance Dispense, Guidance Input and Output Module, Guidance
Programming Language, GPL, Guidance Servo Board, Guidance System, Guidance System D4/D6,
PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PreciseFlex 400,
PreciseFlex 1300, PreciseFlex 1400, PrecisePower 300, PrecisePower 500, PrecisePower 2000,
PreciseVision, RIO are either registered or trademarks of Precise Automation Inc., and may be registered
in the United States or in other jurisdictions including internationally. Other product names, logos,
designs, titles, words or phrases mentioned within this publication may be trademarks, service marks, or
trade names of Precise Automation Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO YOU.
PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.
727 Filip Road
Los Altos, California 94024
U.S.A.
www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation,
which, if not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which,
if not avoided, could result in serious injury or major damage to the
equipment.

CAUTION: This indicates a situation, which, if not avoided, could
result in minor injury or damage to the equipment.

 NOTE: This provides supplementary information, emphasizes a
point or procedure, or gives a tip for easier operation

Table Of Contents
GPL Dictionary Pages Summary ...1

Array Class ..3

Array Class Summary 3

array.GetUpperBound Property 4

array.Length Property 5

array.Rank Property 6

Console Class ...7

Console Class Summary 7

Console.Write Method 8

Console.WriteLine Method 9

Controller Class ..10

Controller Class Summary 10

Controller.Command Method 12

Controller.ErrorLog Property 14

Controller.Load Method 16

Controller.PDb Property 17

Controller.PDbNum Property 19

Controller.PowerEnabled Property 21

Controller.PowerState Property 23

Controller.RecordButton Property 25

Controller.ShowDialog Method - Basic Modes 26

Controller.ShowDialog Method - Advanced Mode 29

Controller.ShowDialogMCP Method 33

Controller.SleepTick Method 36

Controller.SoftEStop Property 37

Controller.SystemMessage Method 38

Controller.SystemSpeed Property 39

Controller.Tick Property 40

Controller.Timer Property 41

Controller.Unload Method 42

Exception Handling...43

iv

Table Of Contents

Exception Handling Summary 43

Catch Statement 45

End Try Statement 46

Exit Try Statement 47

Finally Statement 48

Throw Statement 49

Try..Catch..Finally..End Try Statements 51

exception_object.Axis Property 54

exception_object.Clone Method 55

exception_object.ErrorCode Property 56

exception_object.Message Method 57

exception_object.Qualifier Property 58

exception_object.RobotError Property 59

exception_object.RobotNum Property 60

exception_object.UpdateErrorCode Method 61

File and Serial I/O Classes ...63

File and Serial I/O Classes Summary 63

File.Copy Method 65

File.CreateDirectory Method 67

File.DeleteDirectory Method 68

File.DeleteFile Method 69

File.GetDirectories Method 70

File.GetFiles Method 71

New StreamReader Constructor 72

streamreader_object.Close Method 73

streamreader_object.Peek Method 74

streamreader_object.Read Method 75

streamreader_object.ReadLine Method 76

New StreamWriter Constructor 77

streamwriter_object.AutoFlush Property 78

streamwriter_object.Close Method 79

streamwriter_object.Flush Method 80

streamwriter_object.NewLine Property 81

streamwriter_object.Write Method 82

streamwriter_object.WriteLine Method 83

Functions ...84

v

GPL Dictionary Pages

Function Summary 84

CBool Function 85

CByte Function 87

CDbl Function 89

CInt Function 91

CShort Function 93

CSng Function 95

CStr Function 97

Fix Function 99

Hex Function 101

Int Function 103

Rnd Function 105

Latch Class ..107

Latch Class Summary 107

latch_object.Angle Property 109

Latch.Count Shared Property 110

latch_object.ErrorCode Property 111

Latch.Flush Shared Method 112

latch_object.Location Method 113

Latch.Result Shared Method 114

latch_object.Signal Property 116

Latch.ThreadEvent Shared Property 118

latch_object.Timestamp Property 120

Location Class...121

Location Class Summary 121

location_object.Angle Property 123

location_object.Angles Method 124

location_object.Clone Method 125

location_object.Config Property 126

location_object.ConveyorLimit Method 128

Location.Distance Method 130

location_object.Here Method 131

location_object.Here3 Method 133

location_object.Inverse Method 135

location_object.KineSol Method 136

vi

Table Of Contents

location_object.Mul Method 138

location_object.Normalize Method 140

location_object.Pitch Property 141

location_object.Pos Property 143

location_object.PosWrtRef Property 145

location_object.RefFrame Property 147

location_object.Roll Property 148

location_object.Text Property 150

location_object.Type Property 151

location_object.X Property 152

location_object.XYZ Method 154

location_object.XYZInc Method 156

Location.XYZValue Method 157

location_object.Y Property 159

location_object.Yaw Property 161

location_object.Z Property 163

location_object.ZClearance Property 165

location_object.ZWorld Property 167

Math Class ...169

Math Class Summary 169

Math.Abs Method 171

Math.Acos Method 172

Math.Asin Method 173

Math.Atan Method 174

Math.Atan2 Method 175

Math.Ceiling Method 176

Math.Cos Method 177

Math.Cosh Method 178

Math.E Method 179

Math.Exp Method 180

Math.Floor Method 181

Math.Log Method 182

Math.Log10 Method 183

Math.Max Method 184

Math.Min Method 185

Math.PI Method 186

vii

GPL Dictionary Pages

Math.Pow Method 187

Math.Sign Method 188

Math.Sin Method 189

Math.Sinh Method 190

Math.Sqrt Method 191

Math.Tan Method 192

Math.Tanh Method 193

Modbus Class..194

Modbus Class Summary 194

modbus_object.Close Method 195

modbus_object.ReadCoils Method 196

modbus_object.ReadDeviceID Method 197

modbus_object.ReadDiscreteInputs Method 199

modbus_object.ReadHoldingRegisters Method 200

modbus_object.ReadInputRegisters Method 202

modbus_object.Timeout Property 204

modbus_object.WriteMultipleCoils Method 205

modbus_object.WriteMultipleRegisters Method 206

modbus_object.WriteSingleCoil Method 207

modbus_object.WriteSingleRegister Method 208

Move Class ..209

Move Class Summary 209

Move.Approach Method 211

Move.Arc Method 213

Move.Circle Method 216

Move.Delay Method 219

Move.Extra Method 220

Move.ForceOverlap Method 222

Move.Loc Method 226

Move.OneAxis Method 228

Move.Rel Method 230

Move.SetJogCommand Method 232

Move.SetRealTimeMod Method 234

Move.SetSpeeds Method 236

Move.SetTorques Method 238

viii

Table Of Contents

Move.StartJogMode Method 240

Move.StartRealTimeMod Method 242

Move.StartSpeedDAC Method 248

Move.StartTorqueCntrl Method 252

Move.StartVelocityCntrl Method 254

Move.StopSpecialModes Method 257

Move.Trigger Method 258

Move.WaitForEOM Method 261

Networking Classes ..262

Networking Classes Summary 262

New IPEndPoint Constructor 264

ipendpoint_object.IPAddress Property 265

ipendpoint_object.Port Property 266

socket_object.Available Property 267

socket_object.Blocking Property 268

socket_object.Close Method 269

socket_object.Connect Method 270

socket_object.KeepAlive Property 271

socket_object.Receive Method 273

socket_object.ReceiveFrom Method 274

socket_object.ReceiveTimeout Property 276

socket_object.RemoteEndPoint Property 277

socket_object.Send Method 278

socket_object.SendTimeout Property 279

socket_object.SendTo Method 280

New TcpClient Constructor 282

tcpclient_object.Client Method 283

tcpclient_object.Close Method 284

New TcpListener Constructor 285

tcplistener_object.AcceptSocket Method 286

tcplistener_object.Close Method 287

tcplistener_object.Pending Property 288

tcplistener_object.Start Method 289

tcplistener_object.Stop Method 290

New UdpClient Constructor 291

udpclient_object.Client Method 292

ix

GPL Dictionary Pages

udpclient_object.Close Method 293

Profile Class ..294

Profile Class Summary 294

profile_object.Accel Property 296

profile_object.AccelRamp Property 298

profile_object.Clone Method 300

profile_object.Decel Property 301

profile_object.DecelRamp Property 303

profile_object.InRange Property 305

profile_object.Speed Property 307

profile_object.Speed2 Property 309

profile_object.Straight Property 311

profile_object.Text Property 313

Reference Frame Class ..314

RefFrame Class Summary 314

refframe_object.ConveyorOffset Property 317

refframe_object.ConveyorRobot Property 319

refframe_object.Loc Property 320

refframe_object.PalletIndex Property 322

refframe_object.PalletMaxIndex Property 324

refframe_object.PalletNextPos Method 326

refframe_object.PalletOrder Property 328

refframe_object.PalletPitch Property 330

refframe_object.PalletRowColLay Method 331

refframe_object.Pos Method 333

refframe_object.PosWrtRef Method 335

refframe_object.Text Property 337

refframe_object.Type Property 338

Robot Class ...340

Robot Class Summary 340

Robot.Attached Property 343

Robot.Base Property 344

Robot.CartMode Property 346

Robot.Custom Property 348

x

Table Of Contents

Robot.DefLinComp Method 350

Robot.Dest Property 352

Robot.DestAngles Property 354

Robot.Home Method 356

Robot.HomeAll Method 357

Robot.JointToMotor Method 358

Robot.LastProfile Property 360

Robot.MotorTempStatus Property 361

Robot.MotorToJoint Method 363

Robot.Payload Property 365

Robot.RapidDecel Property 367

Robot.RealTimeModAcm Property 368

Robot.RestartBase Property 370

Robot.RestartTool Property 371

Robot.Selected Property 372

Robot.Source Property 373

Robot.SourceAngles Property 375

Robot.SpeedAngles Property 377

Robot.Tool Property 379

Robot.TrajState Property 381

Robot.Where Property 384

Robot.WhereAngles Property 386

Signal Class...388

Signal Class Summary 388

Signal.AIO Property 389

Signal.DIO Property 391

Statements...394

Statements Summary 394

Call Statement 396

Case, Case Else Statements 398

Class Statement 399

Const Statement 400

Delegate Statement 402

Dim Statement 404

Do...Loop Statements 406

xi

GPL Dictionary Pages

Else, ElseIF Statements 408

End Statements 409

Exit Statements 410

For...Next Statements 411

Function Statement 414

Get Statement 417

GoTo Statement 418

If..Then...Else...End If Statements 420

Loop Statements 422

Module Statement 423

Next Statements 424

Property Statement 425

ReDim Statement 428

Return Statement 429

Select...Case...End Select Statements 430

Set Statement 432

Sub Statement 434

While...End While Statements 436

Strings..438

String Summary 438

String.Compare Method 440

string.IndexOf Method 442

string.Length Property 444

string.Split Method 445

string.Substring Method 446

string.ToLower Method 447

string.ToUpper Method 448

string.Trim Method 449

string.TrimEnd Method 450

string.TrimStart Method 451

Asc Function 452

Chr Function 453

Format Function 454

FromBitString Function 457

Instr Function 459

LCase Function 461

xii

Table Of Contents

Len Function 462

Mid Function 463

ToBitString Function 464

UCase Function 466

Thread Class..467

Thread Class Summary 467

New Thread Constructor 469

thread_object.Abort Method 471

thread_object.Argument Property 472

Thread.CurrentThread Shared Method 473

thread_object.Join Method 474

thread_object.Name Property 475

thread_object.Project Property 476

thread_object.Resume Method 477

Thread.Schedule Shared Method 478

thread_object.SendEvent Method 482

Thread.Sleep Shared Method 483

thread_object.Start Method 484

thread_object.StartProcedure Property 485

thread_object.Suspend Method 486

Thread.TestAndSet Shared Method 487

thread_object.ThreadState Property 489

Thread.WaitEvent Shared Method 490

Vision Classes...493

Vision Classes Summary 493

vision_object.Disconnect Method 495

vision_object.ErrorCode Property 496

vision_object.Instance Property 497

vision_object.IPAddress Property 498

vision_object.Process Method 499

vision_object.Result Method 501

vision_object.ResultCount Method 503

vision_object.Status Property 505

vision_object.ToolProperty Property 506

visresult_object.ErrorCode Property 511

xiii

GPL Dictionary Pages

visresult_object.Info Property 512

visresult_object.InfoCount Property 513

visresult_object.InfoString Property 514

visresult_object.InspectActual Property 515

visresult_object.InspectPassed Property 516

visresult_object.Loc Property 517

visresult_object.Type Property 519

XML Classes ..520

XML Classes Summary 520

New XmlDoc Constructor 523

xmldoc_object.CreateNode Method 524

XmlDoc.DecodeEntities Shared Method 526

xmldoc_object.DocumentElement Method 528

XmlDoc.EncodeEntities Shared Method 529

xmldoc_object.ErrorCode Property 531

XmlDoc.LoadFile Shared Method 532

XmlDoc.LoadString Shared Method 534

xmldoc_object.Message Property 536

xmldoc_object.SaveFile Method 537

xmldoc_object.SaveString Method 539

xmlnode_object.AddAttribute Method 541

xmlnode_object.AddElement Method 542

xmlnode_object.AddElementNode Method 543

xmlnode_object.AppendChild Method 544

xmlnode_object.ChildNodeCount Property 545

xmlnode_object.Clone Method 546

xmlnode_object.FirstChild Method 547

xmlnode_object.GetAttribute Method 548

xmlnode_object.GetAttributeNode Method 549

xmlnode_object.GetElement Method 550

xmlnode_object.GetElementNode Method 551

xmlnode_object.HasAttribute Method 552

xmlnode_object.HasChildNodes Property 553

xmlnode_object.HasElement Method 554

xmlnode_object.InsertAfter Method 555

xmlnode_object.InsertBefore Method 557

xiv

Table Of Contents

xmlnode_object.LastChild Method 559

xmlnode_object.Name Property 560

xmlnode_object.NextSibling Method 561

xmlnode_object.OwnerDocument Method 562

xmlnode_object.ParentNode Method 563

xmlnode_object.PreviousSibling Method 564

xmlnode_object.RemoveAttribute Method 565

xmlnode_object.RemoveChild Method 566

xmlnode_object.RemoveElement Method 567

xmlnode_object.ReplaceChild Method 568

xmlnode_object.SetAttribute Method 570

xmlnode_object.SetElement Method 571

xmlnode_object.Type Property 572

xmlnode_object.Value Property 574

xv

GPL Dictionary Pages Summary
The Guidance Programming Language Dictionary Pages provide detailed information on each instruction,
keyword, function, and class property and method that is available in GPL. For convenience, these
descriptions are group either by their class or by their major function. Within each group they are sorted
alphabetically.

In general, instruction names, keywords, function names, group names, and property and method names
are indicated in bold. User specified variable names are indicated in italics. Sample GPL program
snippets are presented in the Courier font.

The following table summarizes each of the major groups of descriptions.

Group Description
Array Class Provides the properties of any type of variable array.

Console Class Provides methods for performing output to the serial
console or to the GDE console window.

Controller Class
Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Exception Handling Includes statements for fielding execution exceptions and
the Exception Class for storing exception information.

File and Serial I/O Classes
Provides File, StreamReader and StreamWriter classes
that implement file and serial line input and output
communications.

Functions Includes standard functions, such as conversion routines,
that do not fall into a specific class.

Latch Class
Provides access to the results of latch input events,
including the time and robot position when the latch
occurred.

Location Class Defines positions and orientations of the robot and
objects.

Math Class Provides the standard arithmetic and trigonometric
functions.

Modbus Class
Permits programs to communicate with other intelligent
devices using the MODBUS/TCP Ethernet communication
protocol.

Move Class Provides the basic methods for executing a motion
between Locations using Profiles.

Networking Classes

Classes for Ethernet network communications. Includes
IPEndPoint Class for specifying IP and port addresses;
Socket Class that provides basis for networking I/O
operations; TcpListener Class for TCP server
applications; TcpClient Class for TCP client applications;
and UdpClient Class for UDP server and client
applications.

Profile Class Defines sets of parameters that specify the trajectory to be
followed when moving between Locations.

RefFrame Class
Defines robot and part reference frames. Cartesian
Locations and RefFrames can be defined with respect to
a RefFrame.

1

GPL Dictionary Pages

Robot Class Provides access to the attributes and properties of each
robot such as their current position and homing methods.

Signal Class Reads and writes digital, analog and other simple means
of input and output.

Statements Includes control structures, user procedures and functions,
and other common language elements.

Strings Provides String manipulation methods in an Object
oriented fashion.

Thread Class Provides the means for starting, stopping, and monitoring
the execution of independent threads.

Vision Classes Provides the means for interfacing to PreciseVision and
easily generating vision-guided motion applications.

XML Classes

Provides the ability to create, parse, and modify XML
(eXtensible Markup Language) documents. This facility
enables structured data to be bi-directionally exchanged
with a host computer using a standard data format.

2

Array Class
Array Class Summary

The following pages provide detailed information on the properties and methods of the
Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the built-
in Array Class. You can use the properties of this class to determine the properties of an
array.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

array.GetUpperBound Get Property

Returns the upper bound for a particular
dimension of an array. The lower bound is
always 0, so the total number of elements in
this dimension is one greater than the upper
bound.

array.Length Get Property Returns the total number of elements in the
entire array, in all dimensions.

array.Rank Get Property Returns the array rank, which is the number of
dimensions in an array.

3

GPL Dictionary Pages

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.

...array.GetUpperBound(dimension)

Prerequisites

None

Parameters

dimension

A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dim array(3 As Integer,4)
Dim d1, d2 As Integer
d1 = array.GetUpperBound(0) ' Returns the value 3
d2 = array.GetUpperBound(1) ' Returns the value 4

See Also

Array Class | array.Length | Dim Statement | ReDim Statement

4

Array Class

array.Length Property

Returns the total number of elements in an entire array.

...array.Length

Prerequisites

None

Parameters

None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example, if
you declare: Dim sarray(3) As String.

sarray.Length is the number of elements in the array, in this case 4
(from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially
0.

Examples

Dim array(3,4) As Integer
Dim length As Integer
length = array.Length ' Returns the value 20 = (1+3)*(1+4)

See Also

Array Class | array.GetUpperBound| Dim Statement | ReDim Statement

5

GPL Dictionary Pages

array.Rank Property

Returns the total number of dimensions (the rank) in the array.

...array.Rank

Prerequisites

None

Parameters

None

Remarks

The Rank of an array is the number of dimensions in that array.

Examples

Dim array(3,4) As Integer
Dim array2(As Integer5)
Dim r1, r2 As Integer
r1 = array.Rank
r2 = array2.

 ' Returns 2
Rank ' Returns 1

See Also

Array Class | Dim Statement | ReDim Statement

6

Console Class
Console Class Summary

The following pages provide detailed information on the methods of the global Console
Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

Console.Write Shared
Method

Writes a number or a string to the console.

Console.WriteLine Shared
Method

Writes a number or a string to the console,
followed by a line feed (LF) character.

7

GPL Dictionary Pages

Console.Write Method

Writes a numeric or string value to the GPL console with no line terminator.

Console.Write (number)
-or-
Console.Write (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console.Write("Test ") ' Produces the output: "Test 1"
Console.Write(1)

See Also

Console Class | Console.WriteLine | CStr Function | StreamWriter Class

8

Console Class

Console.WriteLine Method

Writes a numeric or string value to the GPL console followed by a line terminator.

Console.WriteLine (number)
-or-
Console.WriteLine (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console followed by a line
terminator. Subsequent output appears on the next line. For output that combines both
string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console.WriteLine("Test ") ' Produces the output: Test
Console.WriteLine(1) ' 1

Dim ii As Integer
For ii = 1 To 10
 Console.WriteLine("The square of " & CStr(ii) _

Next ii

 & " is " & CStr(ii*ii))

See Also

Console Class | Console.Write | CStr Function | StreamWriter Class

9

Controller Class
Controller Class Summary

The following pages provide detailed information on the properties and methods of the
global Controller Class. This class provides access to the general facilities provided by
the Guidance Controller, e.g. high power control, E-Stop logic, configuration database
values, etc. As such, this class and all of its members are uniquely defined for Precise
controller products and do not conform to any other standards. In the case of certain
methods, such as the SleepTick, very similar functionality is provided by other means
within the Basic language. However, the members of this class were selected based
upon ease-of-use considerations or because they provide some slightly different, but
important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Controller Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Controller.Command Method Executes a console command and returns
any output as a String value.

Controller.ErrorLog Property Returns an entry from the system Error Log
as a String value or clears the Error Log.

Controller.Load Method Loads a GPL project into memory and
compiles it in preparation for execution.

Controller.PDb Property Sets and gets any accessible value in the
configuration parameter database.

Controller.PDbNum Property
Optimized means to set and get a numeric
value in the configuration parameter
database.

Controller.PowerEnabled Property
Sends a request to either turn on or off high
(motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerState Property Gets the current state of the high power
sequence.

Controller.RecordButton Property
Sets and gets the latched Boolean value
that indicates if the hardware MCP
RECORD button has been pressed.

Controller.ShowDialog - Basic Method Displays a pop-up dialog box on the web
Operator Control Panel.

Controller.ShowDialog -
Advanced Method Displays a pop-up dialog box on the web

Operator Control Panel.
Controller.ShowDialogMCP Method Displays a pop-up dialog box on the LCD

10

Controller Class

display of the Precise Hardware Manual
Control Pendant.

Controller.SleepTick Method
Delays further execution of a thread for a
specified number of Trajectory Generator
periods.

Controller.SoftEStop Property Sets and gets the Boolean flag that
triggers a Soft E-Stop.

Controller.SystemMessage Method
Enters a message into the GPL system
message log that is displayed on the web
Operator Control Panel.

Controller.SystemSpeed Property Sets and gets the property that can reduce
the speed of all robot motions.

Controller.Tick Property Gets the execution repetition period for the
Trajectory Generator.

Controller.Timer Property Gets the value of the controller’s usec clock
in units of seconds.

Controller.Unload Method Unloads an idle GPL project from memory.

11

GPL Dictionary Pages

Controller.Command Method

Executes a console command and returns the command output as a string.

... Controller.Command(command_string)

Prerequisites

None

Parameters

command_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these String
elements. The value of the string is interpreted as a standard Console
Command.

Remarks

This method executes the Console Command defined by the command_string
parameter. For a list of valid commands, please see the Console Command section of
the Documentation Library.

If the command requires additional data, the command_string must contain the command
definition followed by an ASCII line-feed character (GPL constant GPL_LF, numeric
value 10), followed by the additional data. Multiple lines of data may be supplied in the
same manner.

This method returns a string value that contains any output generated by the command,
followed by the command status. Each line of output is terminated by an ASCII line-feed
character. The final line of output is always a status string, followed by a line-feed. If the
command generated no output, the string value contains only the status followed by a
line-feed.

The status string is an ASCII value that contains:

• A numeric status code. 0 means success, < 0 indicates a standard error code.
• A text string enclosed in quotes corresponding to the numeric status code.

Be careful about issuing a command that could generate a large amount of output such
as a DataLog or Type command. Such a command could consume all available free
storage and cause your system to stop with "No memory available" errors.

Examples

12

Controller Class

Dim s As Strings
ss = Controller.Command("directory")
Console.WriteLine(ss)

 Displays the output:

 dev
 ROMDISK
 flash
 GPL
 0,"Success"

ss =
Console.WriteLine(ss)

Controller.Command("directory xyz")

 Displays the output:

 -508,"*File not found*"

See Also

Controller Class

13

GPL Dictionary Pages

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
-or-
... Controller.ErrorLog(entry)

Prerequisites

None

Parameters

entry

A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.

Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or from
the motion control system. In addition, GPL applications can enter items into the log
using the Controller.SystemMessage method.

The entries in the Error Log are displayed on the web based Operator Control Panel and
can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a time.
Each returned value contains the time stamp, marker indicating the thread that generated
the error, the numeric error code and the text error message. A example of a typical
returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

If this property is assigned a non-zero value as indicated above, rather than retrieving an
entry, all entries are deleted from the Error Log.

Examples

Dim err As String
Dim ii As Integer
For ii = 1 To 100

14

Controller Class

 err = Controller.ErrorLog(ii) ' Retrieve all entries from log
 If (err <> "") Then
 Console.WriteLine(err) ' Display all errors
 Else
 Exit For ' No more entries in the log
 End If
Next
Controller.ErrorLog = 1 ' Clear all entries in the log

See Also

Controller Class | Controller.SystemMessage

15

GPL Dictionary Pages

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that the
project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. This project file
describes all the remaining files within the project. The project must not be currently
loaded.

Parameters

project_folder_path

A required string expression that specifies the name of the folder that
contains the project to be loaded. Normally the folder is located on the
"/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. Finally, the project is compiled so that the loaded
procedures are ready to be executed.

No compilation errors are displayed on the console. Examine the file
/GPL/project_name/Compile.log for a listing of compiler messages.

This method will throw an exception if the project cannot be loaded, if it is already loaded,
or if compilation errors occur.

Examples

Dim th As Thread
Controller.Load("/flash/projects/Test")
th = New Thread("Main", "Test", "Thread2")
th.Start()

See Also

Controller Class | Controller.Unload | Thread.Start

16

Controller Class

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index) = <new_string_value>
-or-
... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites

None

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter

17

GPL Dictionary Pages

database. Controller.PDb can be used to read or write all accessible values in the
parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric values,
the values are represented as text numbers separated by commas (in the case of
numeric arrays). If the parameter contains a single string value, the value is read into or
read from a GPL String without delimiting quotation marks. If the parameter contains an
array of strings, each string is delimited by double quotes and sequential values are
separated by commas.

As a convenient for developing custom web pages, the parameter database contains a
series of "GPL program strings" (DataID's 1800-1819) and "GPL program variable's"
(DataID's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dim stg As String

Controller.PDb(541) = """Label1"",""Label2""" ' Sets first two DOUT labels

stg = Controller.PDb(100) ' stg set to "Precise Automation
Inc"

See Also

Controller Class | Controller.PDbNum

18

Controller Class

Controller.PDbNum Property

Optimized means for setting and getting a numeric value in the configuration parameter
database.

Controller.PDbNum(dataid, unit, unit2, array_index) = <new_value>
-or-
... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites

Can only access numeric parameter database values.

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

Remarks

19

GPL Dictionary Pages

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter
database. Controller.PDbNum is an variation of Controller.PDb that has been
optimized to efficiently read and write numeric values stored in this database.

In addition to generally efficient operation, Controller.PDbNum operates especially
quickly when reading and writing the "GPL program variable's" (DataID's 1850-1869).
These database elements have been created to allow GPL projects to interface to
custom web pages. Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dim limit As Single
limit = Controller.PDbNum(16077,,,2) ' Sets limit equal to the maximum
 ' allowable range of travel for jt 2

See Also

Controller Class | Controller.PDb

20

Controller Class

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>
-or-
Controller.PowerEnabled(timeout) = <boolean_value>
-or-
... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 safe systems.
For Category 3 systems, a momentary contact, hardware “Enable Power” button must be
manually pressed.

Parameters

timeout

An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.

Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 safe systems, high power will be
enabled only if a number of safety conditions are satisfied (e.g. no Hard E-Stop signal is
asserted, no fatal system error exists, etc.). This property waits until the power actually
comes on, with a time limit determined by the timeout parameter. If this parameter is
positive and the power does not come on within the time limit, this property throws an
exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but the
property does not wait until power is actually off. Unlike the Hard E-Stop signal that
delays for a fixed period of time before disabling power, turning off PowerEnabled forces
all moving robots to completely decelerate to a stop and allows time for the brakes to be
set before power to the amplifiers is disabled. Therefore, setting PowerEnabled False
allows for a more orderly stopping of motion than does a Hard E-Stop but this operation
is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power is
disabled by any means and is automatically set to True if High Power is enabled.

Examples

Dim bState As Boolean

21

GPL Dictionary Pages

Controller.PowerEnabled = True ' Requests high power be enabled
Controller.PowerEnabled(5) = True ' Requests high power be enabled
 ' and waits for up to 5 seconds
bState = Controller.PowerEnabled ' bState will be set True if power is
 ' enabled, else will be set False.

See Also

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

22

Controller Class

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier high
power sequencing.

... Controller.PowerState(mode)

Prerequisites

None

Parameters

mode

An optional numeric expression that is 0 if only the power sequencing
state is to be returned or 1 if a combined power state, hard-stop indicator
and Automatic Execution Mode indicator is to be returned. By default,
this value is 0.

Remarks

In order to enable high power to the amplifiers, the system must transition in an orderly
fashion through several states to ensure that safety and hardware requirements are
satisfied. The PowerState property indicates the current state of the power sequencing.

If mode is 0, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power state" DataID 230):

PowerState Description (mode = 0)
0 System initially starting up
1 Power off, fatal error has occurred
2 Power off, power sequence restarting
3 Power being turned off, no fault condition has occurred
4 Power being turned off, a fault condition has occurred
5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted
8 Power is coming up, enabling amplifiers
9 Power is on, performing motor commutation
10 Power is coming up, enabling servos and releasing brakes
11 Power is on, waiting to execute thread or Auto Execution task
12 Power is on, executing Auto Execution task

23

GPL Dictionary Pages

If mode is 1, the possible values returned by this property and their interpretation are
presented in the following table (this is equivalent to "Power/Auto execute state" DataID
234):

PowerState Description (mode = 1)
0 System initially starting up
1 Power off, fatal error has occurred
2 Power off, power sequence restarting
3 Power being turned off, no fault condition has occurred
4 Power being turned off, a fault condition has occurred
5 Power is off, a fault has occurred that must be cleared

6 Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted
8 Power is coming up, enabling amplifiers
9 Power is on, performing motor commutation
10 Power is coming up, enabling servos and releasing brakes
11 Power is on, waiting to execute thread or Auto Execution task
12 Power is on, executing Auto Execution task
15 Power is off, a Hard E-Stop is being asserted
20 Power is on, ready for a GPL project to execute and attach the robot
21 Power is on, a GPL project is executing and has attached the robot
22 Power is on, DIO MotionBlocks is executing
23 Power is on, Automatic Analog Input Velocity mode is executing
24 Power is on, Automatic Analog Input Torque mode is executing

25 Power is on, Automatic Master/slave mode is executing (not
implemented)

26 Power is on, CANopen via CAN net is executing (not implemented)
27 Power is on, CANopen via serial line is executing (not implemented)
28 Power is on, robots are being homed
29 Power is on, Virtual MCP Jog Mode has control of the robot
30 Power is on, External Trajectory mode is executing
31 Power is on, Hardware MCP Jog Mode has control of the robot

Examples

Dim state As Integer
state = Controller.PowerState ' Sets state to one of the values listed above

See Also

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDecel

24

Controller Class

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
-or-
... Controller.RecordButton

Prerequisites

None

Parameters

None

Remarks

Whenever the RECORD key on the Precise Hardware Manual Control Pendant (MCP) is
pressed, the value of this property is automatically set to True. This property value
remains True until it is manually set to False.

The RECORD key on the MCP and this property provide a convenient means for GPL
projects to receive a command from the operator to record key data, typically taught robot
locations.

The value of this property can also be accessed via the Parameter Database as the
"MCP Record button pressed" (DataID 632) value.

Examples

Dim As New Locationtaught_loc
If (Controller.RecordButton) Then
 Here ' Save current robot location taught_loc.
 Controller.RecordButton = False
End if

See Also

Controller Class

25

GPL Dictionary Pages

Controller.ShowDialog Method - Basic Modes

Displays a pop-up dialog box on the web interface Operator Control Panel (basic modes).

Controller.ShowDialog(button_labels, message, button_index)
-or-
Controller.ShowDialog(button_labels, message, button_index, text_field)

Prerequisites

None

Parameters

button_labels

A required String expression containing the button labels to be
displayed. Up to 4 buttons can be specified, separated by commas. If the
button labels contain blanks or commas, they should be enclosed in
quotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. 1 for the first button, 2 for the second, etc.

text_field

(2nd form of this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its
initial value is shown as the default value of the text field. The string must
not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator without creating a custom web page. When ShowDialog is called, its operation
is as follows:

1. Waits if another thread is already displaying a dialog box.
2. Posts the dialog box for display and waits for the user to open

the Operator Control Panel on the web interface and press a
button.

3. Un-displays the dialog box.

26

Controller Class

4. Returns the button index and optional text field to the user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Advanced " for other forms of this method.

In the simplest (1st) form, the pop-up displays only the message text and labeled buttons.
When the user clicks on one of the buttons, the index of the button clicked is returned in
the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value of
the text field is returned in the text_field variable, and the index of the button clicked is
returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim bi As Integer
Controller.ShowDialog("Okay", "Ready to begin process", bi)

 Public Sub Test1

27

GPL Dictionary Pages

 Dim bi As Integer
 Dim reply As String
 reply = "Part_1" ' Default is Part_1
 Controller.ShowDialog("Okay, Cancel", _
 "Enter part name", bi, reply)
 If bi = 1 Then
 … ' Okay selected
 Else
 … ' Cancel selected
 End If
 Console.WriteLine("You entered: " & reply)
End Sub

See Also

Controller Class | Controller.ShowDialog - Advanced| Controller.ShowDialogMCP |
Controller.SystemMessage

28

Controller Class

Controller.ShowDialog Method - Advanced Mode

Displays a pop-up dialog box on the web interface Operator Control Panel (Advanced
Mode).

Controller.ShowDialog(mode, button_labels, message, button_index, field_labels,
field_values)

Prerequisites

None

Parameters

mode

A required numeric expression that specifies the display mode.

If mode = 1, displays a vertical list of data fields that can
be filled in by the user.
If mode = 2, displays a vertical list of up to 12 labeled
buttons.

button_labels

A required String expression. The string must not contain the vertical bar
"|" character.

If mode = 1, defines the button labels that are displayed
along the bottom of the dialog box. Up to 4 buttons can
be specified, separated by commas. If the button labels
contain blanks or commas, the labels should be
enclosed in quotes.
If mode = 2, this string is ignored and can be set to "".

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

field_labels

29

GPL Dictionary Pages

A required 1-dimensional String array. Each String array element
contains a separate label. Up to 12 elements are permitted. The strings
must not contain the vertical bar "|" .

If mode = 1, the array elements define labels that are
displayed preceding each data field in the dialog box.
The number of elements in this array determines the
number of displayed fields.
If mode = 2, the array elements define labels for the
vertical list of buttons. The number of elements in this
array determines the number of displayed buttons.

field_values

A required 1-dimensional String array.

If mode = 1, this array receives the values of any text
entered into the dialog box text fields. The initial values
of this array are displayed as the default values of the
text fields. The Strings must not contain the vertical bar
"|" character.
If mode = 2, this array is ignored and may be empty.

Remarks

This method provides a way for a GPL procedure to communicate with the operator
without creating a custom web page. When ShowDialog is called, its operation is as
follows:

1. Waits if another thread is already displaying a dialog box.
2. Posts the dialog box for display and waits for the user to open

the Operator Control Panel on the web interface and click on a
button.

3. Un-displays the dialog box.
4. Returns the button index and optional text field information to the

user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>". The total number of
characters available for defining the dialog box including all formatting is approximately
998 bytes.

This method is overloaded to support several dialog box styles. See "ShowDialog -
Basic" for other forms of this method.

In this form, the dialog box allows different displays based on the mode parameter value.

If mode = 1, multiple fields may be entered and multiple values are
returned. When the user clicks on one of the buttons, the values of all the
fields are returned in the field_values array, and the index of the button
clicked is returned in the button_index variable.

30

Controller Class

If mode = 2, a vertical array of buttons is displayed, with the field_labels
text values displayed next to each button. The index of the button clicked
is returned in the button_index variable. The field_values parameter is
not used.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Public Sub Test2
 Dim Buttons As String = "Okay, Cancel"
 Dim Text As String = "Enter the field values"
 Dim Label(2) As String
 Dim Field(2) As String
 Dim Index As Integer

 Label(0) = "X value"
 Label(1) = "Y value"
 Label(2) = "Z value"

 Field(0) = "100.0"
 Field(1) = "100.0"
 Field(2) = "0.0"

 Controller.ShowDialog(1, Buttons, Text, Index, Label, Field)

 Console.WriteLine("Button: " & CStr(Index))
 Console.WriteLine("Field 0: " & Field(0))
 Console.WriteLine("Field 1: " & Field(1))
 Console.WriteLine("Field 2: " & Field(2))
End Sub

Public Sub Test3
 Dim Text As String = "Select operation to perform."

31

GPL Dictionary Pages

 Dim Label(2) As String
 Dim Nop() As String
 Dim Index As Integer

 Label(0) = "Start"
 Label(1) = "Stop"
 Label(2) = "Exit"

 Controller.ShowDialog(2, "", Text, Index, Label, Nop)

 Console.WriteLine("Button: " & CStr(Index))
End Sub

See Also

Controller Class | Controller.ShowDialog - Basic | Controller.ShowDialogMCP |
Controller.SystemMessage

32

Controller Class

Controller.ShowDialogMCP Method

Displays a pop-up dialog box on the LCD display of the Precise Hardware Manual
Control Pendant.

Controller.ShowDialogMCP(button_mask, message, button_return)
-or-
Controller.ShowDialogMCP(button_mask, message, button_return, text_field)

Prerequisites

Precise Hardware Manual Control Pendant must be connected to the controller.

Parameters

button_mask

A required Integer expression whose bits specify the MCP key presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String expression containing the message to be displayed on
the LCD display. If a text_field is specified, the message must include a
substring ('##...##') that defines where the characters of the text_field are
output in the MCP display. The number of pound signs (#) defines the
width of the input field.

button_return

A required ByRef Integer variable that receives the bit flag that indicates
the button that was pressed to terminate the dialog operation.

text_field

An optional ByRef String variable that receives the value of any text
entered into the dialog box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator via the Precise Hardware Manual Control Pendant. (Note: If you wish to
develop a more sophisticated interface, please refer to the /dev/mcp communication
device.)

33

GPL Dictionary Pages

When ShowDialogMCP is called, its operation is as follows:

1. Waits if another thread is already displaying a MCP dialog box.
2. Replaces the standard MCP display with the contents of the

message and the optional embedded text_field, and lights the
LED on the APP key.

3. If the optional text_field is defined, accepts presses of the 0-9, .,
+, - or DEL keys and presents the results in the LCD display.

4. If the display and keypad are switched back to their standard
mode due to a manual control operation or error message, blinks
the APP key LED until the APP key is pressed to re-display the
dialog.

5. When one of the specified termination keys is pressed, un-
displays the dialog box.

6. Returns the termination key button bit flag and the optional text
field value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed in
the following table together with their associated button_mask and button_return values.

Key Label button_mask&
button_return

Enter &H000001
Record &H000002

Yes &H000004
No &H000008
Quit &H000010
Prev &H000020
Next &H000040
F1 &H010000
F2 &H020000
F3 &H040000
F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert the
operator. The beeping operation can be suppressed by resetting the "Beep MCP when
APP mode started" (DataID 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim but As Integer
Dim ss, L As String CR F
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Ready to begin" & CRLF & CRLF _
 & " <Yes> or <No>"
Controller.ShowDialogMCP(&H4+&H8, ss, but)

Dim but As Integer
Dim reply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)

34

Controller Class

ss = " Enter part number:" & CRLF _
 & " '#########'" & CRLF & CRLF _
 & " <Enter> or <Quit>"
reply = "12" ' Default reply value
Controller.ShowDialogMCP(&H1+&H10, ss, but, reply)
If but = &H10 Then
 Console.Writeline("Request cancelled")
Else
 Console.WriteLine("You entered: " & reply)
End If

See Also

Controller Class | Controller.ShowDialog | Controller.SystemMessage | /dev/mcp Device

35

GPL Dictionary Pages

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
-or-
Controller.SleepTick

Prerequisites

None

Parameters

ticks

An optional numeric expression that specifies an Integer number of
Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.

Remarks

Often times, a program must poll input data values periodically. While it is possible to use
a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or other
GPL threads. The SleepTick method allows a thread to relinquish control of the CPU for
a specified period of time and then resume execution at the next sequential statement.

Since many operations are synchronized to the operation of the Trajectory Generator, the
delay time for this method is specified in units of Trajectory Generator execution periods.

Please note that other programming languages like Basic typically have other means for
putting a thread to sleep for a specified period of time.

Examples

 Controller.SleepTick ' Delays thread execution until
 ' after the start of the next
 ' trajectory cycle
 Controller.SleepTick (2/Controller.Tick) ' Delays thread execution for
 ' approximately 2 seconds

See Also

Controller Class | Controller.Tick | Controller.Timer

36

Controller Class

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
-or-
... Controller.SoftEStop

Prerequisites

None

Parameters

None

Remarks

A Soft E-Stop initiates a rapid deceleration of all robots currently in motion and generates
an error condition for all GPL programs that are attached to a robot. This property can be
used to quickly halt all robot motions in a controlled fashion when an error is detected.

This function is similar to a Hard E-Stop except that Soft E-Stop leaves High Power
enabled to the amplifiers and is therefore used for less severe error conditions. Leaving
power enabled is beneficial in that it prevents the robot axes from sagging and does not
require high power to be manually re-enabled before program execution and robot
motions are resumed. This function is also similar to a Rapid Deceleration feature except
that a Rapid Deceleration only affects a single robot and no program error is generated.

If set, the SoftEStop property is automatically cleared by the system if High Power is
disabled and re-enabled.

Examples

Dim bState As Boolean
Controller.SoftEStop = True ' Triggers a Soft E-Stop condition
bState = Controller.SoftEStop ' bState will be set True since a
 ' Soft E-Stop has been asserted

See Also

Controller Class | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

37

GPL Dictionary Pages

Controller.SystemMessage Method

Enters a message into the GPL system message log that is displayed on the web
Operator Control Panel.

Controller.SystemMessage(message)

Prerequisites

None

Parameters

message

A required String expression containing the message to be entered into
the message log.

Remarks

This method enters a line into the system message log with other system messages and
error message entries. The system message log is kept sorted in time order. This log is
displayed by the Operator Control Panel in the System Messages box.

Examples

Controller.SystemMessage("Cycle time: " & CStr(now-saved))

Controller.SystemMessage("Operation complete")

See Also

Controller Class | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

38

Controller Class

Controller.SystemSpeed Property

Sets and gets the property that can reduce the speed of all robot motions.

Controller.SystemSpeed = <new_%_value>
-or-
... Controller.SystemSpeed

Prerequisites

None

Parameters

None

Remarks

The SystemSpeed property permits all position and velocity controlled motions for all
robots to be operated at a reduced speed without altering the path that each follows.
This property is provided as a debugging tool to permit all motions to be executed slowly
and then gradually increased to full speed.

This value is specified as a percentage from 1 to 100 where 100 represents full speed as
defined in the motion program being executed. This parameter can also be modified via
the web Operator Control Panel as well as the "System wide test speed in %" (DataID
601).

When a new value is specified, the change in the motion speeds is gradually put into
effect based upon the setting of the "Rate of change of test speed in %/sec" (DataID 602)
to avoid excessive accelerations.

Examples

Controller.SystemSpeed = 50 ' All motions at half speed

See Also

Controller Class

39

GPL Dictionary Pages

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in seconds.

...Controller.Tick

Prerequisites

None

Parameters

None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates the
series of individual commands to move each joint of each robot along its designated path.
To accomplish this task, the Trajectory Generator executes at a configurable repetition
rate. The Tick property returns the period of the repetition rate in seconds. Typically this
will be set to a value of 0.002 or 0.004 seconds.

Examples

Dim period As Double
period = Controller.Tick ' Sets period equal to the Trajectory
 ' Generator execution period, e.g. 0.004
 ' seconds

See Also

Controller Class | Controller.SleepTick | Controller.Timer

40

Controller Class

Controller.Timer Property

Returns the current value of the controller’s usec clock, in units of seconds quantiized
into 125 usec intervals, as a Double.

...Controller.Timer

Prerequisites

None

Parameters

None

Remarks

This method reads the current value of the controller’s usec clock and returns the value in
units of seconds. This value is quantized into 125 µsec intervals, the system clock tick
period.

This clock value starts counting from January 1, 1988. Given the number of significant
bits in a Double, the Timer value will not lose accuracy until approximately the year
2124.

Examples

Dim StartTime, ElapsedTime As Double
StartTime = Controller.Timer ' Reads system clock
Controller.SleepTick(2/Controller.Tick) ' Sleep for about 2 seconds
ElapsedTime = Controller.Timer-StartTime ' Value will be approx 2

See Also

Controller Class | Controller.SleepTick | Controller.Tick

41

GPL Dictionary Pages

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.

Controller.Unload(project_name)

Prerequisites

No procedures in this project can be currently executing.

Parameters

project_name

A required string expression that contains the name of the project to be
unloaded.

Remarks

This method unloads a project by removing all of its associated data from the controller's
memory and removing all associated files from the GPL project memory area.

This method throws an exception if any procedure in this project is currently executing.
No exceptions are thrown if the project is not currently loaded or does not exist.

Examples

Dim As Thread th
Controller.Load("/flash/projects/Test")
th New Thread("Main", "Test", "Thread2") =
th.Start()
th.Join(0) ' Wait for thread to complete
Controller.Unload("Test")

See Also

Controller Class | Controller.Load | Thread.Join

42

Exception Handling
Exception Handling Summary

The following pages provide detail information on the exception handling instructions and
the properties and methods of the Exception Class. The exception handling statements
provide a structured means for a procedure to detect and respond to program execution
exceptions that would otherwise cause the procedure to halt execution. When an
exception occurs, information on the cause of the exception can be automatically saved
in an Exception Object and execution can be branched to a block of code designed to
service the exception.

Exception Objects have two basic forms: a general Exception and a robot Exception.
Both forms store a numerical code that indicates the type of exception. In addition, the
robot Exception includes the number of the robot and the axes that are associated with
the exception. The general form of the Exception includes a Qualifier value that can
provide addition information on the nature of the exception.

The table below briefly summarizes the exception handling statements that are described
in greater detail in the following pages.

Statement Description

Catch
Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions
executed when an exception occurs.

End Try Marks the end of the exception handling structure.

Exit Try Terminates the execution of a Try or Catch block of
instructions.

Finally
Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions that is
always executed at the completion of the Try or Catch blocks.

Throw Generates a program execution exception.

Try...Catch...Finally...
Exception handling structure that captures execution exceptions
within a block of instructions and executes statements to field
the exception if necessary.

The table below briefly summarizes the properties and methods of the Exception Class
that are described in greater detail in the following pages.

Member Type Description

exception_obj.Axis Property
Sets and gets a bit mask indicating the
robot axes associated with a robot
Exception.

exception_obj.Clone Method Method that returns a copy of the
exception_obj.

exception_obj.ErrorCode Property Sets and gets the number of the error
message.

exception_obj.Message Method
Returns the full text string that is
generated based upon the exception_obj
properties.

43

GPL Dictionary Pages

exception_obj.Qualifier Property Sets and gets the error message qualifier
for a general Exception.

exception_obj.RobotError Property
Sets and gets the Boolean that indicates
if an Exception is a robot or general
type.

exception_obj.RobotNum Property Sets and gets the number of the robot
associated with a robot Exception.

exception_obj.UpdateErrorCode Method
Updates a general (vague) Exception
error code with a more specific error
code.

44

Exception Handling

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions executed when an exception occurs.

Catch exception_object

Prerequisites

Must always follow a Try statement block. Either a Catch or Finally statement or one of
each must appear in a Try structure.

Parameters

exception_object

Required Exception Object. The exception_object must already have a
data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate the Object.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions. If
the Catch block is triggered, the information on the execution exception is automatically
stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves contained
within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

45

GPL Dictionary Pages

End Try Statement

This statement marks the end of the exception handling structure.

End Try

Prerequisites

Must always follow a Catch or Finally statement block.

Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

46

Exception Handling

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of instructions.

Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this
instruction is illegal within a Finally block.

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement
execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
information on the general format of the exception handling structure.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

47

GPL Dictionary Pages

Finally Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions that is always executed at the completion of the Try or Catch blocks.

Finally

Prerequisites

Must always follow a Try or Catch statement block. Either a Catch or Finally statement
or one of each must appear in a Try structure.

Remarks

The Finally statement marks the start of the block of instructions that is always executed
after the successful execution of a Try series of statements or at the completion of the
Catch series of statements. This allows a program to specify a series of statements that
are guaranteed to be executed before execution continues following the End Try
statement.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

48

Exception Handling

Throw Statement

Generates a program execution exception.

Throw exception_object

Prerequisites

None

Parameters

exception_object

Required Exception Object. The Exception can contain either a
general or a robot formatted error.

Remarks

This statement can be included in any procedure and need not be contained within a
Try...Catch...Finally...End Try structure. Whenever it is executed, a program exception
is immediately signaled. If this statement is not executed within a Try block, execution of
the thread is terminated and the error contained within the exception_object is reported to
the operator.

The Throw statement is often used within a Catch block. If the Exception captured by
the Catch is not to be processed by the Catch block, the Exception can be reissued by
a Throw statement. This allows Exceptions that are not to be serviced by a Catch to be
passed to a higher-level Catch or to halt thread execution.

To allow application programs to generate their own special Exceptions, two error codes
exist that are never automatically generated by the controller:

(-786) *Project generated error*
(-1038) *Project generated robot error*

These error codes can be emitted by the Throw instruction to alert the operator to special
exception conditions not normally detected by GPL.

If the ErrorCode property of the Exception Object parameter is not a negative value,
the error -807 "Invalid exception" is thrown. If you have just created the object, the value
of ErrorCode is zero by default, so you must explicitly set it to avoid this error.

Examples

 Dim exc1 As New Exception
 Try
retry:
 Move.Loc(loc1, profile1)

49

GPL Dictionary Pages

 Move.WaitForEOM
 Catch exc1
 If (exc1.ErrorCode = -153) Then ' Soft envelope error?
 profile1.Speed *= .9 ' Yes, reduce speed
 GoTo retry
 End If
 Throw exc1 ' Emit unknown error
 End Try

See Also

Exception Handling

50

Exception Handling

Try..Catch..Finally..End Try Statements

Exception handling structure that captures execution exceptions within a block of
instructions and, if necessary, executes statements to field the exception.

Try
 [try_statements]
[Catch exception_object
 [catch_statements]]
[Finally
 [finally_statements]]
End Try

Prerequisites

If "Break on exception code" (DataID 307) is set or if an application is started in GDE with
"Break on exception" enabled, any active Try...Catch structures are ignored. These
features are provided as debugging and diagnostic aids.

Parameters

try_statements

Optional statement or list of statements whose exceptions, if any, will be
handled by another block of code rather than immediately resulting in the
termination of thread execution.

exception_object

Exception Object, required if the Catch statement is defined. When an
exception occurs during the execution of the try_statements, the
exception description is automatically stored in the exception_object prior
to the execution of the catch_statements. The exception_object must
already have a data section allocated prior to the execution of the Catch,
i.e. the New qualifier should have been previously used in a Dim
statement to instantiate the Object.

catch_statements

Optional statement or list of statements that are executed if an exception
occurs during the execution of the try_statements.

finally_statements

Optional statement or list of statements that are always executed at the
successful completion of the try_statements or the completion of the
catch_statements.

Remarks

51

GPL Dictionary Pages

If an exception of any type occurs when the try_statements are executed, rather than
halting execution and reporting the error, the system automatically stores the exception
information in the exception_object and branches execution to the start of the
catch_statements. The catch_statements can test the exception_object to determine the
nature of the exception and then perform whatever corrective action is necessary. If the
try_statements complete execution without an error or when the catch_statements
complete execution after an exception, the finally_statements are always executed to
perform any required cleanup. At the completion of the finally_statements, regular
instruction execution continues at the first statement following the End Try.

A Try structure must contain either a single Catch statement or a single Finally
statement or one of each type of statement. If a Catch statement is specified, it must
always include an exception_object.

Try structures can be nested within each other to an arbitrary depth. For example, a Try
structure can be contained within the catch_statements of another, higher-level Try
structure. Also, procedure calls can be contained within any of the statement blocks
including the try_statements.

If an exception occurs within a procedure that is invoked within a Try structure with a
Catch, the execution of the procedure is immediately terminated and execution will
continue at the first instruction in the catch_statements in the calling procedure. This
feature allows a single Try Catch to be placed at a very high-level and capture any
exceptions in any lower level routines. This case is illustrated in Example #1 below.

Alternately, if the called procedure generates an exception within a Try structure with a
Catch, the catch_statements within the called routine will service the exception.
However, if an exception occurs in a called procedure within a Try without a Catch but
with a Finally, the finally_statements in the called routine will be executed first, then
execution of the called procedure will be terminated, after which execution will continue in
the catch_statements of the calling procedure. This case is illustrated in Example #2
below.

There are special limitations on the use of GoTo instructions in connection with Try
structures. A GoTo contained in the catch_statements can branch execution into the
corresponding try_statements. Also, GoTo's can be contained in the try_statements,
catch_statements, and the finally_statements so long as the branch is to an instruction
within the same block of statements. All other branching into and out of the Try
statement blocks and the main code is not permitted, e.g. you cannot branch from
outside of a Try structure into the try_statements or out of the try_statements into the
finally_statements. These special limitations are illustrated in Example #3 below.

Lastly, an Exit Try statement is provided for prematurely terminating a series of
try_statements or catch_statements. When this instruction is executed in either the
try_statements or the catch_statements, execution branches and continues at the first
statement in the finally_statements. Exit Try instructions are not permitted in the
finally_statements.

Examples

Example #1

Public Sub MAIN
 Dim exc1 As New Exception

52

Exception Handling

 Try
 test()
 Console.WriteLine("Test completed") ' Never gets here
 Catch exc1
 Console.WriteLine("Exception!") ' Is executed
 End Try
End Sub

Public Sub test()
 Dim ii As Integer
 ii = 1 / 0 ' Generates exception
 Console.WriteLine("Inside Test") ' Never gets here
End Sub

Example #2

Public Sub MAIN
 Dim exc1 As New Exception
 Try
 test()
 Console.WriteLine("Test completed") ' Never gets here
 Catch exc1
 Console.WriteLine("Exception!") ' Is executed
 End Try
End Sub

Public Sub test()
 Dim ii As Integer
 Try
 ii = 1 / 0 ' Generates exception
 Console.WriteLine("Inside Test") ' Never gets here
 Finally
 Console.WriteLine("Finally in Test") ' Is executed
 End Try
 Console.WriteLine("Test done") ' Never gets here
End Sub

Example #3

 Dim exc1 As New Exception
 Dim As Integer index
 Robot.Attached = 1
 Try
retry:
 Move.Loc profile1) (loc1,
 Move.WaitForEOM
 Catch exc1
 Controller.SystemMessage(exc1.Message)
 Controller.ShowDialog("Ok,Cancel","Retry?",index)
 If index = 1 Then
 If Robot.Attached = 0 Then
 Controller.PowerEnabled = True
 Robot.Attached = 1
 End If
 GoTo retry ' LEGAL BRANCH
 End If
 GoTo bad_jump ' ILLEGAL BRANCH!!!
 End Try
bad_jump:

See Also

Exception Handling | Exit Try Statement | Throw Statement

53

GPL Dictionary Pages

exception_object.Axis Property

Sets and gets a bit mask indicating the robot axes associated with a robot Exception.

exception_object.Axis = <new_bitmask_value>
-or-
...exception_object.Axis

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

For robot Exceptions, the Axis property specifies the robot axes or motors that are
associated with the error condition. This value is a bit mask where the least significant bit
(&H1) represents the first axis or motor. Up to 12 bits can be set and multiple bits can be
set at the same time. For example, when the error code is -1012 (Joint out-of-range), the
Axis property bits indicate the which axes have violated their software ranges of motion.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the Axis bits are initially all set to 0.

Examples

Dim e As New Exception ' Create new general exception xc1
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1012 ' *Joint out-of-range*
exc1.Axis = &HA ' Specify axes 2 and 4
Console.WriteLine(exc1.Message) ' *Joint out-of-range* Robot 1: 2 4

See Also

Exception Handling | exception_object.RobotError | exception_object.RobotNum

54

Exception Handling

exception_object.Clone Method

Method that returns a copy of the exception_object.

...exception_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples

Dim exc1 As New Exception ' Create new exception with data
Dim exc2 As Exception ' Create new exception with no data
exc1.ErrorCode = -1002 ' *Invalid axis* error code
exc1.RobotError = True
exc2 = exc1.Clone ' Makes a copy of exc1 data
exc2.Axis = &HC ' Does not affect exc1 data
Console.WriteLine(exc1.Message) ' *Invalid axis* Robot 1
Console.WriteLine(exc2.Message) ' *Invalid axis* Robot 1: 3 4

See Also

Exception Handling

55

GPL Dictionary Pages

exception_object.ErrorCode Property

Sets and gets the number of the error message.

exception_object.ErrorCode = <new_value>
-or-
...exception_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

The ErrorCode property of an Exception is the primary value that indicates the type of
exception that is represented by the exception_object. This value can range from 4095
to -4095 and each utilized value has a text string associated with it for display purposes.
In most cases, the ErrorCode is further qualified by additional information such as a
robot number, axis number or other information.

To facilitate the interpretation of the ErrorCodes, positive values indicate success or
warning conditions and negative numbers indicate an error of some type. A value of 0 is
the general success code.

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
section of the Precise Documentation Library.

When a New Exception is created, it defaults to a general Exception with an ErrorCode
value of 0 (success).

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.ErrorCode = -786 ' *Project generated error*
exc1.Qualifier = 8 ' Specify the qualifier
Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Also

Exception Handling

56

Exception Handling

exception_object.Message Method

Returns the full text string that is generated based upon the exception_obj properties.

...exception_object.Message

Prerequisites

None

Parameters

None

Remarks

Given any exception_object, this method interprets the ErrorCode and any defined
refinement information such as the RobotNum, Axis, or Qualifier properties as
appropriate and returns the equivalent text string that is normally output to indicate this
exception.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1012 ' *Joint out-of-range*
exc1.Axis = &HA ' Specify axes 2 and 4
Console.WriteLine(exc1.Message) ' *Joint out-of-range* Robot 1: 2 4

See Also

Exception Handling

57

GPL Dictionary Pages

exception_object.Qualifier Property

Sets and gets the error message qualifier for a general Exception.

exception_object.Qualifier = <new_value>
-or-
...exception_object.Qualifier

Prerequisites

Only valid for general Exceptions. Not valid for robot Exceptions.

Parameters

None

Remarks

For general Exceptions, the Qualifier property specifies an additional number that can
be used to further refine the meaning of an error condition. This value is stored as a 16-
bit unsigned number and can therefore range from 0 to 65535. For example, when the
error code is -786 (Project generated error), the Qualifier property can be used by the
GPL Project to convey which of several different special error conditions was detected.

When a New Exception is created, it defaults to a general Exception with a Qualifier
property of 0. When an Exception is changed from a robot to a general type, the
Qualifier value is reset to 0.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.ErrorCode = -786 ' *Project generated error*
exc1.Qualifier = 8 ' Specify the qualifier
Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Also

Exception Handling | exception_object.RobotError

58

Exception Handling

exception_object.RobotError Property

Sets and gets the Boolean that indicates if an Exception is a robot or general type.

exception_object.RobotError = <boolean_value>
-or-
...exception_object.RobotError

Prerequisites

None

Parameters

None

Remarks

Setting the RobotError property of an exception_object to True indicates that it is a robot
Exception and therefore has a RobotNum and an Axis property. Otherwise, setting
RobotError to False indicates that the exception_object is a general Exception and has
a Qualifier property.

Both robot and general Exceptions have the same effect in terms of halting thread
execution and disabling robot power. The only difference between the two types of
Exceptions is which additional properties exist to further refine the interpretation of the
error code.

When a New Exception is created, it defaults to a general Exception. To switch
between robot and general Exception types, the RobotError property should be set as
needed.

Examples

Dim e As New Exception ' Create new general exception xc1
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling

59

GPL Dictionary Pages

exception_object.RobotNum Property

Sets and gets the number of the robot associated with a robot Exception.

exception_object.RobotNum = <new_value>
-or-
...exception_object.RobotNum

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

For robot Exceptions, the RobotNum property specifies the number of the robot
associated with the error condition. This value can range from 0 to 16. A value of 0
indicates that it is a conveyor belt and values from 1 to 16 specify regular robot numbers.
For example, when the error code is -1006 (Robot already attached), the RobotNum
property indicates which robot was being accessed when this error was generated.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the RobotNum value is initially set to 1.

Examples

Dim e As New Exception ' Create new general exception xc1
exc1.RobotError = True ' Indicate its a robot error
exc1. Code = -1006 ' *Robot already attached* Error
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling | exception_object.RobotError | exception_object.Axis

60

Exception Handling

exception_object.UpdateErrorCode Method

Updates a general (vague) Exception error code with a more specific error code.
Replaces error codes -1029, -1030, or -1043, if possible.

...exception_object.UpdateErrorCode

Prerequisites

None

Parameters

None

Remarks

Because GPL responds as quickly as possible to error conditions and contains many
independent threads, when an exception is thrown, a user thread may not immediately
know the exact reason for the exception. In this case, GPL reports one of three generic
error codes:

• -1029: Asynchronous error
• -1030: Fatal asynchronous error
• -1043: Asynchronous soft error

Several milliseconds later, the specific error code is normally available, but the system
does not wait for this information before initiating a reaction, such as decelerating the
robot.

The UpdateErrorCode method checks an Exception object’s error code to see if it
matches one of the generic error code values listed above. If so, by analyzing error
message timestamps, it replaces the generic error code with any more specific error code
that has become available.

This is a convenience method that eliminates the need to develop software to utilize the
Controller.ErrorLog property to scan posted errors for more specific error information.

Examples

Dim exc As Exception
Dim my_loc As Location
Dim my_prof As Profile
Try
 Move.Loc(my_loc, my_prof)
Catch exc
 ' Perform time-critical exception handling here
 Console.WriteLine(exc.ErrorCode) ' Show initial error
 Thread.Sleep(10) ' Wait for errors to propagate
 exc.UpdateErrorCode
 Console.WriteLine(exc.ErrorCode) ' Show final error

61

GPL Dictionary Pages

End Try

See Also

Exception Handling | Controller.ErrorLog

62

File and Serial I/O Classes
File and Serial I/O Classes Summary

The following pages provide detailed information on the properties and methods for the
various classes that implement both file and serial port input and output communications.

The File Class is designed specifically for managing disk files and disk file directories.
The StreamReader and StreamWriter Classes apply to both file and serial
communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

File Class Member Type Description

File.Copy Shared
Method

Copies a single file on devices like the flash
disk and ROMDISK.

File.CreateDirectory Shared
Method

Creates a file directory and the path to the
directory.

File.DeleteDirectory Shared
Method Deletes a single, empty file directory.

File.DeleteFile Shared
Method Deletes a single file.

File.GetDirectories Shared
Method

Returns an array of strings containing the
names of directories in a directory.

File.GetFiles Shared
Method

Returns an array of strings containing the
names of files in a directory.

StreamReader Member Type Description

New StreamReader Constructor
Method Opens a file or serial port device for reading.

streamreader_obj.Close Method Closes the file or device associated with a
StreamReader Object.

streamreader_obj.Peek Method Returns the next byte from an input stream
without removing it from the stream.

streamreader_obj.Read Method Returns the next byte from an input stream
and removes it from the stream.

streamreader_obj.ReadLine Method Reads a line from the input stream
terminated by LF, CR, or CR-LF.

StreamWriter Member Type Description

New StreamWriter Constructor
Method Opens a file or serial port device for writing.

streamwriter_obj.AutoFlush Property Sets or gets the property that controls

63

GPL Dictionary Pages

whether or not output is buffered.

streamwriter_obj.Close Method Closes the file or device associated with a
StreamWriter Object.

streamwriter_obj.Flush Method Immediately writes any buffered data for a
StreamWriter Object.

streamwriter_obj.NewLine Property
Sets or gets the property that controls how
lines are terminated by the WriteLine
method.

streamwriter_obj.Write Method Writes a number or a String to an output
device or file.

streamwriter_obj.WriteLine Method
Writes a number or a String to an output
device or file, followed by the NewLine line
terminator.

64

File and Serial I/O Classes

File.Copy Method

Copies a single file on devices like the flash disk and ROMDISK.

File.Copy (source_file, destination_file, overwrite)

Prerequisites

None

Parameters

source_file

A required String expression. Contains the fully specified path and file
name of an existing file to be copied.

destination_file

A required String expression. Contains the fully specified path and file
name of the destination file.

overwrite

An optional numeric expression. If zero (False), the destination file is not
overwritten if it already exists. If non-zero, the destination file is
overwritten if it already exists.

Remarks

This method copies a single file stored on a device like the flash disk or ROMDISK. A
wild card specification of multiple files is not permitted.

The complete path must be specified for both the source and destination. There are no
defaults for any fields.

If a directory in the destination path does not exist, the directory is not created and the
copy fails with an error.

Examples

File.Copy("/flash/projects/Hello/Main.gpl", _
 "/flash/Test.gpl", True)

File.Copy("/flash/projects/Hello/Main.gpl", _
 "/ROMDISK/Test.gpl", False)

See Also

65

GPL Dictionary Pages

File and Serial I/O

66

File and Serial I/O Classes

File.CreateDirectory Method

Creates a file directory and the path to the directory.

File.CreateDirectory (path)

Prerequisites

Directories can only be created on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A String that contains the path for the directory to create, beginning with
the device name and ending with the new directory name.

Remarks

This method creates a directory in the location specified by the path parameter. If any
intermediate directories in the path are undefined, they are automatically created.

An error occurs if the final directory already exists.

If any error occurs, this method throws an Exception.

Examples

File.CreateDirectory("/ROMDISK/temp/new_directory") ' Create "new_directory"
 ' Also creates "temp" if
needed

See Also

File and Serial I/O | File.DeleteDirectory

67

GPL Dictionary Pages

File.DeleteDirectory Method

Deletes a single, empty file directory.

File.DeleteDirectory (path)

Prerequisites

The directory must be empty.

Parameters

path

A String that contains the path for the directory to delete, beginning with
the device name and ending with the new directory name.

Remarks

This method deletes a single directory in the location specified by the path parameter,
provided that the directory is empty. If any files or sub-directories exist within the
directory, an error occurs.

An error also occurs if the final directory does not exist.

If any error occurs, this method throws an Exception.

Examples

File.DeleteDirectory("/ROMDISK/temp/new_directory") ' Delete "new_directory"
 ' if empty

See Also

File and Serial I/O | File.CreateDirectory | File.DeleteFile

68

File and Serial I/O Classes

File.DeleteFile Method

Deletes a single file.

File.DeleteFile (path)

Prerequisites

The file cannot be open for read or write.

Parameters

path

A String that contains the path to the file to delete, beginning with the
device name and ending with the file name.

Remarks

This method deletes a single file in the location specified by the path parameter.

An error occurs if the file does not exist.

If any error occurs, this method throws an Exception.

Examples

File.DeleteFile("/ROMDISK/myfile.txt") ' Delete "myfile.txt"

See Also

File and Serial I/O | File.DeleteDirectory

69

GPL Dictionary Pages

File.GetDirectories Method

Reads a directory, gets the names of all sub-directories, and returns them in an array of
Strings.

<string_array> = File.GetDirectories (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of sub-directories within a
directory. If the specified directory path does not exist, this method throws an exception.

One sub-directory name is returned per array element. The length of the returned String
array indicates how many sub-directories were discovered. The sub-directory names are
relative to the specified path.

If sub-directories are being actively created or deleted when this method is invoked,
some existing sub-directories may be missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetDirectories(path)
Console.Writeline(CStr(files.Length) & " directories seen")
For ii = 1 To files.Length
 Console.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O | File.GetFiles

70

File and Serial I/O Classes

File.GetFiles Method

Reads a directory, gets the names of all non-directory files, and returns them in an array
of Strings.

<string_array> = File.GetFiles (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK", "/flash", and "/GPL".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of files within a directory. If the
specified directory path does not exist, this method throws an exception.

One file name is returned per array element. The length of the returned String array
indicates how many files were detected. The file names are relative to the specified path.

If files are being actively created or deleted when this method is invoked, some existing
files may be missed or a blank String element may be returned.

Examples

Dim fil As String es()
Dim ii As Integer

File.GetFiles path) files = (
Console.Writeline(CStr(files.Length) & " files seen")
For ii = 1 To files.Length
 Console.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O | File.GetDirectories

71

GPL Dictionary Pages

New StreamReader Constructor

Constructor for creating a StreamReader Object. Also opens a file or device for reading.

New StreamReader (path)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Local serial
ports are devices named "/dev/com1", "/dev/com2", etc. Remote serial
ports are named "/dev/comrxy" where "x" is the number of the remote
device and "y" is the number of the serial port on the remote device.
Temporary files may be placed on device "/ROMDISK" and permanent
files may be placed on "/flash".

Remarks

This method opens a file or device and associates it with a new StreamReader Object.

If any error occurs, this constructor throws an Exception.

Examples

Dim com1 As New StreamReader "/dev/com1") ' Open serial port #1 (
Dim tfile As New StreamReader("/ROMDISK/test.tmp") ' Open temporary file
Dim pfile As New StreamReader("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O | New StreamWriter

72

File and Serial I/O Classes

streamreader_object.Close Method

Closes the file or device associated with a StreamReader Object.

steamreader_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamReader Object. If
any I/O error occurs, it throws an Exception. No error occurs if the file or device is not
currently open.

Examples

streamreader_object.Close()

See Also

File and Serial I/O | New StreamReader

73

GPL Dictionary Pages

streamreader_object.Peek Method

Returns the next byte from an input stream without removing it from the stream.

...steamreader_object.Peek()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an Integer, but it does not
remove the byte from the stream. The next input method call will still return this byte.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method does not block, but immediately returns -1 if no bytes are
available to read.

If no device or file is open, this method throws an Exception.

Examples

Dim co As New StreamReader("/dev/com1") m1
Dim c As Integer
c = com1.Peek()

See Also

File and Serial I/O | streamreader_object.Read

74

File and Serial I/O Classes

streamreader_object.Read Method

Returns the next byte from an input stream and removes it from the stream.

...steamreader_object.Read()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an integer. The byte is
removed from the stream so that subsequent calls do not return it.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method blocks if no bytes are available to read.

Be careful when using this method to read data from a serial port since it blocks until a
byte is available. If for some reason the byte is lost due to an error, this method will
continue blocking and hang your procedure.

If no device or file is open, this method throws an Exception.

Examples

Dim co As New StreamReader("/dev/com1") m1
Dim c As Integer
c = com1.Read()

See Also

File and Serial I/O | streamreader_object.Peek | streamreader_object.ReadLine

75

GPL Dictionary Pages

streamreader_object.ReadLine Method

Reads a line from the input stream terminated by LF, CR, or CR-LF.

...steamreader_object.ReadLine()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns a String containing the next bytes in the input stream up to the next
LF character (decimal value 10, GPL_LF) or CR character (decimal 13, GPL_CR). It
blocks until the data followed by these line terminators is received or the end-of-file is
seen.

Any LF, CR, or CR-LF pair is removed from the end of the string.

Note that the StreamWriter NewLine property does not have any effect on how
ReadLine interprets the end of line.

Be careful when using this method to read data from a serial port since it blocks until a
line terminator is seen. If for some reason the line terminator is lost or corrupted due to
an error, this method will continue blocking and hang your procedure.

If some other I/O error occurs, this method throws an Exception.

Examples

Dim file As New StreamReader("/flash/data.txt")
Dim line As String
line = file.ReadLine()

See Also

File and Serial I/O | streamreader_object.Read

76

File and Serial I/O Classes

New StreamWriter Constructor

Constructor for creating a StreamWriter Object. Also opens a file or device for writing.

New StreamWriter (path)
-or-
New StreamWriter (path, append)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Serial ports
are devices named "/dev/com1", "/dev/com2", etc. Remote serial ports
are named "/dev/comrxy" where "x" is the number of the remote device
and "y" is the number of the serial port on the remote device. Temporary
files may be placed on device "/ROMDISK" and permanent files may be
placed on "/flash".

append

A Boolean value that determines whether or not new data should be
appended to the end of an existing file. If append is False, a new file is
always created, overwriting any existing file with the same name.

Remarks

This method opens a file or device and associates it with a new StreamWriter Object.

By default, AutoFlush is enabled for serial ports but not for files.

If any error occurs, this method throws an Exception.

Examples

Dim com1 As New StreamWriter("/dev/com1") ' Open serial port #1
Dim tfile As New StreamWrite ("/ROMDISK/test.tmp") ' Open temporary file r
Dim pfile As New StreamWriter("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O | New StreamReader | streamwriter_object.AutoFlush

77

GPL Dictionary Pages

streamwriter_object.AutoFlush Property

Sets or gets the AutoFlush property that controls whether or not output is buffered.

steamwriter_object.AutoFlush = <boolean_value>
-or-
...steamwriter_object.AutoFlush

Prerequisites

None

Parameters

None

Remarks

Setting this property to True causes output requests to immediately write data to the file
or device. Setting it to False buffers the output and lets the system decide when to write
it. Buffered output is always immediately written when a Flush or Close method is
executed.

Setting AutoFlush to True for files may significantly slow down any write operations.

By default, AutoFlush is set to True for serial ports and False for files.

Examples

Dim pfile As New StreamWriter("/flash/save.txt") ' Open permanent file
pfile.AutoFlush = True

See Also

File and Serial I/O | streamwriter_object.Flush

78

File and Serial I/O Classes

streamwriter_object.Close Method

Closes the file or device associated with a StreamWriter Object.

steamwriter_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamWriter Object. Any
pending buffered output is written before the close completes.

If buffered output is being written, this method blocks until the output is complete.

If any I/O error occurs, this method throws an Exception. No error occurs if the file or
device is not currently open.

Examples

streamwriter_object.Close()

See Also

File and Serial I/O | New StreamWriter

79

GPL Dictionary Pages

streamwriter_object.Flush Method

Immediately writes any buffered data for a StreamWriter Object.

steamwriter_object.Flush

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

None

Remarks

This method immediately writes any buffered data to the output device or file. When
output is performed, this method blocks until it is complete.

Calling the Flush method is redundant if the AutoFlush property is set to True.

Explicit flush operations are more efficient than setting AutoFlush to True if you are
performing a number of small write requests. If AutoFlush is True, each small write
request causes output to occur. If AutoFlush is False, the small write requests can be
buffered and the entire buffer is written by a single Flush.

A Flush equivalent is always performed by the Close method.

If any I/O error occurs, this method throws an Exception.

Examples

Dim com As New StreamWriter("/dev/com1")
com.AutoFlush = False ' Disable automatic flush
com.Write("Write")
com.Write(" a short ")
com.WriteLine("message")
com.Flush

See Also

File and Serial I/O | streamwriter_object.AutoFlush

80

File and Serial I/O Classes

streamwriter_object.NewLine Property

Sets or gets the NewLine property that controls how lines are terminated by the
WriteLine method.

steamwriter_object.NewLine = <newline_string>
-or-
...steamwriter_object.NewLIne

Prerequisites

None

Parameters

None

Remarks

This property is a string of 0, 1 or 2 bytes that is appended to the end of any output
performed by the streamwriter_object.WriteLine method.

By default the NewLine value is a 2-byte string containing an ASCII CR character
(decimal 13, GPL_CR) followed by an LF character (decimal value 10, GPL_LF).

Typical settings for this property are CR, LF, or CR-LF. If set to an empty string, no
terminator is added to the end of lines.

Examples

Dim pfile As New StreamWriter("/dev/com1") ' Open serial port 1
pfile.NewLine = Chr(GPL_LF) ' Set terminator to LF (10)

...

pfile.NewLine = Chr(GPL_CR) ' Set terminator to CR (13)

See Also

File and Serial I/O | streamwriter_object.WriteLine

81

GPL Dictionary Pages

streamwriter_object.Write Method

Writes a number or a String to an output device or file.

steamwriter_object.Write(number)
-or-
steamwriter_object.Write(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
tfile.Write("Test ") ' Writes "Test "
tfile.Write(3.14) ' Writes "3.14" on the same line as "Test "

See Also

File and Serial I/O | streamwriter_object.WriteLine

82

File and Serial I/O Classes

streamwriter_object.WriteLine Method

Writes a number or a String to an output device or file, followed by the NewLine line
terminator.

steamwriter_object.WriteLine(number)
-or-
steamwriter_object.WriteLine(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method is the same as the Write method with the addition that it appends the value
of the NewLine property to any output requests.

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dim tf As New StreamWriter("/ROMDISK/test.tmp") ile
tfile.WriteLine("Test") ' Writes "Test"
tfile.WriteLine(3.14) ' Writes "3.14" on the line following "Test"

See Also

File and Serial I/O | streamwriter_object.NewLine | streamwriter_object.Write

83

Functions
Function Summary

The following sections present detailed information on the standard functions that are
supported by GPL. These functions are not grouped into a specific Class and are
provided in this manner to be compatible with other Basic Language systems.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these functions to deal with the different possible mixes of
input parameter data types. Also, these functions generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as
numeric overflow does not occur.

The table below briefly summarizes the system functions that are described in greater
detail in the following sections.

Function Description

CBool (expression) Converts any numeric type or String to Boolean
CByte (expression) Converts any numeric type or String to Byte.
CDbl (expression) Converts any numeric type or String to Double.
CInt (expression) Converts any numeric type or String to Integer.
CShort (expression) Converts any numeric type or String to Short.
CSng (expression) Converts any numeric type or String to Single.
CStr (expression) Converts any numeric type to String.

Fix (number) Truncates towards zero any numeric type returning only
the integer portion of the number.

Hex (expression) Converts an Integer value to String in Hexadecimal
format.

Int (number) Truncates towards negative infinity any numeric type
returning only the integer portion of the number.

Rnd (seed) Returns a pseudo random number.

84

Functions

CBool Function

Converts any numeric type or String to a Boolean value.

...CBool (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

85

GPL Dictionary Pages

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

86

Functions

CByte Function

Converts any numeric type or String to a Byte value.

...CByte (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

87

GPL Dictionary Pages

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

88

Functions

CDbl Function

Converts any numeric type or String to a Double value.

...CDbl (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

89

GPL Dictionary Pages

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

90

Functions

CInt Function

Converts any numeric type or String to an Integer value.

...CInt (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

91

GPL Dictionary Pages

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

92

Functions

CShort Function

Converts any numeric type or String to a Short value.

...CShort (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

93

GPL Dictionary Pages

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

94

Functions

CSng Function

Converts any numeric type or String to a Single value.

...CSng (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

95

GPL Dictionary Pages

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

96

Functions

CStr Function

Converts any numeric type to a String value.

...CStr (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

97

GPL Dictionary Pages

Dim stg As String
stg = CStr(3.14159) ' Sets stg equal to "3.14159"

See Also

Functions | Fix Function | Format Function | Int Function

98

Functions

Fix Function

Returns the integer portion of any number by truncating towards zero.

...Fix (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dim As Single s_val
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1
s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3

99

GPL Dictionary Pages

See Also

Functions | Int Function

100

Functions

Hex Function

Converts an Integer value to a String value in Hexadecimal format.

...Hex (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single,
however, the value is converted to Integer prior to conversion to a String
value.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value
CByte Byte 0 to 255
CDbl Double -1.79769313486231E+308 to

-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647
CShort Short -32768 to 32767
CSng Single -3.402823E+38 to -1.401298E-45 for negative values;

1.401298E-45 to 3.402823E+38 for positive values.
CStr String Any valid Double value
Hex String Any valid Integer value

Examples

101

GPL Dictionary Pages

Dim stg As String
Dim ii As Integer
ii = CInt("&H1234") ' Sets ii equal to 4660
stg = Hex(ii) ' Sets stg equal to "1234"

See Also

Functions | Fix Function | Format Function | Int Function

102

Functions

Int Function

Returns the integer portion of any number by truncating towards negative infinity.

...Int (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1
s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

103

GPL Dictionary Pages

Dim s_va As Single l
s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3

See Also

Functions | Fix Function

104

Functions

Rnd Function

Returns a pseudo random number.

...Rnd (seed)

Prerequisites

None

Parameters

seed

An optional expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a pseudo random number whose value is greater than or equal to 0 and less
than 1.0.

The returned value is only pseudo random because the returned numbers are part of an
extremely long sequence of values that only repeat after 2^32 numbers are generated.
Each time that the controller is restarted, the starting point or seed in the sequence is
determined by the system clock calendar. So, the sequence of values produced by this
function appears quite random for normal testing purposes.

If it is desired to force the sequence of numbers to restart at a fixed value, thereby
allowing a test to be exactly repeated, the optional seed parameter can be used as
follows:

seed value Effect on function

<0 The specified seed value is taken as the starting point for the pseudo
random sequence and the sequence will be continued from this value. The
number returned by this execution of the Rnd will always be the same.

=0 The last value returned by the Rnd function will be returned again.
>0 The next number in the pseudo random sequence will be returned.

Not specified Same as specifying a seed value >0.

Examples

Dim r_val As Single
r_val = Rnd() ' Sets r_val to some random value
r_val = Rnd(-1) ' Forces seed to –1, will return same number
 ' each time.
r_val = Rnd() ' Returns next value after seed
r_val = Rnd(0) ' Returns same value as last line above

105

GPL Dictionary Pages

See Also

Functions

106

Latch Class
Latch Class Summary

The following pages provide detailed information on the properties and methods of the
Latch Class. This class, and its Latch Object instances, provide a means for GPL
procedures to receive the results of latch events generated by digital input signals
configured as latch inputs. These results allow a robot or belt position to be captured with
high accuracy when a digital input value changes.

The Latch Class defines Latch Objects that contain the time when the latch occurred
and the robot axis positions at that time. This class also includes methods and properties
for accessing the queue of latch results, and for accessing the results themselves.

When a latch occurs, as specified by the Latch Input configuration, a Latch Object is
created and placed in a queue. Each robot has an independent queue, kept in order of
time, with the oldest objects first. All the axes of a robot are latched simultaneously, so
the entire position and orientation of the robot is available.

Belts are a special case of robots and are normally configured as "encoder only" robots.
Multiple belts or robots, or any combination of the two, may be latched simultaneously by
a single latch input or independently by separate latch inputs. Each belt or robot may be
latched by up to 12 different latch inputs.

The Latch Class allows a latch queue to be associated with a system thread event (see
Thread Class, method WaitEvent) so that an event is sent to a thread whenever a new
latch is placed in the queue. By waiting for events, a GPL thread may efficiently wait for
latches to occur.

For a general discussion of Latches, please see the Controller Software > Introduction
To The Software > Communications > Digital Inputs and Outputs > Latch Inputs
section of the Precise Documentation Library.

The table below briefly summarizes the methods and properties that are described in
greater detail in the following sections.

Member Type Description

latch_object.Angle Property Returns the latched value of the specified axis
angle. Avoids creating a Location object.

Latch.Count Shared
Property

Returns the number of latch results pending
for a robot or conveyor belt.

latch_object.ErrorCode Property Returns the error code from a latch object. 0
means no error.

Latch.Flush Shared
Method

Flushes all latch results pending for a robot or
conveyor belt.

latch_object.Location Method
Returns a Location object containing the
latched position, as a Cartesian value or a set
of angles.

Latch.Result Shared
Method

Removes the next latch result from the queue
for a robot or belt and returns it as a Latch
object. Returns Nothing if the queue is empty.

107

GPL Dictionary Pages

Throws an exception if a result was lost due to
an overflow.

latch_object.Signal Property Returns the number of the digital input signal
that generated the latch.

Latch.ThreadEvent Shared
Property

Associates a thread event with a robot or belt.
The thread event gets set if the latch queue
contains latch results or when new latch
results are added.

latch_object.Timestamp Property
Returns the timestamp when the latch
occurred as a Double value, consistent with
the Controller.Timer property.

108

Latch Class

latch_object.Angle Property

Read-only property that returns the latched value of the specified axis angle. Avoids
creating a location object.

…latch_object.Angle(axis)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

axis

An optional numeric expression that specifies the angle whose value is
returned. If not specified, a default value of 1 is assumed.

Remarks

This property returns the specified angle from a Latch object. It is more efficient than
using latch_object.Location(1).Angle(1) since it does not require the creation of an
intermediate Location object.

Examples

Dim l As Latch at

 Latch.Result(1) ' Get next latched value lat =
Console.WriteLine("Latched angle 1: " & CStr(lat.Angle(1)))

See Also

Latch Class | latch_object.Location| location_object.Angle

109

GPL Dictionary Pages

Latch.Count Shared Property

Read-only shared property that returns the number of Latch objects pending in the
queue for a robot.

…Latch.Count(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property returns the number of Latch objects pending in the Latch queue for a
specified robot.

Examples

Console.WriteLine("Pending latch results: " & CStr(Latch.Count))

See Also

Latch Class

110

Latch Class

latch_object.ErrorCode Property

Read-only property that returns the numeric error code associated with the latch object.

…latch_object.ErrorCode

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

None

Remarks

This property returns the number of any error associated with a latch object. A value of 0
indicates no error. A value < 0 indicates that an error occurred during latching.

This read-only property is only meaningful if the optional no_exception parameter was set
to True when the Latch.Result method was called to return the latch object. If
no_exception was set to False, the returned object will always have a zero ErrorCode
value.

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
section of the Precise Documentation Library. For specific information on the most likely
error codes, please see the documentation on Latch.Result.

Examples

Dim lat1 As Latch
lat1 = Latch.Result(1, True) ' Get latch event
If lat1.ErrorCode < 0 Then
 Console.WriteLine("Latch error: " & CStr(lat1.ErrorCode))
End If

See Also

Latch Class | Latch.Result

111

GPL Dictionary Pages

Latch.Flush Shared Method

Removes all pending results from the Latch queue for a specified robot.

Latch.Flush(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property removes all Latch result objects from the specified robot queue. It also
resets any pending overflow errors for that queue. After calling this method, the
Latch.Count property for the queue will be 0, until new latches occur.

Examples

Latch.Flush(1)
Console.WriteLine("Latch results: " & CStr(Latch.Count(1)))
 ' Displays value of 0

See Also

Latch Class

112

Latch Class

latch_object.Location Method

Returns a Location object that contains the latched position of a robot.

…latch_object.Location(type)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

type

A required numeric expression that specifies the type of Location object
to be returned. A value of 0 indicates the Location contains Cartesian
position and orientation information. 1 indicates the Location contains a
set of axis position values. This parameter is consistent with the
location_object.Type property.

Remarks

This property returns the latched robot position and orientation as a new Location object
of the specified type. This Location object may then be used like any other Location
object. All the axes of the robot are latched simultaneously, so the total robot position at
the time of the latch is consistent.

If a single latched angle is of interest, the latch_object.Angle property is more efficient
since it does not create a Location.

Examples

Dim lat As Latch
Dim lpos As Location
lat = Latch.Result(1) ' Get next latched value
lpos = lat.Location(0) ' Cartesian Location
Console.WriteLine("Latched X: " & CStr(lpos.X))

See Also

Latch Class| latch_object.Angle| location_object.Angle

113

GPL Dictionary Pages

Latch.Result Shared Method

Returns a Latch object containing the next result from a latch queue. Returns Nothing if
the queue is empty.

…Latch.Result(robot, no_exception)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

no_exception

An optional numeric expression that determines whether or not this
method will throw an exception if a latch related error occurs. If zero or
omitted, latch related errors throw exceptions. If non-zero, no exceptions
are thrown.

Remarks

This method removes the next latched result from the latch queue associated with the
specified robot. A new Latch object is returned. This object contains the latch result
information.

If the latch queue is empty, this method returns a Nothing value, so the caller should test
for Nothing unless it is known that the queue is not empty.

Latch results are returned by the Latch.Result method in the order that they were
received, with the oldest results returned first.

If a latch related error is encountered, and the no_exception parameter is 0 or omitted,
this method throws an exception. If this parameter is non-zero, no exception is thrown
and a latch object is returned with its ErrorCode property set to the appropriate negative
error number. If no error occurs or if no_exception is 0 or omitted, the ErrorCode
property is always set to zero.

The following latch related errors may be generated:

Code Text Description

-203 Fifo overflowed
Latch events were generated faster than the GPL program removed
them from the FIFO using this method. You can increase the FIFO size

114

Latch Class

by increasing the value of DataID 2251, (Latch queue max).

-525 Latch input overrun

The hardware latch circuit has detected that edges in the latch
input signal are occurring too quickly to be processed. One or
more latch edges have been lost. The latch circuit cannot handle
duplicate latch edges in the same direction more often than once
every 1.2 milliseconds. There may be noise on the latch input
signal.

-526 Latch data overrun

Latch events are occurring too quickly for the Precise Controller
to service them. If a continuous stream of latch events occurs at
a rapid rate, the controller may run out of time to process them.
This error is more likely to occur in a servo network system.
Reduce the rate of latch events or reduce the number of latch
signals being used.

Examples

Dim lat As Latch
lat = Latch.Result(1)
While Not lat Is Nothing
 Console.WriteLine(CStr(lat.Signal) & ": " & _
 CStr(lat.Timestamp) & ", " & _
 CStr(lat.Angle(1)))
 lat = Latch.Result(1)
End While

lat = (1,)
If (Not lat Is Nothing) Then

Latch.Result True

 If ErrorCode) Then (lat. < 0
 Console.WriteLine("Error " & CStr(lat.ErrorCode))
 End If
End If

See Also

Latch Class | latch_object.ErrorCode

115

GPL Dictionary Pages

latch_object.Signal Property

Returns the number of the digital input signal that generated a latch result.

…latch_object.Signal

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

None

Remarks

Latch results are created when a digital input signal changes from low to high or high to
low, depending on the latching configuration.

This property returns the number of the digital input signal that triggered the latching. If
the signal number is positive, the input changed from low to high. If the signal number is
negative, the input changed from high to low.

The possible signal numbers are shown in the table below.

Signal Number Type Description

10001 - 10002 Local hardware latching, if
available.

Signals are monitored by hardware for high-
accuracy latching. Position errors as low as
4µm are possible when an axis is traveling at 1
meter/second depending on sensors.

If hardware signal 10001 is bi-directional (i.e.
both upward and downward transitions trigger
latching), signal 10002 may not be used for
latching.

10001 - 10012

Local software latching.
Inputs used for hardware
latching may not be used
for software latching.

Signals are monitored by software. Position
errors as low as 1mm are possible when an
axis is traveling at 1 meter/second.

10033 - 10040 ZIO board input software
latching.

Signals are monitored by software. Position
errors as low as 4mm are possible when an
axis is traveling at 1 meter/second.

n10001 - n10002
Remote hardware latching,
if available, for servo
network node n.

Signals are monitored by hardware on remote
servo boards in servo network. Position errors
as low as 20µm are possible when an axis is

116

Latch Class

traveling at 1 meter/second.

If hardware signal n10001 is bi-directional (i.e.
both upward and downward transitions trigger
latching), signal n10002 may not be used for
latching.

n10001 - n10012 Remote software latching
for servo network node n.

Signals are monitored by software. Position
errors as low as 1mm are possible when an
axis is traveling at 1 meter/second.

Examples

Dim lat As Latch
lat = Latch.Result(1)
Console.WriteLine("Signal: " & CStr(lat.Signal))

See Also

Latch Class

117

GPL Dictionary Pages

Latch.ThreadEvent Shared Property

Associates a thread event with a latch result queue.

Latch.ThreadEvent(robot) = event_mask
-or-
…Latch.ThreadEvent(robot)

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

robot

An optional numeric expression that specifies the robot queue to be
accessed. If not specified, a default value of 1 is assumed.

Remarks

This property associates an event for the current thread with the latch result queue
specified by the robot parameter. Setting a value of zero cancels any event assignment in
effect. Only one thread may have events associated with a specific latch result queue.
The last thread to set this property gets the assignment.

The get property returns the mask for any current event assignment. A value of zero
indicates no assignment is in effect.

The event_mask is described in the dictionary page for the thread_object.SendEvent
method.

When an event mask is defined, an event is sent to the thread that set the
Latch.ThreadEvent property whenever:

1. The ThreadEvent property is set, and the latch queue is not empty.
2. A new latch result is added to the latch queue.

A thread can efficiently wait for latch results by using the Thread.WaitEvent method.

It is possible for more than one latch result to be placed in the queue when an event is
set. It is also possible for a thread event to be sent even when no items are placed in the
queue. It should not be assumed that there is a single latch result ready just because an
event is received. Verify that a latch result is present by using the Latch.Count property
or checking if the Latch.Result returns Nothing.

Examples

118

Latch Class

Dim lat As Latch
Latch.ThreadEvent(1) = 1 ' Send event 1 to current thread
While True
 Thread.WaitEvent(1, -1) ' Wait for event 1
 lat = Latch.Result(1)
 While Not lat Is Nothing
 Console.WriteLine(CStr(lat.Signal) & ": " & _
 CStr(lat.Timestamp) & ", " & _
 CStr(lat.Angle(1)))
 lat = Latch.Result(1)
 End While
End While

See Also

Latch Class| thread_object.SendEvent | Thread.WaitEvent

119

GPL Dictionary Pages

latch_object.Timestamp Property

Read-only property that returns the time when a latch occurred.

…latch_object.Timestamp

Prerequisites

Requires that the Encoder Latching or Advanced Controls or Conveyor Tracking License
be installed on the controller.

Parameters

None

Remarks

This read-only property returns the timestamp that indicates when the latch_object was
created. This timestamp is a Double value, consistent with the Controller.Timer
property. It is the number of seconds since January 1, 1988 and is accurate to within 1
µsec. Given the number of significant bits in a Double value, it will not lose accuracy until
the year 2124.

Latch results are returned by the Latch.Result method in the order that they were
received, with the oldest results returned first. The Timestamp property can be used to
determine the order of latch results received from different queues, or to compute the
elapsed time between latches.

The accuracy of the timestamp depends on the type of digital input signal that triggered
the latching. For information on the accuracy and latencies for each type of digital input
signal, please refer to the Documentation Library > Controller Software > Introduction to
the Software > Communications > Digital Inputs and Outputs > Latch Input > Latch
Timing.

Examples

Dim lat1, lat2 As Latch
Dim dif As Double ference
lat1 = Latch.Result(1) ' First latch
lat2 = Latch.Result ' Se (1) cond latch
difference = lat2.Timestamp - lat1.Timestamp
Console.WriteLine("Difference: " & CStr(difference))

See Also

Latch Class| Controller.Timer

120

Location Class
Location Class Summary

The following pages provide detailed information on the properties and methods of the
Location Class. This class and its Location Object instances provide the fundamental
means for representing robot and part positions and orientations within GPL. Location
Objects and Profile Objects (which define motion performance parameters) are the
standard arguments required by most Move methods for defining how to drive the robot
along a path to a destination specified by a Location.

Each Location Object contains data that defines: a Type indicator; a position and
orientation; clearance information that is used to safely approach the Location; and robot
configuration specific information that pertains to the target robot.

There are two Type’s of Location Objects: Angles and Cartesian. The Angles
Locations store robot positions as an array of axes positions. When we refer to the
“position” or “total position” of an Angles Location, we are referring to the array of axes
positions. The more general Type is called a Cartesian Location. Cartesian Locations
contain a Cartesian position and orientation that is displayed as an X, Y, Z displacement
and a set of three Euler Angles: Yaw, Pitch, and Roll. In addition to this position and
orientation, each Cartesian Location contains an optional pointer to a reference frame
object. The X, Y, Z, Yaw, Pitch, and Roll values define the Location’s “position with
respect to the reference frame” (PosWrtRef). When we refer to the “position” or “total
position” of a Cartesian Location, we are discussing the combined effect of the “position
with respect to the reference frame” and any specified reference frames.

Since flexible automation must alter a robot’s actions in order to accommodate to
variations in a material handling, assembly or other type of operation, extensive methods
are provided for mathematically manipulating the position and orientation of Locations.
The table below briefly summarized the properties and methods that are described in
greater detail in the following sections.

Member Type Description

location_obj.Angle Property Sets and gets a single axis position for an
Angles Location.

location_obj.Angles Method Changes all of the axes positions values in
an Angles Location.

location_obj.Clone Method Returns a copy of the location_obj.

location_obj.Config Property Sets and gets the bit flags that specify
special robot specific location attributes.

location_obj.ConveyorLimit Method

Returns the distance that a Location, which
is defined relative to a conveyor reference
frame, is from the operating limits of the
conveyor.

Location.Distance Method Returns the distance between the XYZ
positions of two Cartesian Locations.

location_obj.Here Method
Modifies the “total position” of the
location_obj to be equal to the current
location of a robot.

location_obj.Here3 Method Defines the "total position" of location_obj

121

GPL Dictionary Pages

based upon the XYZ coordinates of three
specified locations.

location_obj.Inverse Method Returns the inverse of the “total position” of
the Cartesian location_obj.

location_obj.Kinesol Method
Returns a Cartesian Location equivalent to
an Angles Location for a specific kinematic
model or vise versa.

location_obj.Mul Method
Returns the result of combining the “total
position” of location_obj with the “total
position” of another Cartesian Location.

location_obj.Normalize Method
Corrects the value of the PosWrtRef of a
Cartesian Location for any mathematical
inconsistencies in the value.

location_obj.Pitch Property Sets and gets the Pitch angle of the
PosWrtRef of a Cartesian Location.

location_obj.Pos Property Sets and gets the “total position” of the
location_obj.

location_obj.PosWrtRef Property Sets and gets the PosWrtRef of a
Cartesian Location.

location_obj.RefFrame Property
Sets and gets a pointer to the reference
frame object that the location_object is
defined relative to.

location_obj.Roll Property Sets and gets the Roll angle of the
PosWrtRef of a Cartesian Location.

location_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

location_obj.Type Property Sets and gets the Type specification.

location_obj.X Property Sets and gets the X position value of the
PosWrtRef of a Cartesian Location.

location_obj.XYZ Method
Changes the X, Y, Z, Yaw, Pitch, and Roll
values of the PosWrtRef of a Cartesian
Location.

location_obj.XYZInc Method Increments the X, Y, and Z values of the
PosWrtRef of a Cartesian Location.

Location.XYZValue Method
Returns a Cartesian Location with a "total
position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

location_obj.Y Property Sets and gets the Y position value of the
PosWrtRef of a Cartesian Location.

location_obj.Yaw Property Sets and gets the Yaw angle of the
PosWrtRef of a Cartesian Location.

location_obj.Z Property Sets and gets the Z position value of the
PosWrtRef of a Cartesian Location.

location_obj.ZClearance Property
Sets and gets the distance along the Z-axis
that defines the safe approach position to
the Location.

location_obj.ZWorld Property
Sets and gets the flag that indicates if the
approach distance is measured along the
Tool or World Z coordinate axis.

122

Location Class

location_object.Angle Property

Sets and gets the position of a single robot axis, in units of millimeters or degrees, to and
from an Angles Location Object.

location_object.Angle(axis) = <new_numeric_value>
-or-
...location_object.Angle(axis)

Prerequisites

The location_object must be an Angles Location Object.

Parameters

axis

A required numeric expression that specifies the number of the axis to be
accessed. This value can range from 1 for the first axis up to a maximum
value of 12.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angle property allows a program to access and manipulate individual axis position
values. To set all of the axes positions at one time, the Angles method should be utilized.

If the location_object is not of the Angles type, accessing the Angle property will
generate an error.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type and define position
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angles

123

GPL Dictionary Pages

location_object.Angles Method

Changes all of the axes positions values stored in an Angles Location Object.

location_object.Angles(axis_1, ..., axis_12)

Prerequisites

None

Parameters

axis_1,…,axis_12

Up to 12 optional numeric expressions that specifies the new position
value for each of the robot axes. If an expression is not specified, the
corresponding axis position will default to a value of 0. Each value is in
units of millimeters or degrees as appropriate for the axes.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angles method sets the values of all of the axes positions in the location_object.
Any unspecified positions are set to 0. To read or write individual axis positions, the
Angle property should be utilized.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the location_objectType will be set to indicate it is an Angles
Location Object.

Examples

Dim loc1 As New Location ' Create new Location with default values
Dim ang As Double
loc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type and define
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angle

124

Location Class

location_object.Clone Method

Method that returns a copy of the location_object.

...location_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples

Dim loc1 As New Location ' Create new location set to default values
Dim loc2 As Location ' Create new location with no data allocated
loc1.X = 10.2 ' Set X position in loc1.
loc2 = loc1.Clone ' Makes a copy of loc1 data
loc2.Y = -27.1 ' Doesn't affect loc1 data

See Also

Location Class

125

GPL Dictionary Pages

location_object.Config Property

Sets and gets an Integer bit mask that specifies how the Cartesian position of a
Location Object is to be converted to a set of axes position values.

location_object.Config = <new_Integer_value>
-or-
...location_object.Config

Prerequisites

None

Parameters

None

Remarks

For some robots, there are multiple sets of axes positions that will position the robot’s tool
or gripper at the same position and orientation. For simple robots, this can occur if a wrist
axis can rotate more than 360 degrees. For more complex geometries, the alternate sets
of axes positions might correspond to what is termed “right” and “left” shoulder
configurations.

GPL’s optional kinematic modules include methods for automatically selecting among
different sets of positions in some instances. For example, if the final wrist axis of a robot
can rotate a total of 720 degrees, GPL can automatically select which revolution of this
axis should be selected as the destination for a motion to a Cartesian end point.
Normally, GPL will rotate the wrist to the closest position that satisfies the Cartesian
specification. However, if this would violate a wrist joint limit stop, GPL will rotate the
wrist in the opposite direction.

In other cases, GPL cannot automatically select the best set of joint angles to be used.
In these cases, GPL will generally try to maintain the robot in the same configuration
unless instructed otherwise. For example, if a position can be reached in both a "right"
and a"left" shouldered configurations, GPL will maintain the same shoulder configuration
unless explicitly directed to change. This is done to prevent large, unexpected motions
that can occur when switching the shoulder configuration.

To both indicate the current geometric configuration and to specify a change in
configuration, the Config property provides a series of bit flags that instruct GPL how it is
to convert Cartesian Locations into joint angles. When a Cartesian destination is
specified with one or more of these bits set, the next motion to this Location will try to put
the robot into the specified configuration. If bits are not set, GPL assumes that the robot
should be instructed to stay in its current configuration.

While some configuration changes can be implemented during either a Cartesian or joint-
interpolated motion, other changes can only be performed during joint-interpolated
motions. For example, you cannot change from a right to a left shouldered configuration

126

Location Class

and simultaneously move the tool tip along a Cartesian straight-line path. If a
configuration bit is specified which is not compatible with the specified motion type, the
configuration bit is ignored and no error is generated.

The bits currently defined for the Config property are described in the following table. As
a programming convenience, these bits also have GPL constants defined.

Config
Bit

Mask

GPL
Constant

Legal During
Cartesian

Motion
Description

 &H01 GPL_Righty No Change robot to a right shouldered configuration.

 &H02 GPL_Lefty No Change robot to a left shouldered configuration.

 &H04 GPL_Above No Change robot to have the elbow above the wrist.

 &H08 GPL_Below No Change robot to have the elbow below the wrist.

 &H10 GPL_Flip No Change robot to have the wrist pitched up.

 &H20 GPL_NoFlip No Change robot to have the wrist pitched down.

 &H1000 GPL_Single Yes
Restrict the wrist axis to be within +/- 180
degrees rather than use its full range of motion.

Since the robot configuration options are a function of the robot's geometry, please see
the documentation in the Kinematics Library for which bits apply to your robot.

Examples

Dim As New Location new Cartesian Location loc1 ' Create
loc1.Config = GPL_Righty+GPL_Single
 ' Set mask word to force robot to right
 ' shouldered and limit wrist rotation

See Also

Location Class | Robot.Dest | Robot.Where

127

GPL Dictionary Pages

location_object.ConveyorLimit Method

Returns the distance that a Location, which is defined relative to a conveyor reference
frame, is from the operating limits of the conveyor belt.

...location_object.ConveyorLimit(mode)

Prerequisites

• location_object must be a Cartesian Location Object that is defined with respect
to a conveyor RefFrame.

• The Conveyor Tracking software license must be installed on the controller.

Parameters

mode

An optional numeric expression that defines the specific test to be
performed. If not specified, this value defaults to 0.

Remarks

This method is utilized in conveyor tracking applications to determine if a position is
currently within a conveyor belt's operating limits and, if so, by how much. It is often used
to sort the positions of multiple parts to select the part that is best to pick and to reject
parts that are already too far downstream.

The following table describes the returned value based upon the setting of the mode
argument. All distances are in units of mm.

Mode Returned Value

0 Returns 0 if the Location is within the upstream and downstream limits,
else <0 indicates distance upstream of the upstream limit or >0 indicates
distance downstream of the downstream limit.

1 Returns <0 to indicate the distance upstream of the upstream limit and =>0
the distance downstream of the upstream limit

2 Returns <0 to indicate the distance upstream of the downstream limit and
=>0 the distance downstream of the downstream limit.

Examples

Dim belt1 As New RefFrame
Dim loc1 As New Location
belt1.Type = 2 ' Conveyor reference frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.RefFrame = belt1 ' Zero encoder
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then
 Console.WriteLine("Out of range")

128

Location Class

End If

See Also

Location Class | refframe_object.ConveyorOffset | refframe_object.ConveyorRobot

129

GPL Dictionary Pages

Location.Distance Method

Returns the distance between the XYZ positions of two Cartesian Location Objects.

...Location.Distance(location_object1, location_object2)

Prerequisites

location_object1 and location_object2 must both be Cartesian Location Objects.

Parameters

location_object1

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method computes the distance between the positions of two Cartesian Location
Objects and returns the result as a Double. The result is always a positive number.

Examples

Dim a As New Location ' Create Locations and allocate
Dim b As New Location
Dim ist As Double d
a.XYZ(10,23,-17,0,0,90) ' Define A, orientation doesn't matter
b.XYZ(21,8,12) ' Define B
dist = Location.Distance(a,b) ' dist set equal to 34.45287

See Also

Location Class

130

Location Class

location_object.Here Method

Sets the “total position” of a Location Object equal to the current position and orientation
of the Selected robot.

location_object.Here

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

None

Remarks

The Here method provides a very convenient means for defining or updating the “total
position” of a location_object by moving the robot to the desired position and then
executing this method to record the position and orientation.

This method works properly for both Cartesian and Angles Locations. If the
location_object is an Angles type, the values of the location_object’s axes positions are
set equal to the current axes positions of the Selected robot. For Cartesian types, the
“total position” is set equal to the current Cartesian position and orientation of the
Selected robot and its Config properties are updated. If the location_object does not
have an associated reference frame, the PosWrtRef is set equal to the current Cartesian
location of the robot. If the location_object has a reference frame, the PosWrtRef is set
such that the combination of the new PosWrtRef and the reference frame will be equal to
the current location of the robot.

While the Here method is similar to assigning a location_object to the value of the
Robot.Where() method, it is important to understand the differences. The statement:

location_object = Robot.Where() ' Works okay

assigns a new block of data to the location_object. While it does save the current robot
location in the location_object, the values previously set for ZClearance, ZWorld, and
RefFrame are effectively lost. On the other hand, the statement:

location_object.Here ' Even better

alters the PosWrtRef and Config values in the location_object with less overhead while
still preserving the values for ZClearance,ZWorld, and RefFrame. So, in most situations,
the Here method produces the expected results and should be employed instead of an
assignment statement with Robot.Where().

131

GPL Dictionary Pages

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.Here ' Sets "total position" of loc1 to present
 ' location of Selected robot.

See Also

Location Class | location_object.Here3 | location_object.Inverse | location_object.Mul | Robot.Selected
| Robot.Where | Robot.WhereAngles

132

Location Class

location_object.Here3 Method

Defines the "total position" of a Location Object based upon the XYZ coordinates of
three specified Locations.

location_object.Here3(location_0, location_x, location_y)

Prerequisites

location_0, location_x and location_y must be Cartesian Location Objects.

Parameters

location_0

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_x

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_y

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method is utilized for setting the "total position" of location_object based upon the
XYZ position coordinates of three Locations. This is convenient if you wish to define the
orientation and position of a Location or reference frame by teaching three Locations.

The total position of the location_object is computed as follows:

• The XYZ coordinates of the location_object are set equal to the XYZ coordinates
of the total position of location_0. That is, the XYZ coordinates of location_0
define the 0,0,0 position of the coordinate system defined by the new value of
location_object.

• The direction of the x-axis of location_object is defined to be parallel to the vector
from the XYZ coordinate of location_0 to the XYZ coordinate of location_x. That
is, if the XYZ position of location_0 is equivalent to the 0,0,0 position of the
coordinate frame defined by the new value of location_object, then the XYZ
position of location_x will be a point on the x-axis of the coordinate system
defined by the new value of location_object.

• The XY plane of the new location_object value is defined by the XYZ coordinates
of location_0, location_x, and location_y. Normally, location_y is defined such

133

GPL Dictionary Pages

that its XYZ position will be a point on the y-axis of the coordinate system defined
by the new value of location_object.

At the completion of this method, the PosWrtRef value of the location_object will be set
such that the total position of location_object corresponds to the position and orientation
defined by three points represented by the three Location arguments. Also, as a
convenience, the Type of the location_object is always set to indicate it is a Cartesian
Location Object.

Examples

Dim loc1 As New Location ' Define position of this Location
Dim loc0 As New Location
Dim locx As New Location
Dim locy As New Location
loc0.XYZ(10,20,30) ' Define 0,0,0
locx.XYZ(10,25,30) ' Define point on X-axis
locy.XYZ(5,20,30) ' Define point on Y-axis
loc1.Here3(loc0,locx,locy) ' Will define loc1 to same as
 ' loc1.XYZ(10,20,30,0,0,90)

See Also

Location Class | location_object.Here | location_object.XYZ

134

Location Class

location_object.Inverse Method

Returns the inverse of the “total position” of the Cartesian location_object.

...location_object.Inverse

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This method evaluates the “total position” of the location_object and then inverts the
value. As defined in the description of GPL, the “total position” is the combination of the
location_object’sPosWrtRef with the “total position” of any reference frame(s) associated
with the location_object.

As an example, if the “total position” of the location_object represents the position and
orientation of part B with respect to part A, then the Inverse will give the position and
orientation of A with respect to B. As another way to think about this operation, if the
location_object defines how to get from A to B then the Inverse will define how to get
from B to A.

Assuming that the location_object is a Cartesian type, the Inverse method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Inverse of the “total position” of the location_object
RefFrame Null
All other properties Same as location_object

Examples

Dim loc1 As New Location ' Create new Location set to defaults
Dim lo As Location c2, loc3
Dim d As Double y
loc1.XYZ(11, -23, 45, 0, 180, 42) ' Define "position" of loc1
loc2 = loc1.Inverse
loc3 = loc2.Inverse ' loc3 will have same "position" as loc1
dy = loc3.Y ' dy will be equal to -23

See Also

Location Class | location_object.Pos | location_object.Mul | location_object.PosWrtRef

135

GPL Dictionary Pages

location_object.KineSol Method

Returns a Cartesian Location Object equivalent to an Angles Location Object for a
specific kinematic model or vise versa.

...location_object.KineSol(mode)

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

mode

An optional numeric expression that defines the operational mode for this
function. If this value is 1, any conversion errors (e.g. joint out-of-range,
position too far/close) are ignored. If this value is 0, these errors will
generate a program exception. If not specified, this value defaults to 0.

Remarks

This method converts a set of axes positions to an equivalent Cartesian position and
orientation or converts a Cartesian position and orientation to an equivalent set of axes
positions based upon the Selected robot’s geometry (kinematics). These operations are
typically called the “forward and reverse kinematic solutions” and require an optional
kinematic module.

Specifically, if the location_object is an Angles type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Equivalent to location_object Angles values
Config Appropriate for location_objectAngles values
RefFrame Null
All other properties Same as location_object

Alternatively, if the location_object is a Cartesian type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Angles Location
Angles Equivalent to location_object’s“total position”
Config 0
RefFrame Null
All other properties Same as location_object

136

Location Class

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim loc2, loc3 As Location
Dim a As Double xis2
loc1.Angles(12, 42, 17) ' Assume these values legal values for robot
loc2 = loc1.KineSol ' Set loc2 to equivalent Cartesian Location
loc3 = loc2.KineSol ' Regenerate Angles Location
axis2 = loc3.Angle(2) ' axis2 should be 42 as in loc1

See Also

Location Class | location_object.Inverse | location_object.Mul | Robot.Selected

137

GPL Dictionary Pages

location_object.Mul Method

Returns the combination of the position and orientation of a Cartesian location_object
with another Cartesian Location Object.

...location_object.Mul(location_object2)

Prerequisites

location_object and location_object2 must both be Cartesian Location Objects.

Parameters

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method combines the “total position” of location_object and the “total position” of
location_object2. As described in the Introduction to GPL, the “total position” of a
Location Object is the combination of the Location Object’sPosWrtRef with the “total
position” of any reference frame(s) associated with the Location Object.

More specifically, the Mul method returns the result of evaluating the “total position” of
location_object2 with respect to the PosWrtRef value of the location_object. If defined,
the reference frame pointer for the location_object is copied to the returned Location and
is not included in the mathematic operation. This is done to preserve the explicit
reference frame relationship of the location_object.

For example, let’s consider the simple case without rotations where the location_object
has an X, Y, Z value of (10,25,-40) and location_object2 has an X, Y, Z value of (0,5,0). If
we now combined the values, location_object2’s incremental displacement of 5 mm along
the Y-axis would be interpreted with respect to location_object’s prior translations and the
combined result would be (10,30,-40). Now, we can see what happens if we change
location_object so it includes a 90-degree rotation about the Z-axis (10,25,-40,0,0,90). In
this case, when we combine the two values, location_object2’s Y-axis has been rotated
to point along location_object’s negative X-axis. So, the resulting combination would be
(5, 25,-40,0,0,90).

Assuming that location_object and location_object2 are both Cartesian Locations, the
Mul method returns a Location Object with the following properties:

Property Returned Location Object value

Cartesian Location Type
PosWrtRef “total position” of the location_object2 evaluated with respect to

the PosWrtRef of the location_object. In terms of matrix

138

Location Class

operations, this could be written as:

returned.PosWrtRef = [location_object.PosWrtRef]
 *[location_object2.RefFrame]
 *[location_object2.PosWrtRef]

Same as location_objectRefFrame
All other properties Same as location_object

Examples

Dim a As New Location ' Create new Location set to default values
Dim b As New Location
Dim c As Location
Dim dx, dy As Double
a.XYZ(10,25,-40,0,0,90) ' Define A
b.XYZ(0,5,0) ' Define B
c = a.Mul(b)
dx = c.X ' dx will be 5
dy = c.Y ' dy will be equal to 25

See Also

Location Class | location_object.Inverse | location_object.Pos | location_object.PosWrtRef

139

GPL Dictionary Pages

location_object.Normalize Method

Corrects the PosWrtRef value of a Cartesian Location Object for any mathematical
inconsistencies in the value.

location_object.Normalize

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

Location Class

None

Remarks

After many sequential mathematics operations (e.g. Inverse, Mul) have been performed
on a Cartesian Location Object, it is possible for the homogeneous transformation that
is used to internally store the PosWrtRef value to suffer from mathematical
inconsistencies. For example, certain rows and columns of the 4x4 matrix are vectors
that must have unit values and be orthogonal to other vectors in the matrix. Given that all
of the elements of a transformation are stored as double precision floating-point numbers,
this problem is not very likely to occur.

Nonetheless, as a convenience, the Normalize method can be executed on a Cartesian
location_object and it will correct any mathematic errors that may have accumulated in
the PosWrtRef value.

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
loc1.Normalize ' Won't alter loc1 since it is already correct

See Also

 | location_object.Inverse | location_object.Mul

140

Location Class

location_object.Pitch Property

Sets and gets the Pitch angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Pitch = <new_value>
-or-
...location_object.Pitch

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc As New Location ' Create new Location set to default values 1
Dim a As Double ng
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25

141

GPL Dictionary Pages

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Roll | location_object.XYZ

142

Location Class

location_object.Pos Property

Sets and gets the “total position” of the location_object.

location_object.Pos = <specified_location_value>
-or-
...location_object.Pos

Prerequisites

None

Parameters

None

Remarks

The Pos operation accesses the “total position” of both Cartesian and Angles Location
Objects. For Cartesian Locations without reference frames, the “total position” is equal
to the PosWrtRef value stored as a Cartesian position and orientation in the
location_object. For Cartesian Locations with reference frames, the “total position” is
equal to the PosWrtRef value of the location_object evaluated with respect to the “total
position” of its reference frames. For Angles Locations, the “total value” is the equal to
the set of axes positions stored in the location_object.

The Pos set operation works properly on all varieties of Locations. However, the type of
the <specified_location_value> must match the type of the location_object, i.e. they must
both either be Cartesian or Angles.

For Cartesian Locations, the “total position” of the location_object is set equal to the
“total position” of the <specified_location_value>. If the location_object does not have an
associated reference frame, the PosWrtRef value is set equal to the “total position” of the
<specified_location_value>. If the location_object has a reference frame, the PosWrtRef
value of the location_object is set such that the combination of the new PosWrtRef value
of the location_object and its reference frame will be equal to the “total position” of the
<specified_location_value>. If the location_object is an Angles type, the value of the
location_object’s axes positions are set equal to the axes positions of the
<specified_location_value>.

While the Pos method is similar to assigning a location_object to the value of another
Location Object, it is important to understand the differences. The statement:

location_object = location_object2

assigns a pointer to location_object2’s data to the location_object. Not only does this
operation supercede any reference frame you may have assigned to location_object, it
also supercedes any other data assigned, such as its ZClearance information.
Furthermore, if you subsequently make a change to the data of either location_object or

143

GPL Dictionary Pages

location_object2, the data for both objects will be effected. Alternatively, you could use
the following assignment statement:

location_object = location_object2.Clone

This statement makes a copy of location_object2’s value before assigning it to
location_object. This statement does eliminate the potential problem of having two
variables inadvertently referencing the same data. However, this operation still
supercedes location_object's original reference frame specification and other data. Also,
one additional downside of this operation is that creating a copy of an object’s value does
incur a certain amount of system overhead.

location_object.Pos = location_object2

On the other hand, the statement:

alters the PosWrtRef or Angles values of location_object with low overhead and
preserves all of the other properties of the location_object.

If the goal of a statement is simply to update the existing “total position” or PosWrtRef
value of a Location without regard to the reference frame, you should normally make use
of either the Pos or PosWrtRef set properties.

Regarding the Pos get operation, this property returns a Location Object that contains
only the “total position” of the location_object with no reference frame or other data.
Please note that if the location_object is a Cartesian type with a reference frame, the
position and orientation of the PosWrtRef value and the “total position” of the reference
frame are combined and returned as the PosWrtRef value of the returned Object.

For all cases the value of the returned Object from the Pos get operation is as follows:

Property Returned Location Object value

Type Cartesian or Angles Location as appropriate
PosWrtRef or Angles “total position” of the location_object

Always NULL RefFrame
ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim loc1 As New Location ' Create new Location set to defaults
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ 10,20,30,0,180,23) ' Define PosWrtRef value for loc2 (
loc1.Pos = loc2 ' Use same "total position" for loc1

See Also

Location Class | location_object.Inverse | location_object.Mul | location_object.PosWrtRef

144

Location Class

location_object.PosWrtRef Property

Sets and gets the “position with respect to the reference frame” value of a Cartesian
Location Object while ignoring the reference frame.

location_object.PosWrtRef = <specified_location_value>
-or-
...location_object.PosWrtRef

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This property accesses the “position with respect to the reference frame” of a Cartesian
Location Object. Normally, the PosWrtRef value is evaluated in combination with the
reference frame to compute the “total position” of a Location. However, this property
accesses the “position with respect to the reference frame” data ignoring any specified
reference frame data.

The PosWrtRef set operation allows a statement to assign a new value to the “position
with respect to the reference frame” of the location_object without affecting or considering
the value of any reference frame or any other data of the location_object. The new value
is set equal to the “total position” of the <specified_location_value> on the right hand side
of the equal sign.

The PosWrtRef get operation returns a Cartesian Location Object that contains only the
“position with respect to the reference frame” of the location_object with no reference
frame or other data. In particular, the value of the returned Object is as follows:

Property Returned Location Object value

Cartesian Location Type
PosWrtRef of the location_objectPosWrtRef

RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ 30,0,1 ' Define po r loc2 (10,20, 80,23) sition fo
loc1.PosWrtRef = loc2.PosWrtRef ' Use same PosWrtRef for loc1

145

GPL Dictionary Pages

See Also

Location Class | location_object.Inverse | location_object.Mul | location_object.Pos

146

Location Class

location_object.RefFrame Property

Sets and gets a pointer to the reference frame object that the location_object is defined
relative to.

location_object.RefFrame = <reference_frame_object>
-or-
… location_object.RefFrame

Prerequisites

The location_object must be a Cartesian Location.

Parameters

None

Remarks

Sets or gets the pointer to a reference frame object that the location_object’s position and
orientation is to be defined relative to. Whenever the location_object’s total position and
orientation are computed, the position and orientation of the RefFrame are automatically
taken into consideration.

When a new Location Object is defined, its pointer to a reference frame object is zeroed
by default.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim l As New Location oc1
ref1.Loc.XYZ 100,90,-80,0,0,45) ' Define base frame (
loc1.RefFrame = ref1 ' Define loc1 wrt ref1
loc1.XYZ(10,0,0,0,180,0) ' Define loc1 poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07
Console.Writeline(loc1.Pos.Y) ' Displays 97.07
Console.Writeline(loc1.Pos.Z) ' Displays -80

See Also

Location Class | RefFrame Class

147

GPL Dictionary Pages

location_object.Roll Property

Sets and gets the Roll angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Roll = <new_value>
-or-
...location_object.Roll

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc As New Location ' Create new Location set to default values 1
Dim a As Double ng
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

See Also

148

Location Class

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Pitch | location_object.XYZ

149

GPL Dictionary Pages

location_object.Text Property

Sets and gets a String associated with a Location Object. This field is not used by GPL
and is provided for use by application programs.

location_object.Text = <string_value>
-or-
...location_object.Text

Prerequisites

None

Parameters

None

Remarks

This Text property allows an application programmer to associate an arbitrary String
value with a Location object. For example, this can be used to document how the
object is employed or to store a description of the object that is subsequently displayed
when the object is accessed or taught.

Examples

Dim l As New Location ' Create new Cartesian Location oc1

Text is my ation" loc1. = "This loc
Console.WriteLine(loc1.Text)

See Also

Location Class | profile_object.Text | refframe_object.Text

150

Location Class

location_object.Type Property

Sets and gets the Integer Type of a Location Object, which indicates if the Location
Object holds Cartesian or Angles data.

location_object.Type = <new_Integer_value>
-or-
...location_object.Type

Prerequisites

None

Parameters

None

Remarks

The Type property indicates if the location_object contains Cartesian or Angles position
and orientation data. The possible values for this property are as follows:

Type Value Description

0 Location contains Cartesian position and orientation data.
1 Location contains a set of axes position values (“Angles”).

Many of the other Location Object properties and methods will generate an error if you
attempt to access values that are not meaningful for the current Type of the
location_object.

As a convenience, some methods, e.g. Angles and XYZ, automatically set the Type of a
Location Object.

When a “New” Cartesian Location is created, its Type is automatically set to Cartesian.

Examples

Dim loc1 As New Location ' Create new Cartesian Location
Dim iType As Integer
iType =loc1.Type ' iType will be set to 0
loc1.Angles(10.2,-3.2) ' Will automatically set Type to 1

See Also

Location Class

151

GPL Dictionary Pages

location_object.X Property

Sets and gets the displacement along the X-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.X = <new_value>
-or-
...location_object.X

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim lo As New Location ' Create new Location set to default values c1
Dim d As Double x
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dx = loc1.X ' dx will be set to 10
loc1.X -= 2 ' loc1's X value will now be 8

See Also

152

Location Class

Location Class | location_object.Y | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

153

GPL Dictionary Pages

location_object.XYZ Method

Changes all six components of the PosWrtRef value of a Cartesian Location Object to
a specified set of values.

location_object.XYZ(x,y,z,yaw,pitch.roll)

Prerequisites

None

Parameters

x

An optional numeric expression that specifies the X-axis displacement. If
this value is not specified, a default value of 0 is assumed.

y

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

z

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the 3
positional degrees-of-freedom and the 3 rotational degrees-of-freedom needed to fully
specify a robot or part position and orientation in Cartesian coordinates. This internal

154

Location Class

representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are entered as X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The XYZ method sets all six Cartesian components of the location_object’s PosWrtRef
value in a single operation. Any unspecified values are set to 0. This operation is much
more efficient than using the X, Y, Z, Yaw, Pitch, and Roll properties to individually set
the component values.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the Type will be set to indicate it is a Cartesian Location
Object.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will now be 27

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Pitch | location_object.Roll | location_object.XYZInc | Location.XYZValue

155

GPL Dictionary Pages

location_object.XYZInc Method

Increments the X/Y/Z components of the PosWrtRef value of a Cartesian Location
Object by specified amounts.

location_object.XYZInc(x,y,z)

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

x

An optional numeric expression that specifies the amount by which the X
value is incremented. If this value is not specified, a default value of 0 is
assumed.

y

An optional numeric expression that specifies the amount by which the Y
value is incremented. If this value is not specified, a default value of 0 is
assumed.

z

An optional numeric expression that specifies the amount by which the Z
value is incremented. If this value is not specified, a default value of 0 is
assumed.

Remarks

This method increments the X, Y, and Z Cartesian displacement components of the
location_object’s PosWrtRef value in a single operation. Any unspecified increments
leave the corresponding displacement values unchanged.

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ ,20,30,0,180,25) ' Set PosWrtRef value of loc1 (10
loc1.XYZInc(-3,,2) ' Changes X to 7 and Z to 32

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
Location.XYZValue

156

Location Class

Location.XYZValue Method

Returns a Cartesian Location with a "total position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

...Location.XYZValue(x,y,z,yaw,pitch.roll)

Prerequisites

None

Parameters

x

An optional numeric expression that specifies the X-axis displacement. If
this value is not specified, a default value of 0 is assumed.

y

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

z

yaw

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

The XYZValue method computes and returns a Cartesian Location Object that has a
"total position" value whose displacement and orientation is equivalent to that specified
by the x, y, z, yaw, pitch, and roll arguments. This method is provided as a convenience
for constructing Location expressions.

157

GPL Dictionary Pages

If you wish to set the PosWrtRef value of a Cartesian Location Object equal to a set of
displacement and orientation values, it is more efficient to utilize the XYZ method instead
of XYZValue.

The following table describes the data returned in the Location Object.

Property Returned Location Object value

Cartesian Location Type

PosWrtRef Set equal to the displacement and orientation defined by x, y, z,
yaw, pitch, and roll arguments.

RefFrame Always Null
1.0e32 to indicate not initialized ZClearance

All other properties Always zeroed.

Examples

Dim loc1 As Location ' Locations default to Cartesian
loc1.PosWrtRef = Location.XYZValue(10,20,30,0,180,25)
 ' Equivalent to "loc1.XYZ(10,20,30,0,180,25)"

See Also

Location Class | location_object.XYZ

158

Location Class

location_object.Y Property

Sets and gets the displacement along the Y-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Y = <new_value>
-or-
...location_object.Y

Prerequisites

The location_object must be a Cartesian Location Object.

None

Parameters

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim lo As New Location ' Create new Location set to default values c1
Dim d As Double y
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will now be 27

See Also

159

GPL Dictionary Pages

Location Class | location_object.X | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

160

Location Class

location_object.Yaw Property

Sets and gets the Yaw angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Yaw = <new_value>
-or-
...location_object.Yaw

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

See Also

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc As New Location ' Create new Location set to default values 1
Dim a As Double ng
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

161

GPL Dictionary Pages

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Pitch |
location_object.Roll | location_object.XYZ

162

Location Class

location_object.Z Property

Sets and gets the displacement along the Z-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Z = <new_value>
-or-
...location_object.Z

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dz As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dz = loc1.z ' dz will be set to 30
loc1.z += 7 ' loc1's Z value will now be 37

163

GPL Dictionary Pages

See Also

Location Class | location_object.X | location_object.Y | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

164

Location Class

location_object.ZClearance Property

Sets and gets the distance in millimeters along a Z-axis that defines the safe approach
position to a Location Object.

location_object.ZClearance = <new_value>
-or-
...location_object.ZClearance

Prerequisites

None

Parameters

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_object, this method moves the robot to a clearance position that is relative to the
location_object.

To simplify the specification of the “approach” or “clearance” position, each
location_object includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_object is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

165

GPL Dictionary Pages

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile to move to (10,20,52.3)

See Also

Location Class | location_object.ZWorld | Move.Approach

166

Location Class

location_object.ZWorld Property

Sets and gets the Boolean flag that indicates if the ZClearance distance is interpreted as
being along the world or tool Z-axis of a Location Object.

location_object.ZWorld = <new_Boolean_value>
-or-
...location_object.ZWorld

Prerequisites

None

Parameters

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_object, this method moves the robot to a clearance position that is relative to the
location_object.

To simplify the specification of the “approach” or “clearance” position, each
location_object includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_object is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

167

GPL Dictionary Pages

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Examples

Dim loc1 As New Location ' Create new Location set to defaults
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile, move to (10,20,52.3)

See Also

Location Class | location_object.ZClearance | Move.Approach

168

Math Class
Math Class Summary

The following sections present detailed information on the standard arithmetic and
trigonometric operations that are built into GPL. As a convenience during editing, all of
these operations are provided as methods to the Math Class. This allows programmers
to display a pick list of the Math methods and easily see all of operations that are
available.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these methods to deal with the different possible mixes of
input parameter data types. Also, these methods generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as
numeric overflow does not occur.

The table below briefly summarizes the methods that are described in greater detail in
the following sections.

Method Description

Math.Abs (expression) Returns the absolute value of any arithmetic expression.

Math.Acos (cosine) Returns the angle that corresponds to a specified cosine
value.
Returns the angle that corresponds to a specified sine
value. Math.Asin (sine)

Returns the angle that corresponds to a specified tangent
value. Math.Atan (tangent)

Returns the angle that corresponds to the quotient of two
values.

Math.Atan2 (sine_factor,
cosine_factor)

Returns the smallest integer number that is greater than
or equal to a value. Math.Ceiling (value)

Math.Cos (angle) Returns the cosine of a specified angle.
Math.Cosh (angle) Returns the hyperbolic cosine of a specified angle.
Math.E Returns the natural logarithmic base constant.

Returns the natural logarithmic constant, e, raised to a
specified power. Math.Exp (exponent)

Returns the largest integer number that is less than or
equal to a value. Math.Floor (value)

Returns the natural logarithm (base-e logarithm) of a
specified value. Math.Log (value)

Math.Log10 (value) Returns the base-10 logarithm of a specified value.
Math.Max (value_1, value_2) Returns the larger of two values.
Math.Min (value_1, value_2) Returns the smaller of two values.
Math.PI Returns the constant π.

Returns a specified base value raised to a specified
power. Math.Pow (base, exponent)

Math.Sign (value) Returns a number that indicates the sign of a specified
value.

169

GPL Dictionary Pages

Math.Sin (angle) Returns the sine of a specified angle.
Math.Sinh (angle) Returns the hyperbolic sine of a specified angle.
Math.Sqrt (value) Returns the square root of a value.
Math.Tan (angle) Returns the tangent of a specified angle.
Math.Tanh (angle) Returns the hyperbolic tangent of a specified angle.

170

Math Class

Math.Abs Method

Returns the absolute value of any arithmetic expression.

...Math.Abs(expression)

Prerequisites

None

Parameters

expression

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the absolute value (i.e. the magnitude) of any numerical expression. That is, if
the expression has a value greater than or equal to zero, its value is returned unchanged.
If the expression value is negative, it is negated and returned as a positive value.

Examples

Dim valu As Single e
value = Math.Abs(-1.23) ' Sets value to 1.23
value = Math.Abs(0) ' Sets value to 0
value = Math.Abs(3) ' Sets value to 3

See Also

Math Class

171

GPL Dictionary Pages

Math.Acos Method

Returns the angle that corresponds to a specified cosine value

...Math.Acos(cosine)

Prerequisites

A required expression that evaluates to the cosine of an angle. This
value must be in the range –1 <= cosine <= 1.

To convert radians to degrees, multiply the radians times 180/π. }

None

Parameters

cosine

Remarks

Returns the angle, in radians, that corresponds to a specified cosine value. That is, if the
cosine of an angle A is B, then this arc cosine function returns A when given a value of B.

Since the cosine function generates the same value for both positive and negative
angles, the Math.Acos method returns a value between 0 and π for any valid input
expression. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

Examples

Dim angle As Single
angle = Math.Acos(-1) ' Sets angle to Pi
angle = Math.Acos(Math.Sqrt(2)/2) ' Sets angle to Pi/4
angle = Math.Acos(Math.Cos(-.5)) ' Sets angle to 0.5 radians

See Also

Math Class | Math.Atan2

172

Math Class

Math.Asin Method

Returns the angle that corresponds to a specified sine value.

...Math.Asin(sine)

Prerequisites

None

Parameters

sine

A required expression that evaluates to the sine of an angle. This value
must be in the range –1 <= sine <= 1.

To convert radians to degrees, multiply the radians times 180/π.

Math Class

Remarks

Returns the angle, in radians, that corresponds to a specified sine value. That is, if the
sine of an angle A is B, then this arc sine function returns A when given a value of B.

Since the sine function repeats the same series of answers when an angle traverses from
π/2 to 0 to –π/2 as when an angle moves from π/2 to –π to –π/2, the Math.Asin function
cannot distinguish these two cases and always returns values that range from π/2 to -
π/2. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

Examples

Dim angle As Single
angle = Math.Asin(-1) ' Sets angle to –Pi/2
angle = Math.Asin(Math.Sqrt(2)/2) ' Sets angle to Pi/4
angle = Math.Asin(Math.Sin(Math.PI-.5)) ' Sets angle to 0.5 radians

See Also

 | Math.Atan2

173

GPL Dictionary Pages

Math.Atan Method

Returns the angle that corresponds to a specified tangent value.

...Math.Atan(tangent)

Prerequisites

None

Parameters

Returns the angle, in radians, that corresponds to a specified tangent value. That is, if the
tangent of an angle A is B, then this arc tangent function returns A when given a value of
B.

Since the tangent function repeats the same series of answers over two ranges of
angles: when an angle traverses from 0 to π/2 as when an angle moves from -π to –π/2
and then again when an angle traverses from 0 to -π/2 as when an angle moves from -π
to π/2, the Math.Atan function cannot distinguish these cases and always returns values
that range from π/2 to -π/2.

Examples

angle = (0) ' Sets angle to 0

tangent

A required expression that evaluates to the tangent of an angle.

Remarks

In addition, as the angle gets close to π/2 or -π/2, the input parameter for this method
must approach positive or negative infinity.

To deal with both of these problems, the Math.Atan2 method should be used whenever
possible.

To convert radians to degrees, multiply the radians times 180/π.

Dim angle As Single
angle = Math.Atan(1) ' Sets angle to Pi/4

Math.Atan
angle = Math.Atan(Math.Tan(-3*Math.PI/4)) ' Sets angle to Pi/4

See Also

Math Class | Math.Atan2 Method

174

Math Class

Math.Atan2 Method

Returns the angle that corresponds to the quotient of two values.

...Math.Atan2(sine_factor, cosine_factor)

Prerequisites

None

Parameters

sine_factor

Remarks

To convert radians to degrees, multiply the radians times 180/π.

A required expression, which when divided by cosine_factor, is equal to
the tangent of the angle.

cosine_factor

A required expression, which when divided into sine_factor, is equal to
the tangent of the angle.

Returns the angle, in radians, that corresponds to the tangent value computed from
sine_factor/cosine_factor and using the signs of sine_factor and cosine_factor to uniquely
determine the quadrant of the angle.

As a simplified example, if A is the sine of an angle C and B is the cosine of the angle,
then this arc tangent function returns C when given the values A and B.

Unlike the Math.Atan method, this method can return the full range of angles from +π to
–π. In addition, it does not suffer from requiring infinite valued parameters in order to
represent any angular value. So, Math.Atan2 should be used whenever possible instead
of Math.Atan.

Examples

Dim angle As Single
angle = Math.Atan2(1,0) ' Sets angle to Pi/2
angle = Math.Atan2(.5,-.5) ' Sets angle to 3*Pi/4
angle = Math.Atan2(-.707,.707) ' Sets angle to -Pi/4

See Also

Math Class

175

GPL Dictionary Pages

Math.Ceiling Method

Returns the smallest integer number that is greater than or equal to a value.

...Math.Ceiling (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the smallest integer number that is greater than or equal to the value. This is
sometimes referred to as rounding towards positive infinity.

Examples

Dim bigger As Single
bigger = (10.9999) ' Sets bigger equal to 11

See Also

Math.Ceiling
bigger = Math.Ceiling(11) ' Sets bigger equal to 11
bigger = Math.Ceiling(11.0001) ' Sets bigger equal to 12

Math Class

176

Math Class

Math.Cos Method

Returns the cosine of a specified angle.

...Math.Cos(angle)

Prerequisites

None

Parameters

cos_val = Math.Cos(45*Math.PI/180) ' Sets cos_val to 0.7071

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the cosine of the angle that is specified in radians. The result of this method
ranges from –1 to +1.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim cos_val As Single
cos_val = Math.Cos(0) ' Sets cos_val to 1
cos_val = Math.Cos(21*Math.PI) ' Sets cos_val to -1

See Also

Math Class

177

GPL Dictionary Pages

Math.Cosh Method

Returns the hyperbolic cosine of a specified angle.

...Math.Cosh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic cosine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Also

Math Class

178

Math Class

Math.E Method

Returns the natural logarithmic base constant.

...Math.E

Prerequisites

None

Parameters

None

Remarks

Returns the constant that is the base value for the natural logarithmic functions,
2.7182818284590452354

Examples

Dim valu As Single e
value = Math.Pow(Math.E, 2)

See Also

Math Class

179

GPL Dictionary Pages

Math.Exp Method

Returns the natural logarithmic constant, e, raised to a specified power.

...Math.Exp(exponent)

Prerequisites

None

Parameters

exponent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of the natural logarithmic constant, Math.E, raised to the exponent
power (i.e. Math.E^exponent).

Examples

Dim e_val As Single
e_val = Math.Exp(2) ' Sets e_val to 7.3891
e_val = Math.Exp(-2.2) ' Sets e_val to 0.1108
e_val = Math.Exp(Math.Log(17.1))' Sets e_val to 17.1

See Also

Math Class

180

Math Class

Math.Floor Method

Returns the largest integer number that is less than or equal to a value.

...Math.Floor (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the largest integer number that is less than or equal to the value. This is
sometimes referred to as rounding towards negative infinity.

Examples

Dim smaller As Single
smaller = Math.Floor(10.9999) ' Sets smaller equal to 10
smaller = Math.Floor(11) ' Sets smaller equal to 11
smaller = Math.Floor(11.0001) ' Sets smaller equal to 11

See Also

Math Class

181

GPL Dictionary Pages

Math.Log Method

Returns the natural logarithm (base-e logarithm) of a specified value.

...Math.Log(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the natural logarithmic constant, Math.E, must be raised
in order to produce the value.

Examples

Dim ln_exp As Single
ln_exp = Math.Log(10) ' Sets ln_exp to 2.3026
ln_exp = Math.Log(Math.E) ' Sets ln_exp to 1
ln_exp = Math.Log(Math.Exp(3.4)) ' Sets ln_exp to 3.4

See Also

Math Class

182

Math Class

Math.Log10 Method

Returns the base-10 logarithm of a specified value.

...Math.Log10(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the number 10 must be raised in order to produce the
value.

Examples

Dim l_exp As Single
l_exp = Math.Log10(10) ' Sets l_exp to 1
l_exp = Math.Log10(0.01) ' Sets l_exp to -2
l_exp = Math.Log10(Math.Pow(10,3.4)) ' Sets l_exp to 3.4

See Also

Math Class

183

GPL Dictionary Pages

Math.Max Method

Returns the larger of two values.

...Math.Max(value_1, value_2)

Prerequisites

None

Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

bigger = Math.Max(Math.Min(100, 33), 55) ' Sets bigger to 55

Remarks

Returns the larger of two numerical values, value_1 or value_2.

Examples

Dim bigger As Single
bigger = Math.Max(-5, -4.9) ' Sets bigger to –4.9
bigger = Math.Max(-20/-4, 3) ' Sets bigger to 5

See Also

Math Class

184

Math Class

Math.Min Method

Returns the smaller of two values.

...Math.Min(value_1, value_2)

Prerequisites

None

Parameters

value_1

smaller = (-20/-4, 3) ' Sets smaller to 3

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the smaller of two numerical values, value_1 or value_2.

Examples

Dim smaller As Single
smaller = Math.Min(-5, -4.9) ' Sets smaller to –5

Math.Min
smaller = Math.Min(Math.Max(100, 33), 55)' Sets smaller to 55

See Also

Math Class

185

GPL Dictionary Pages

Math.PI Method

Returns the constant π.

...Math.PI

Prerequisites

None

Parameters

None

Remarks

Returns the value of π, 3.14159265358979323846.

Examples

Dim to_deg, to_rad As Double
to_deg = 180/Math.PI ' Conversion factor from radians to degrees
to_rad = Math.PI/180 ' Conversion factor from degrees to radians

See Also

Math Class

186

Math Class

Math.Pow Method

Returns a specified base value raised to a specified power.

...Math.Pow(base, exponent)

Prerequisites

None

Parameters

base

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

exponent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of base raised to the exponent power (i.e. base^exponent). The base
cannot be negative if the exponent is a fractional value. Also, the base cannot be zero if
the exponent is less than or equal to zero.

Examples

Dim p_val As Single
p_val = Math.Pow(2, 3) ' Sets p_val to 8
p_val = Math.Pow(3, -2.2) ' Sets p_val to 0.08919
p_val = Math.Pow(Math.E, Math.Log(17.1))' Sets p_val to 17.1

See Also

Math Class

187

GPL Dictionary Pages

Math.Sign Method

Returns a number that indicates the sign of a specified value.

...Math.Sign (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a 1.0 if the value is greater than zero, 0 if the value is equal to zero, otherwise –
1.0 to indicate that the value is negative.

Examples

Dim v_sign As Single, int_v_sign As Integer
v_sign = (-21.2/(-2.3)) ' Sets v_sign equal to 1.0
int_v_sign = Math.Sign(-7.2) ' Sets int_v_sign equal to –1

Math.Sign

See Also

Math Class

188

Math Class

Math.Sin Method

Returns the sine of a specified angle

...Math.Sin(angle)

Prerequisites

None

sin_val = Math.Sin(45*Math.PI/180) ' Sets sin_val to 0.7071

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the sine of the angle that is specified in radians. The result of this method ranges
from –1 to +1.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim sin_val As Single
sin_val = Math.Sin(-Math.PI ' Sets sin_val to -1 /2)
sin_val = Math.Sin(20.5*Math.PI) ' Sets sin_val to 1

See Also

Math Class

189

GPL Dictionary Pages

Math.Sinh Method

Returns the hyperbolic sine of a specified angle.

...Math.Sinh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic sine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Also

Math Class

190

Math Class

Math.Sqrt Method

Returns the square root of a value.

...Math.Sqrt (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the square root of any positive number as a double precision value.

Examples

Dim roo As Single, int_root As Integer t
root = Math.Sqrt 4) ' Sets root equal to 1.2 (1.4
int_root = Math.Sqrt(1.69) ' Sets int_root equal to 1

See Also

Math Class

191

GPL Dictionary Pages

Math.Tan Method

Returns the tangent of a specified angle.

...Math.Tan(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the tangent of the angle that is specified in radians. Since the returned value will
be extremely large as the angle approaches π/2 or -π/2, it is normally desirable to use
the Math.Sin and Math.Cos methods in place of this operation.

To convert degrees to radians, multiply the degrees times π/180.

Examples

Dim tan_val As Single
tan_val = Math.Tan(0) ' Sets tan_val to 0
tan_val = Math.Tan() ' Sets tan_val to 1
tan_val = Math.Tan(-45*Math.PI/180)' Sets tan_val to -1

Math.PI/4

See Also

Math Class

192

Math Class

Math.Tanh Method

Returns the hyperbolic tangent of a specified angle.

...Math.Tanh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -π and +π and can be arbitrarily
large.

Remarks

Returns the hyperbolic tangent of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times π/180.

See Also

Math Class

193

Modbus Class
Modbus Class Summary

The Modbus Class in GPL supports master access to MODBUS/TCP slave devices
connected to the local Ethernet network. MODBUS/TCP is an "open" de facto standard
protocol that is widely used in the industrial manufacturing environment to communicate
between intelligent devices. It has been implemented by hundreds of vendors on
thousands of different products to communicate digital and analog I/O and register data
between devices.

The tables below briefly summarize the properties and methods for this Class, which are
described in greater detail in the following sections.

Modbus Class Member Type Description

Creates an object for a MODBUS
connection and specifies the IP
address.

Constructor
Method New Modbus

Method modbus_obj.Close Closes any connections associated
with this object.

Method Reads one or more outputs. modbus_obj.ReadCoils
Method Reads the device ID strings. modbus_obj.ReadDeviceId

modbus_obj.ReadDiscreteInputs Method Reads one or more inputs.
Reads one or more holding
registers. Method modbus_obj.ReadHoldingRegisters

Method Reads one or more input registers.modbus_obj.ReadInputRegisters

Get/Set
Property modbus_obj.Timeout

Gets or sets the timeout, in
milliseconds, that this connection
will wait for a reply before throwing
an exception.

Method Writes multiple outputs. modbus_obj.WriteMultipleCoils
modbus_obj.WriteMultipleRegisters Method Writes multiple holding registers.

Method Writes a single output. modbus_obj.WriteSingleCoil
modbus_obj.WriteSingleRegister Method Writes a single holding register.

194

Modbus Class

modbus_object.Close Method

Closes the network connection associated with a Modbus object.

modbus_object.Close

Prerequisites

None

If no Modbus connection is active, no error occurs.

mb.Close()

None

Parameters

Remarks

The Close method may be used to close the network connection and free up resources.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
 …

See Also

Modbus Class

195

GPL Dictionary Pages

modbus_object.ReadCoils Method

Reads one or more outputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadCoils(start, number, value_array)

Prerequisites

None

A required Integer expression that specifies the number of the first coil to
be read.

This method issues a MODBUS/TCP Read Coils request (function 1).

Parameters

start

number

A required Integer expression that defines the number of coils to be
read.

value_array

A required Boolean array that receives the output values. The length of
the array is changed to reflect the number of values read.

Remarks

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool() As Boolean
mb.ReadCoils(1, 16, bool) ' Read 16 outputs

See Also

Modbus Class | modbus_object.WriteMultipleCoils | modbus_object.WriteSingleCoil

196

Modbus Class

modbus_object.ReadDeviceID Method

Reads device identification information from a MODBUS slave and returns as a String
value.

... modbus_object.ReadDeviceId(object_id)

Prerequisites

None

Remarks

Parameters

object_id

A required Integer expression that evaluates to a number from 0 to 255
that selects the identification information to be returned.

This method issues a MODBUS Read Device Identification request (MEI-type 13) using
the Encapsulated Interface Transport (function 43) to retrieve identification information
from the slave. The Read Device ID code is always set to 1.

The object_id parameter selects the identification information to be returned. Some
standard values are:

Object ID Description

0 Vendor name
1 Product code
2 Major and Minor Revision

Consult the MODBUS/TCP standard for the meaning of other object_id values.

Not all MODBUS devices support this function. The String value returned by this method
depends on the particular device being referenced. Consult the manual for your
MODBUS slave device for details.

id = mb.ReadDeviceId(0) ' Read vendor name

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim id As String

197

GPL Dictionary Pages

See Also

Modbus Class

198

Modbus Class

modbus_object.ReadDiscreteInputs Method

Reads one or more inputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadDiscreteInputs(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first input
to be read.

number

A required Integer expression that defines the number of inputs to be
read.

value_array

A required Boolean array that receives the input values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Discrete Inputs request (function 2).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool() As Boolean
mb.ReadDiscreteInputs(1, 16, bool) ' Read 16 inputs

See Also

Modbus Class | modbus_object.ReadInputRegisters

199

GPL Dictionary Pages

modbus_object.ReadHoldingRegisters Method

Reads one or more holding registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadHoldingRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

value_array

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Holding Registers request (function 3).

Each holding register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus ep) (
Dim As Integer regs()
mb.ReadHoldingRegisters(1, 16, regs) ' Read 16 values

See Also

200

Modbus Class

Modbus Class | modbus_object.ReadInputRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

201

GPL Dictionary Pages

modbus_object.ReadInputRegisters Method

Reads one or more input registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadInputRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Input Registers request (function 4).

Each input register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus ep) (
Dim As Integer regs()
mb.ReadInputRegisters(1, 16, regs) ' Read 16 values

See Also

202

Modbus Class

Modbus Class | modbus_object.ReadHoldingRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

203

GPL Dictionary Pages

modbus_object.Timeout Property

Sets or gets the timeout period, in milliseconds, that GPL waits for a response from a
MODBUS slave.

modbus_object.Timeout = <timeout>
-or-
... modbus_object.Timeout

Prerequisites

None

Parameters

None

Remarks

The property allows you to set the timeout period for all Modbus methods that perform
I/O with the MODBUS slave.

If this time is exceeded, the method throws an exception. If the timeout period is set to 0,
the timeout is disabled and a request may wait indefinitely.

Each modbus_object has an independent timeout value.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.Timeout = 2000 ' Timeout in 2 seconds

See Also

Modbus Class

204

Modbus Class

modbus_object.WriteMultipleCoils Method

Writes one or more outputs to a MODBUS slave.

modbus_object.WriteMultipleCoils(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first coil to
be written.

value_array

A required Boolean array that contains the output values to be written.
The length of the array determines the number of coils written.

Remarks

This method issues a MODBUS/TCP Write Multiple Coils request (function 15).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus) (ep
Dim bool(1 As Boolean ' Array length is 16 5)
bool(0) = True ' First output set, rest clear
mb.WriteMultipleCoils(1, bool) ' Write 16 outputs

See Also

Modbus Class | modbus_object.WriteSingleCoil

205

GPL Dictionary Pages

modbus_object.WriteMultipleRegisters Method

Writes one or more holding register values to a MODBUS slave.

modbus_object.WriteMultipleRegisters(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
holding register to be written.

value_array

A required Integer array that contains the register values to be written.
The length of the array determines the number of registers written.

Remarks

This method issues a MODBUS/TCP Write Multiple Registers request (function 16).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of values in
value_array are used. No error is reported if values are too big to fit in 16 bits.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim value() As Integer
Redim value(7) ' Set array length to 8
value(0) = 111 ' First reg is 111, rest are zero
mb.WriteMultipleRegisters(1, value) ' Write 8 registers

See Also

Modbus Class | modbus_object.WriteSingleRegister

206

Modbus Class

modbus_object.WriteSingleCoil Method

Writes a single output to a MODBUS slave.

modbus_object.WriteSingleCoil(coil, value)

Prerequisites

None

Parameters

coil

A required Integer expression that specifies the number of the coil to be
written.

value

A required Boolean expression that determines the output to be written.
Any non-zero value is considered True.

Remarks

This method issues a MODBUS/TCP Write Single Coil request (function 5).

If more than one coil is to be changed, it is much more efficient to use the
WriteMultipleCoils method than multiple WriteSingleCoil methods.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleCoil(1, True) ' Turn on coil 1
mb.WriteSingleCoil(2, False) ' Turn off coil 2

See Also

Modbus Class | modbus_object.WriteMultipleCoils

207

GPL Dictionary Pages

modbus_object.WriteSingleRegister Method

Writes a single holding register value to a MODBUS slave.

modbus_object.WriteSingleRegister(register, value)

Prerequisites

None

Parameters

register

A required Integer expression that specifies the number of the holding
register to be written.

value

A required Integer expression that determines the output to be written to
the holding register.

Remarks

This method issues a MODBUS/TCP Write Single Register request (function 6).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of value are
used. No error is reported if value is too big to fit in 16 bits.

If more than one register is to be changed, it is much more efficient to use the
WriteMultipleRegisters method than multiple WriteSingleRegister methods.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleRegister(1, 123)

See Also

Modbus Class | modbus_object.WriteMultipleRegisters

208

Move Class
Move Class Summary

The following pages provide detailed information on the methods of the Move Class.
This class provides the means for issuing motion commands to a robot.

The GPL system supports position, velocity, and torque-controlled motions. In the
standard case of position-controlled motions, a Move method requires two arguments: a
motion destination and a motion performance specification. Typically, a Location Object
specifies the destination and a Profile Object defines the performance parameters. The
Location can specify the destination in either Cartesian or joint coordinates and includes
clearance position information that is utilized by selected Move methods. The Profile
specifies the type of path to follow, i.e. straight-line or joint interpolated and how fast the
robot is to move.

As an ease-of-use feature, several Move methods are provided for defining the
destination of a motion. For example, methods are provided for specifying if the robot is
to move directly to a destination, move to the clearance position of a destination, move
relative to the previous destination, or move a single axis.

The table below briefly summarized the methods that are described in greater detail in
the following sections.

Member Type Description

Move.Approach Method Moves to the clearance position for a
specified Location.

Move.Arc Method Moves the tool tip of the robot along an arc
path defined by three Locations.

Move.Circle Method Moves the tool tip of the robot around a
complete circle defined by three Locations.

Move.Delay Method Pauses execution of motions for a specified
period of time, in seconds.

Move.Extra Method Moves extra, independent axes during the
next motion to a Cartesian Location.

Move.ForceOverlap Method

Bypasses the system's normal motion
blending features and defines how the
execution of two sequential motions are to be
overlapped. Can also automatically limit the
rounding of corners between sequential
Cartesian motions.

Move.Loc Method Basic instruction to move to a specified
destination Location.

Move.OneAxis Method Convenience method to move a single axis of
a robot.

Move.Rel Method
Moves to a Location that is relative to the
final position and orientation of the previous
motion.

Move.SetJogCommand Method Sets or changes the specific mode, axis and
speed during jog (manual) control mode.

Move.SetRealTimeMod Method Sets the changes in position and orientation

209

GPL Dictionary Pages

for the Real-time Trajectory Modification
mode.

Move.SetSpeeds Method Sets new target speeds and accelerations for
all axes during velocity control mode.

Move.SetTorques Method Sets new target torque output levels for all
motors in torque control mode.

Move.StartJogMode Method Initiates execution of jog (manual) control
mode.

Move.StartRealTimeMod Method
Initiates a trajectory mode that permits a GPL
program to dynamically modify a planned
path while the path is being executed.

Move.StartSpeedDAC Method Starts / stops automatic control of an analog
output based upon a robot's tool tip speed.

Move.StartTorqueCntrl Method Initiates execution of torque control mode for
one or more motors.

Move.StartVelocityCntrl Method Switches all axes of a robot to velocity control
mode in place of position control mode.

Move.StopSpecialModes Method Terminates execution of any active special
trajectory control modes.

Move.Trigger Method

Primes the system to automatically assert a
digital output signal or a thread event at a
prescribed trigger position during the next or
current motion.

Move.WaitForEOM Method Pauses GPL program execution until the
current motion is completed.

210

Move Class

Move.Approach Method

Moves the robot in a position-controlled motion to the clearance position for a specified
Location.

Move.Approach (location_1, profile_1)

Prerequisites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method simultaneously moves all of the axes of the robot in a coordinated, position-
controlled motion to a clearance position for a specified Location.

In many cases, as the robot moves towards a part position or is being retracted from a
part position, it must first move through an intermediate clearance position. For example,
when picking up a part, it is often necessary to position the robot’s gripper directly over
the part before moving down to pick it up. Likewise, after gripping a part, it is often
necessary to retract the robot’s end effector and the part in order to clear other parts or to
avoid scrapping the part along it’s supporting surface.

Since this is such a common operation, all Location Objects contain information on their
required clearance position. The Approach method automatically makes use of this
clearance data to compute an intermediate “approach position” that is taken as the
destination for the Approach method’s motion.

Specifically, each Location contains a ZClearance distance and a ZWorld Boolean flag.
The ZClearance property specifies the Z-axis offset distance for the approach position in
millimeters. If the ZWorld property is True, the clearance position is interpreted as being
directly above (or below) the “total position” of the Location in the world coordinate

211

GPL Dictionary Pages

system at the Z value specified by ZClearance. For example, if the “total position” of a
Location is at an X, Y, Z value of (10,20,30) and ZClearance is 52.3 and ZWorld is
True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of a Location is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of a Location is at an X, Y, Z value
of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is pointed
along the positive world X-axis, the approach position would be (-42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always wish to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, approach specifications can be
automatically applied to both Cartesian and Angles Location Objects.

Once the Approach method computes the desired motion destination, the motion
execution is identical to the Move.Loc method. The motion can be a Straight-line or joint
interpolated motion, can be blended with the previous and the next motions as desired,
and the performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile initialized to default values
Dim loc1 As New Location ' Create new location value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
loc1.ZClearance = 10 ' Require 10 mm clearance in Tool
Move.Approach(loc1,prof1) ' Move to clearance position
Move.Loc(loc1, prof1) ' Move to loc1 using prof1

See Also

Location Class | Move Class | Move.Loc | Move.Rel | Profile Class

212

Move Class

Move.Arc Method

Moves the robot's tool tip in a circular arc defined by three Location values.

Move.Arc (location_1, location_2, profile_1)

Prerequisites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• Circular motions can be performed while tracking a conveyor belt but cannot be

used to move from a stationary point to a belt or vice versa.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows a circular arc path. The arc is
defined by the XYZ values of the final position of the previous motion and location_1 and
location_2. The performance parameters for the motion are defined by the Profile
Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

213

GPL Dictionary Pages

The circular arc begins at the final "total XYZ position" of the previous motion, goes
through the "total" XYZ position of location_1 and terminates at the "total" XYZ position o
location_2. The "total position" of location_1 and location_2 are computed as the results
of evaluating each Location's PosWrtRef value relative to the “total position” of their
respective reference frames, if any. If a Location is specified as an Angles type, its XYZ
position is computed

f

using the kinematic model for the attached robot.

 system will bring
the robot to a stop at location_2. If this property is negative and the next motion
stateme
blend th ogether into a “continuous path”. Circular interpolated motions
can be lated
or other

If the pr
Move.A lusion
of the p e
previous n in
the GPL

The follo

• n any arbitrary orientation and need not lie in an
cardinal plane.

• The XYZ value of location_1 need not be halfway between the starting and
ending positions of the arc although values closer to the mid point will more

ght-line, the Arc method is
verted to a Cartesian straight-line motion to location_2.
o Arc motions, the s-curve AccelRamp and DecelRamp
 and the Accel and Decel properties should be set high to

 as possible.
he tool of the robot is smoothly

entation of the previous motion to the orientation of the
. The specific rotation method is a function of the

lized.

Exampl

m p0 As New Location ' Create location objects
m p1 As New Location

Dim As New Location

If profile_1 has its InRange property set to zero or a positive value, the

nt is executed before this motion reaches its destination, GPL will attempt to
e two motions t

blended with any of the motion types, i.e. Cartesian straight-line, joint interpo
 circular interpolated motions.

evious motion is still in process when the Move.Arc instruction is executed, the
rc instruction will temporarily suspend execution of its thread. At the conc
revious motion or as soon as the new Arc motion starts to be blended with th
 motion, the thread will automatically continue execution at the next instructio
 procedure.

wing are special notes regarding the use of the Arc method.

The circular arc can be defined i

accurately define the plane of the arc.
oints that define the arc lie in a strai• If the three XYZ p

automatically con
• When blending tw

should be set to 0

ensure that the path tracks the circular path as closely
• As with straight-line motions, the orientation of t

rotated from the final ori
final position, location_2

atic module being utikinem

es

Di
Di

p2
Dim p3 As New Location
Dim p4 As New Location

214

Move Class

p0.XYZ(100,200,-100,0,180,0) ' Define two semi-circles
p1.XYZ(200,100,-100,0,180,0) ' that form an "S"

0,0,180,0)
0,0,180,0)

Move.Arc(p1,p2,pf_on_path) ' Follow first semi-circle
Move.Arc(p3,p4,pf_on_path) ' Follow second semi-circle

 until motion done

Location Cla s

p2.XYZ(300,200,-100,0,180,0)
p3.XYZ(400,300,-10
p4.XYZ(500,200,-10

Move.Loc(p0,pf_start) ' Move to start position

Move.WaitForEOM ' Pause thread

See Also

s | Move Class | Move.Circle | Move.Loc | Profile Class

215

GPL Dictionary Pages

Move.Circle Method

Moves the robot's tool tip in a complete circle defined by three Location values.

Move.Circle (location_1, location_2, profile_1)

Prerequisites

Parame

Remarks

This e
con ll
circle. T
and ca
by the Profile Object Ramp).

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• Circular motions can be performed while tracking a conveyor belt but cannot be

used to move from a stationary point to a belt or vice versa.

ters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

 m thod simultaneously moves all of the axes of a robot in a coordinated, position
tro ed motion such that the robot's tool tip follows an arc path around a complete

he circle is defined by the XYZ values of the final position of the previous motion
e defined lo tion_1 and location_2. The performance parameters for the motion ar

, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, Decel

216

Move Class

The circle begins at the final "total XYZ position" of the previous motion, goes through the
"total" XYZ position of location_1 and the "total" XYZ position of location_2 and
terminates at the starting position. The "total positions" of location_1 and location_2 are
computed as the results of evaluating each Location's PosWrtRef value relative to the
“total position” of their respective reference frames, if any. If a Location is specified as
an Angles type, its XYZ position is computed using the kinematic model for the attached
robot.

If profile_1 has its InRange property set to zero or a positive value, the system will bring
the robot to a stop at the final position. If this property is negative and the next motion
statement is executed before this motion reaches its destination, GPL will attempt to
blend the two motions together into a “continuous path”. Circular interpolated motions
can be blended with any of the motion types, i.e. Cartesian straight-line, joint interpolated
or other circular interpolated motions.

If the previous motion is still in process when the Move.Circle instruction is executed, the
Move.Circle instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new Circle motion starts to be
blended with the previous motion, the thread will automatically continue execution at the
next instruction in the GPL procedure.

The following are special notes regarding the use of the Circle method.

• The circle can be defined in any arbitrary orientation and need not lie in an
cardinal plane.

• The XYZ values of location_1 and location_2 need not be equal distance
between the starting and ending positions of the circle although values closer to
120 degrees apart will increase the accuracy of the plane of the circle.

• If the three XYZ points that define the circle lie in a straight-line, the Circle
method motion is automatically converted to a short move to nowhere.

• When blending a Circle motion with another motion, the s-curve AccelRamp
and DecelRamp should be set to 0 and the Accel and Decel properties should
be set high to ensure that the path tracks the circular path as closely as possible.

• During the circular motion, the orientation of the tool is held constant.

Examples

Dim p0 As New Location ' Create location objects
Dim p1 As New Location
Dim p2 As New Location

p0.XYZ(100,200,-100,0,180,0) ' Center on (200,200), radius 100

217

GPL Dictionary Pages

p1.XYZ(200,300,-100,0,180,0)
p2.XYZ(200,100,-100,0,180,0)

,pf_start) ' Move to start position
(p1,p2,pf_on_path) ' Move in a circle

Move.WaitForEOM

See Also

Location Class

Move.Loc(p0
Move.Circle

 ' Pause thread until motion done

 | Move Class | Move.Arc | Move.Loc | Profile Class

218

Move Class

Move.Delay Method

 Pauses execution of a robot’s motions for a specified period of time, in seconds.

Move.Delay (seconds)

Prerequisites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.

Parameters

seconds

r robot motions, interpreted as a Double value.

Remark

This me number of
seconds
complet hat
simply s ecution of a thread, this delay is synchronized with the movement of
the robot. So, it is very useful of inserting process delays in order to allow other

mplete their operations before the robot moves to its next step. For
example, this method can be used after the robot has come to a complete halt to pick up
a part, t he part.

Another ove to
the curr or a fixed amount of time”. This means that as soon as the delay
period begins, execution of the thread continues. This allows the thread to monitor other

tivities or plan the next motion. Also, since the Delay method behaves like any other
otion, the Delay can be prematurely terminated by a RapidDecel command.

Exampl

lay(0.2) ' Delay for .2 seconds after we reach loc1

See Als

Move C

A required numeric expression that specifies the number of seconds to
delay any furthe

s

thod delays any further motions for the attached robot for the specified
. This delay starts immediately if the robot is not moving or starts at the
ion of any in-process motions if the robot is moving. Unlike other methods t
uspend ex

equipment to co

o insert a fixed delay to allow the robot’s gripper to close and engage t

 advantage of this method is that it is implemented like a command to “m
ent position f

ac
m

es

Dim prof1 As New Profile ' Create new profile set to default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.De

o

lass | Move.WaitForEOM

219

GPL Dictionary Pages

Move.Extra Method

Move extra, independent axes during the next motion to a Cartesian Location.

Move.Extra (axis_1_position, axis_2_position, axis_3_position)

Prerequisites

• High power to the robot must be enabled.

Parame

xis_1_position

xpression that specifies the new position of the first
lute position in units of either millimeters or degrees

as appropriate.

axis_2_position

An optional numeric expression that specifies the new position of the
second extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is not required if the robot only has a single
extra axis.

axis_3_position

An optional numeric expression that specifies the new position of the
third extra axis as an absolute position in units of either millimeters or
degrees as appropriate. This is not required if the robot only has two
extra axes.

Remarks

Selected kinematic modules include extra, independent axes that are physically part of
the robot but that do not logically factor into the calculation of the Cartesian position and
orientation of the robot. For example, the "Dual RPR Robot" and the "XYZ Plus Extra
Axis Robot" both include an extra axis that does not affect the Cartesian location of the
robot.

For these types of robots, if a motion instruction is executed to a Cartesian Location
value, there is no information available to define where the extra axis is to be moved. So,
in general, the extra axis will remain in its current position during such a motion.

To address this need, the Move.Extra method can be executed prior to the execution of
a motion to a Cartesian Location. During the motion, any extra axes will be moved to
the positions specified by the Move.Extra method simultaneously with the other axes of

• The robot must be Attached by the thread.

ters

a

A required numeric e
extra axis as an abso

220

Move Class

the robot. If the next motion is not to a Cartesian Location, the information specified in
the Move.Extra method is ignored.

Move.Extra method, a motion specified to an Angles

Please see the documentation for your specific Robot Kinematic Module to determine if
this instruction has any affect.

Examples

Dim 1 ile set to default values
Mov x e 1st extra axis to 20 next motion
 ' Keep 2nd extra axis at same position
Move.Loc

Move C

As an alternative to using the
Location will move all of the axes of the robot including the extra axis. However, in this
case, the benefits of utilizing a Cartesian Location will be lost.

 pf As New Profile ' Create new prof
e.E tra(20,Robot.DestAngles.Angle(6)) ' Mov

(Location.XYZValue(300,0,100),pf1) ' Move robot and extra axis

See Also

lass | Move.Loc | Move.Rel

221

GPL Dictionary Pages

Move.

Bypasses the system's normal motion blending features and defines how the execution
of two sequential motions are to be overlapped. Can also automatically limit the rounding
of corners bet

ForceOverlap Method

ween sequential Cartesian motions.

Move.ForceOverlap (mode, criterion)

Prerequisites

• High power to the robot must be enabled.

Parameters

mod

criterion

A required arithmetic expression that defines how much the next motion
 to be e currently executing motion. The
terpr s parameter is a function of the mode.

Remarks

In most applications, the syst
sequential motions by blendin
the acceleration of the next motion. For example, if a motion in the X direction is split into

motions, the system will automatically blend the deceleration of the first segment with the
acceler they
were a s
perf
adverse

When th h sequential motions are
blended, it takes into account the maximum allowable acceleration and deceleration of

However, in some cases, it is desirable to override the system's standard blending
computations by using the ForceOverlap method to define how much two motions are to
be overlapped. This method supports the following different mode's of operations.

• The robot must be Attached by the thread.

e

A required arithmetic expression that defines how the overlapping is
specified and the criterion is interpreted.

is
in

 overlapped with th
etation of thi

em automatically attempts to optimize the execution of
g (overlapping) the deceleration of the previous motion with

two separate motion instructions and the robot is instructed not to stop between the

ation of the second segment such that the two motions will appear as though
ingle continuous motion. This blending can significantly improve the

ormance of a robot since the time required for accelerating and decelerating
ly affects cycle time.

e system automatically computes the amount by whic

the robot. This permits the cycle time to be optimized without exceeding the capabilities
of the mechanical system.

mode = 0: Explicit Overlap Specification

222

Move Class

This mode explicitly defines the amount that two sequential motions are to be
overlapped, specified as the percentage of time of the second motion. This method has
the following benefits as compared to automatic blending:

otion,

e automatic
blending may not result in optimal performance. For example, if the first motion
is along the X-axis and the next motion is along the Y-axis, they are typically
dynamically decoupled. In this instance, the two motions can be arbitrarily
overlapped from 0% to 100% without violating the dynamic limitations of the
robot. Using mode 0, the amount of overlapping can be set to any amount in
order to satisfy any desired application and cycle time requirements.

 This method has the following disadvantages

• Allows all segments of the current motion to be overlapped with the next m
not just the current motion's deceleration and the next motion's acceleration
segments. This permits a much greater overlapping of the two motions.

• Provides an explicit overlapping specification in cases where th

 as compared to automatic blending:

• No checking is performed to ensure that the maximum acceleration and
deceleration capabilities of the robot are not exceeded.

atically reduce the deceleration
of the current motion and the acceleration of the next motion when this will not

tion.

The interpretation of the criterion parameter is described in the following table.

• The system's standard blending algorithms autom

adversely affect cycle time to increase the smoothness of the motion transi
• The ForceOverlap method places more burden on the application programmer

for optimizing the motion cycle time.

mode criterion Resulting Overlap

0 % (0-100)

 to be
overlapped with the currently executing motion. A value of
0 indicates that the two motions are not overlapped. A
value of 100 indicates that all of the next motion is to be

% of the total execution time of the next motion that is

overlapped with the currently executing motion if possible.

The motion overlap generated by this method is subject to the following limitations.

• Since the overlap is with respect to the currently executing motion, the next
motion will never be started prior to the execution of the current motion.

• The overlap is limited to ensure that the next motion never terminates before the

If the current motion is defined to stop, i.e. has a Profile Inrange parameter of 0
or greater than 0, no overlapping will be performed.

The following simplified drawings graphically illust ing is performed.
In the first set of drawings, th
sec set c

end of the currently executing motion.
•

rate how the overlapp
e current motion is shorter than the next motion. In the
urrent motion is longer than the next motion. ond of drawings, the

223

GPL Dictionary Pages

Note that when the next motion is longer than the current motion, the overlap can be
extended to almost the start of the current motion. If the next motion is shorter than the
current motion, the next motion will always be started sufficiently after the start of the
current motion to ensure that the next motion does not terminate before the current
motion.

By comparison, the following picture illustrates the amount of overlapping that can be
expected as a result of the system's automatic blending algorithm. The automatic
blending is very easy to use and ensures that the robot's dynamic capabilities are not
exceeded. However, the overlapping is generally limited to the deceleration segment of
the previous motion and the acceleration segment of the next motion.

mode = 1: Automatically Limit Rounding of Corners

This mode estimates the distance between the corner of two sequential Cartesian
motions (either straight-line or circular) and the closest point on the blended path. If this
distance is estimated to exceed a specified limit, the standard motion blending is over-
ridden and the overlap is set to approximately achieve the specified corner distance.

This is illustrated in the following drawing. The "Automatic blending" picture shows the
path computed by the system to minimize the motion execution time at the expense of a
large deviation from the corner point. The "Force overlapping" picture shows the path
that is automatically computed to achieve the specified maximum corner distance.

224

Move Class

If the standard automatic blending algorithms produce a path that has a corner distance
that is approximately equal to or less than the specified corner distance, the path

ard motion blending algorithms is executed. However, if the
r rounding is too great, the motion overlap is automatically reduced. The reduced

overlap stance and will therefore
resu in

For this eter is described in the following

computed by the stand
corne

will decrease the corner rounding and the corner di
lt an increase in the motion execution time.

mode, the interpretation of the criterion param
table.

mode criterion Resulting Overlap

1

If required, the overlap between the next Cartesian motion
utomatically

nce that
does not exceed the specified criterion.

distance in mm and currently executing Cartesian motion is a
reduced to approximately achieve a corner dista

If the currently executing and the next motions are not Cartesian (e.g. straight-line or
circular) motions, this mode is ignored.

This spe two motions
have re mp times and their accelerations, decelerations and
speeds are similar.

Examples

stop at end of motion
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in X direction

m
(Location.XYZValue(10), pf1) ' Move 10 mm in X direction

Robot.Attached = 0 ' Release control of robot

See Also

Move Class

cial mode will produce the most accurate corner distances if the
latively small s-curve ra

Dim pf1 As New Profile
Robot.Attached = 1 ' Get control of robot #1
pf1.Inrange = -1 ' Don't

Move.ForceOverlap(0, 50) ' Overlap 50% of the next motion's time
Move.Rel(Location.XYZValue(0,10), pf1) ' Move 10 mm in Y direction
Move.ForceOverlap(1, 1) ' Next corner distance should be <= 1m
Move.Rel

225

GPL Dictionary Pages

Move.Loc Method

Basic method for moving the robot to a specified destination in a position-controlled
motion.

Move.Loc (location_1, profile_1)

Prerequisites

• High power to the robot must be enabled.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This is the basic method for simultaneously moving all of the axes of a robot in a
coordinated, position controlled motion to a destination specified by a Location Object,
location_1, using performance parameters defined by a Profile Object, profile_1 (e.g.
Speed, Accel, Decel, AccelRamp, DecelRamp).

The destination of the motion will be the “total position” defined by location_1. For the
various forms for the Location Object, the motion destination will be computed as
follows:

• If location_1 is a Cartesian Location with a reference frame, the “total position”
is computed as the position and orientation that is a result of evaluating
location_1’s PosWrtRef value relative to the “total position” of the reference
frame.

• If location_1 is a Cartesian Location without a reference frame, location_1’s
PosWrtRef value is interpreted as the absolute coordinates for the destination.

• Otherwise, location_1 is an Angles Location and the motion destination will be
the axes positions specified by location_1.

• The robot must be homed.
• The robot must be Attached by the thread.

226

Move Class

If profile_1 specifies a Straight-line motion, the robot will move along a straight path in
Cartesian space. Otherwise, a joint-interpolated motion will be generated. If profile_1 has

t to zero or a positive value, the system will bring the robot to a
s property is negative and the next motion statement is executed

ions

ction is executed, the
Move.Loc instruction will temporarily suspend execution of its thread. At the conclusion

s motion or as soon as the new motion starts to be blended with the
us motion, the thread will automatically continue execution at the next instruction in

the GPL procedure.

Examples

Dim pro
Dim loc
loc1.XY
Move.Lo ' Move to loc1 using prof1

Location Class

its InRange property se
stop at location_1. If thi
before this motion reaches its destination, GPL will attempt to blend the two mot
together into a “continuous path”.

If the previous motion is still in process when the Move.Loc instru

of the previou
previo

f1 As New Profile ' Create new profile set to default values
1 As New Location ' Create new location value
Z(10,20,30,0,180,20) ' Define position to move to
c(loc1, prof1)

See Also

 | Move Class | Move.Approach | Move.Arc | Move.Extra | Move.Rel | Profile Class

227

GPL Dictionary Pages

Move.OneAxis Method

Convenience method to move a single axis of a robot.

Move.OneAxis (axis, axis_position, relative_flag, profile_1)

Prerequi

• High power to the robot must be enabled.

eir software
limit stops so long as the motion moves the axis towards the in-range region.
This method and jog control are the only means for automatically moving axes

.

Parameters

axis

A required numeric expression that specifies the number of the robot’s
axis that is to be moved, 1-n.

axis_position

A required numeric expression that specifies the new position of the axis
as either an absolute position or a relative position, in units of either
millimeters or degrees as appropriate.

relative_flag

A required numeric expression that is interpreted as a Boolean that
indicates if the axis_position is an absolute axis position (False) or a
relative value (True).

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method is primarily a convenience and diagnostic function that moves a single axis
of the Attached robot. If the relative_flag is True, the new axis position is computed by
adding the axis_position value to the final axis position of the previous motion. Otherwise,
the axis_position is taken as the new absolute position for the axis.

sites

• The robot must be homed.
• The robot must be Attached by the thread.
• An axis can be moved even if it or other axes are out-of-range of th

that are out-of-range

228

Move Class

When this motion is generated, the positions of all of the other axes of the robot remain
unchanged.

 method computes the desired position for each axis, the motion

 can be blended with the previous and the next motions as desired. The
ed by profile_1 (e.g. Speed, Accel, Decel,

AccelRamp, DecelRamp, InRange).

Dim o ile set to default values
Mov n by 20 mm or deg

Move Class

Once the OneAxis
execution is identical to the Move.Loc method except that Straight-line motions are not
permitted and this method permits axes to be outside of their software limit stops.

This motion
performance parameters are defin

Examples

 pr f1 As New Profile ' C
e.O eAxis(1,20,True,prof1) ' I

reate new prof
ncrement axis 1

See Also

 | Move.Loc | Move.Rel

229

GPL Dictionary Pages

Move.

d motion to a Location that is relative to the final
ition and orientation of the previous motion.

Rel Method

Moves the robot in a position-controlle
pos

Move.Rel (location_1, profile_1)

Prerequi

• The robot must be homed.
• The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method simultaneously moves all of the axes of the robot in a coordinated, position
controlled motion to a destination specified by the “total position” of location_1, which is
interpreted as an incremental change relative to the final position and orientation of the
previous motion. If location_1 is a Cartesian Location, the “total position” of location_1 is
evaluated relative to the final Cartesian position and orientation of the previous motion. If
location_1 is a Angles Location, the motion’s destination is computed by adding
location_1’s set of angles to the final angles of the previous motion.

Note, that this motion is relative to the actual final position and orientation of the previous
motion and not the planned destination of the previous motion (Robot.Dest,
Robot.DestAngles). The planned destination remains the same even if the motion
prematurely terminates execution. This was designed to allow a motion to be retried.
However, the actual final position and orientation is modified by a Soft E-Stop, a Hard E-
Stop, a RapidDecel command or other conditions. So, the Rel method is designed to
allow a program to do an incremental motion from wherever the robot actually stopped.

For Cartesian Locations, it should be keep in mind that the incremental motion is
performed in the tool coordinate system of the robot. For example, a positive incremental
Z motion will not necessarily move up vertically in the world coordinate system. It will
move along the Z-axis of the robot’s end effector.

sites

• High power to the robot must be enabled.

230

Move Class

Once the Rel method computes the desired motion destination, the motion execution is
identical to the Move.Loc method. The motion can be a Straight-line or joint interpolated

revious and the next motions as desired, and the
ed by profile_1 (e.g. Speed, Accel, Decel,

Examples

Dim prof1 As New Profile ' Create new profile set to default values
 As New Location ' Create new location value

YZ(10,20,30,0,180,20) ' Define position to move to
Move.Loc(loc1, prof1) ' Move to loc1 using prof1
loc1.XYZ al motion in X
Move.Re ol X, not World

See Also

Location Class

motion, can be blended with the p
performance parameters are defin
AccelRamp, DecelRamp, InRange).

Dim loc1
loc1.X

(10) ' Define increment
l(loc1, prof1) ' Move 10 mm in To

 | Move Class | Move.Approach | Move.Extra | Move.Loc | Profile Class

231

GPL Dictionary Pages

Move.SetJogCommand Method

Sets or changes the specific mode, axis and speed during jog (manual) control mode.

Move.SetJogComand (jo jog_axis, g_mode, jog_speed)

Prerequisites

• H robot must be enab
• T

igh power to the
he robot does no

led.
t need to be home
 Attached by the

d
• T be th
• T de

Parameters

jog_mod

A required express
s anu ha

jog_axis

jog_speed

A requir
+100 an
manual
profile o te to a stop after the
manual motion is completed.

his method must be
ally controlled and the

t any time during

information from the last
nerator automatically

smoothly transitions between modes and target speeds.

For example, if the robot is being moved in World manual control mode and a new
trajectory generator will

decelerate the World manual mode motion to a stop prior to starting the acceleration up
to the target joint manual mode speed. As another example, if the robot is being moved

.
read.
.

he robot must
he robot must be in jog control mo

e

ion that evaluates
al control mode t

to an Integer value. This value
t should now be in effect. pecifies the m

A required expression that evaluates to an Integer value. This defines
the robot or Cartesian axis that is to be moved under manual control.

ed expression that evaluates to a percentage value between
d -100. This specifies the target speed and direction for the
control motion. The system automatically generates a motion
 accelerate up to this speed and to decelera t

Remarks

After a robot has been placed into jog (manual) control mode, t
executed to define the manual control mode, the axis to be manu
speed at which the axis is to be moved. This method can be executed a
jog control mode an as many times as desired. It simply posts the parameters to the

or execution. If multiple commands are posted in the same
d

trajectory generator f
trajectory cycle, the trajectory generator will only use the
command posted before the start of the cycle. The trajectory ge

command to move in joint manual mode is received, the

232

Move Class

in any mode and a new command is posted that changes the target speed, the trajectory
generator will smoothly accelerate or decelerate to achieve the new speed.

re as follows: The interpretation of the parameters to this method a

Jog_Mode Jog_Axis Jog_Speed Description

0 Ignored. Ignored. Idle, robot not moving.

1 Robot joint
number, 1-n

Joint speed and
direction.

Joint manual control mode. A single robot
axis can be moved. The robot does not need to
be homed. Axes that are out-of-range can be
moved into range.

2

d manual control mode. Translates or
ut a single world (base)

ust be

Cartesian axis: Worl
1:X, 2:Y, 3:Z,
4:RX, 5:RY,

Cartesian speed
and direction.

rotates along or abo
Cartesian coordina

6:RZ
te axis. The robot m

homed.
Cartesian axis:
1:X, 2:Y, 3:Z,
4:RX, 5:RY,

Cartesian speed
and direction.

Tool manual control mode. Translates or
rotates along or about a single tool (gripper)
Cartesian coordinate axis. The robot must be
homed.

3

6:RZ

4

Positive values any number
 permit the

 position.

Robot joint
number, 1-n

free the joint and
negative values
lock the joint.

Free manual control mode. Puts
of axes into torque control mode to
axes to be manually pushed into

For Join 5% or
less, the ement and then stop rather than move
continuously. In order to move an additional small increment, the speed must be set to 0

d then to a value of 5% or less. This is very convenient for fine positioning the robot.

t, World and Tool control modes, if the magnitude of the speed is set to
 robot will move a discrete incr

an

WARNING: Any axis commanded to move at greater than 5%
speed will continue to do so until stopped. It is responsibility of the
GPL Project to have suitable safe guards and time outs to ensu
that a motion is term

re
inated when required.

Exampl

ttached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control mode

ld mode, X-axis, -50% speed
Thread.Sleep(4000)

e.StopSpecialModes ' Terminate jog mode
ot.Attached = 0 ' Release control of robot

See Als

Move C

es

Robot.A

Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to wor

Mov
Rob

o

lass | Move.StartJogMode | Move.StopSpecialModes

233

GPL Dictionary Pages

Move.SetRealTimeMod Method

ectory Sets the incremental changes in position and orientation for the Real-time Traj
Modification mode.

Move.SetRealTimeMod (changes_array)

Prerequ

wer to the robot must be enabled.
bot must be Selected or Attached by the thread.

• The robot must have the Real-time Trajectory Modification method enabled.

changes_array

A required array of Doubles that contains 6 incremental change values
corresponding to the 3 position and 3 orientation degrees-of-freedom
(Dx, Dy, Dz, Rx, Ry, Rz). If Move.StartRealTimeMod has specified
single steps, these parameters are in units of mm and degrees. If a
continuous change mode has been specified, these parameters are in
units of mm/sec and deg/sec.

Remarks

After the Real-time Trajectory Modification mode has been enabled, this method must be
executed to specify the incremental coordinate modifications. If the changes are defined
as single steps, this method must be executed once for each step. If the changes are
interpreted as continuous changes, this method must be execute each time an
incremental speed is to be altered.

This method can be executed at any time and as many times as desired. It simply posts
the desired changes to the trajectory generator. Each time that the trajectory generator
executes, it checks for any new posted values. If this method is executed multiple times
before the trajectory generator executes again, only the last values posted will have an
effect.

Please see the documentation for the Move.StartRealTimeMod method for a description
of how the incremental changes are interpreted.

Examples

Public Sub MAIN
 Dim rtmod As New Thread("rtmod")
 rtmod.Start ' Start RT change service thread
 Robot.Attached = 1
 Move.StartRealTimeMod(1,2) ' Turn on RT correction function
 Move.Loc(p0, pf0)
 Move.Loc(p1, pf0)
 Move.WaitForEOM

isites

• H
• The ro

igh po

Parameters

234

Move Class

 rtmod.Abort
 Move.StopSpecialModes ' Turn off RT correction function

Dim As Double

 Controller.SleepTick(2) ' Adjust every other traj tick
 If (Signal.DIO(20001)) Then

10 mm/sec in Z

 rtm_spd(2) = -10 ' -10 mm/sec in Z
 Else
 rtm_spd(2) = 0 ' Don't move

 End If
 speed

End Sub

See Also

 Robot.Attached = 0
End Sub
Public Sub rtmod
 rtm_spd(6)
 While True

 rtm_spd(2) = 10 ' +
 ElseIf (Signal.DIO(20002)) Then

 Move.SetRealTimeMod(rtm_spd) ' Set new
End While

Move Class | Move.StartRealTimeMod | Move.StopSpecialModes | Robot.CartMode |
Robot.RealTimeModAcm | Thread.Schedule

235

GPL Dictionary Pages

Move.

e.

SetSpeeds Method

Sets new target speeds for all axes of a robot in velocity control mod

Move.SetSpeeds (speed_array, profile_1)

Prerequisites

•

• The robot must be Attached by the thread.
• The robot must be in velocity control mode.

Parameters

speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear
axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speeds, "100% joint speeds" (DataID 2700) *
"Max %speed allowed" (DataID 2704).

profile_1

An optional Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified. If this parameter is not specified, the Profile specified
by the last executed Move.SetSpeeds or Move.StartVelocityCntrl
method will be utilized.

Remarks

After a robot has been placed into velocity control mode, this method can be used to
modify the target speed levels for each axis. This method can be executed at any time
and as many times as desired. It simply posts the desired target speeds to the trajectory
generator. The next time that the trajectory generator executes, the specified speeds will
be taken as the new target values. If this method is executed multiple times before the
trajectory generator executes again, only the last values posted will have an effect.

Examples

High power to the robot must be enabled.
• The robot must be homed.

236

Move Class

Dim speeds(12) As Double ' All Double speeds will be 0
Dim pf1 As New Profile ' Use default accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control of robot #1
Move.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velocity control mode

36
 ' New speed value

Move.StopSpecialModes ' Terminate velocity mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class

For ii = 36 To 360 Step
 speeds(0) = ii
 Move.SetSpeeds(speeds) ' Ramp axis 1 speed
 Controller.Sleeptick(30) ' Wait a little while
Next ii

 | Move.StartVelocityCntrl | Move.StopSpecialModes

237

GPL Dictionary Pages

Move.SetTorques Method

Sets new target torque output levels for all motors in torque control mode.

Move.SetTorques (torques_array)

Prerequisites

• High power to the robot must be enabled.
• The robot does not need to be homed.
• The robot must be Attached by the thread.
• One or more motors of the robot must be operating in torque control mode.

Parameters

torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

Remarks

After selected motors of a robot have been placed into torque control mode, this method
can be used to modify the target torque levels. This method can be executed at any time
and as many times as desired. It simply posts the desired torque levels to the trajectory
generator. The next time that the trajectory generator executes, the specified torque
levels will be taken as the new target values. If this method is executed multiple times
before the trajectory generator executes again, only the last values posted will have an
effect.

Examples

Dim torques(12) As Double ' All Double torques will be 0
Dim ii, jj As Integer

Robot.Attached = 1 ' Get control of robot #1
Move.StartTorqueCntrl(1, 0, torques) ' Set motor 1 to torque mode
For jj = 1 To 10
 For ii = 0 To 100
 Controller.Sleeptick() ' Wait till next trajectory cycle
 torques(0) = ii/10 ' New torque value
 Move.SetTorques(torques) ' Ramp torque from 0% to 10%
 Next ii
Next jj

238

Move Class

Move.StopSpecialModes ' Terminate torque mode

See Also

Move Class

Robot.Attached = 0 ' Release control of robot

 | Move.StartTorqueCntrl | Move.StopSpecialModes

239

GPL Dictionary Pages

240

Move.StartJogMode Method

Initiates execution of jog (manual) control mode.

Move.StartJogMode ()

Prerequisites

• High p
• The rob

ower to the robot must be enabled.
ot does not need to be homed.

• The robot must be Attached by the thread.
• This mode is not compatible with torque, velocity or other special control modes.
• This mode is terminated if the GPL program that has the robot attached hits a

breakpoint, is single stepped, or stops execution for any reason.

Parame

Remark

his method switches all of the axes of a robot from the standard position controlled
mode to jog (manual) control mode. This is the mode that is utilized by the Virtual and

t, world, tool and free
manual control modes. This method and the Move.SetJogCommand method are
provided to permit these same manual modes to be easily implemented by a GPL
Project. For example, these methods can be used by a GPL program to implement
manual control modes via a graphics HMI or a joystick.

When a robot is placed into this mode, it is moved in a manner similar to velocity control
mode in that a specified axis or group of axes are accelerated and moved at a specified
continuous speed until they are instructed to change their speed.

ters

None

s

T

Hardware Manual Control Pendants (MCP) to implement join

WARNING: Any axis commanded to move will continue to do so
until stopped. So, it is responsibility of the GPL Project to have
suitable safe guards and time outs to ensure that a motion is
terminated when required.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into jog control mode. Once in this mode, the
Move.SetJogCommand method must be executed to set and change the specific
manual mode, axis and motion speed.

When an axis speed is specified, the setting of the "System Test Speed" is ignored to
permit the robot to be moved in a consistent manner when debugging applications.

Move Class

To permit the axes of a robot to be moved back into range if they are accidentally moved
beyond their stop limits, joint control mode permits out-of-range axes to be moved back in

 In addition, the robot does not need to be homed in
rol mode to permit it to be manually repositioned.

1. The Move.StopSpecialModes method is executed to terminate
this mode.

E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
gram).

Examples

Robot.A
Move.St iate jog control mode
Move.SetJogCommand

(4000)
SetJogCommand(2, 1, -50) ' Change to world mode, X-axis, -50% speed

Thread.Sleep(4000)
cialModes ' Terminate jog mode
ed = 0 ' Release control of robot

See Also

Move Class

range, but not further out-of-range.
order to move the axes in joint cont

The robot will remain in jog control mode until one of the following occurs:

2. A hardware error or hard E-stop or soft

reason (this includes single stepping a GPL pro

ttached = 1 ' Get control of robot #1
artJogMode() ' Init

(3, 3, 50) ' Set tool mode, Z-axis, 50% speed
Thread.Sleep
Move.

Move.StopSpe
Robot.Attach

 | Move.SetJogCommand | Move.StopSpecialModes

241

GPL Dictionary Pages

Move.StartRealTimeMod Method

Initiates special trajectory mode that permits a GPL program to make incremental
changes in the position and orientation of a planned path while the path is being
executed.

Move.StartRealTimeMod (coordinates, change_type)

Prerequi

• The "Advanced Controls" license must be installed

sites

• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• This mode is only compatible with the standard position control mode and

Cartesian interpolated motions.

Parameters

system in which the accumulated modifications are stored.

nce or if the changes are repeatedly applied (i.e. they are

Remark

n and orientation that are immediately applied to the
executing trajectory. When this mode is active, each time that the Trajectory Generator
computes a Cartesian set point, it automatically modifies the set point to include the
accumulated incremental real-time changes.

This method can be used to incorporate sensor feedback or to alter a baseline path for
special processes. For example, if the tool tip must maintain a specific height as it moves
above a distorted surface, input from a height sensor can be used to modify the planned
path as the tool is moving. As another example, if the robot is used for welding, a
weaving motion can be superimposed on the basic weld path by adding a real-time
change that moves back and forth perpendicular to the direction of travel.

When this method is executed, the Attached robot is immediately placed into this special

coordinates

A required numeric expression that specifies the coordinate system in
which the incremental changes are interpreted and the coordinate

change_type

A required numeric expression that defines if the incremental changes
are applied o
interpreted as speeds).

s

This method initiates a special trajectory mode whereby a GPL program can specify
incremental changes in positio

trajectory mode even if a Cartesian motion is currently in progress. Thereafter, any
thread can post incremental changes in position (Dx, Dy, Dz) and orientation (Rx, Ry, Rz)
that will dynamically alter the planned path. Since these changes are immediately added

242

Move Class

to the planned path, the GPL program must guarantee that the magnitudes of each
change is small to avoid abrupt motions. If no motion is being executed, the changes
alter the stationary position of the robot's tool. If a motion or sequence

 will
 of motions are

being executed, the changes will alter the planned tool path. While this mode is active,

when no motion is being executed.

To simplify the use of this method for different applications, the coordinates parameter
specifies one of several choices for the coordinate system in which the incremental

only Cartesian motions are permitted. This mode can span an arbitrary sequence of
Cartesian motions and continues to operate even

changes are interpreted and accumulated. To illustrate these alternatives, we will
consider the following basic Cartesian motion where the tool orientation is rotated
counter-clockwise as the tool tip moves along a straight-line path from p1 to p2..

If the incremen are accumulated in
World coordin
entire path an t its end point.

tal changes are specified in World coordinates and
ates (World-World mode), incremental changes in position simply shift the
d changes in orientation rotate the tool tip abou

This mode decouples changes in orientation and position and so is conceptually very
easy to use. It is analogous to the motions permitted with the Manual Control Pendant's
World jog mode.

tal changes are specified in Too and the incremental changes
are lated in World coordinates (Tool-World mode), incremental changes in
position shift th ts are
initially aluate
orientation not ate the subsequent
direction of the

If the incremen
accumu

l coordinates

e path in a manner similar to World-World mode, but the shif
 ev d along the instantaneously direction of the tool. However, changes in

only change the orientation of the tool, but also rot
planned path.

243

GPL Dictionary Pages

This mode can best be understood if you imagine you are flying the tool around the
rkspace. You can slip the tool right or left or move forward or backwards to offset the

are setting it course along a new baseline path
d the taught path is relative to this new baseline. This method is analogous to the

og mode.

ordinates and accumulates the incremental

wo
path. However, if you turn the tool, you
an
motions permitted with the Manual Control Pendant's Tool j

The final method specifies changes in Tool co
changes in Tool coordinates (Tool-Tool mode).

This mode is analogous to dynamically changing the dimension and orientation of the
s a simple rotation

s is equivalent to offsetting the
se the path to curve if the orientation of the tool changes. If the tool does

ply shift the path.

eter as

robot's tool. If you change the orientation in this mode, it generate
p. However, if you change the position, thiabout the tool ti

will cautool and
not change its orientation, incremental changes in position sim

The set of coordinate systems to be used are defined by the coordinates param
follows:

coordinates
Value Description

0 Idle. Ignore incremental change commands. Provided for completeness.

1 and accumulated in the World coordinate system.
World-World mode. Changes specified in the World coordinate system

2 Tool-World mo
accumulated in the Wo

de. Changes specified in the Tool coordinate system and
rld coordinate system.

3 Tool-Tool mode. Changes specified in the Tool coordinate system and
accumulated in the Tool coordinate system.

244

Move Class

During each Trajectory set point evaluation, any combination of incremental changes in
ously
sition

g the real-time
antly reduced from the general case of position and orientation

ntal orientation changes should be specified as 0 unless needed.

 steps that are only
 changes that continue until new values are specified. The

without
 post new values each trajectory cycle. The interpretation of

ental changes are specified by the change_type parameter as follows:

any of the six degrees-of-freedom (Dx, Dy, Dz, Rx, Ry, Rz) can be simultane
only incremental poapplied. However, in terms of computational efficiency, if

omputational requirements for applyinchanges are made, the c
mod nificifications are sig
hanges. So, incremec

As a con incremental changes can be specified as singlevenience, the
 continuousapplied once or

continuous change modes are useful to produce smooth continuous changes
drequirin

e increm
g that a GPL threa

th

change_type
Value Description

0 No change. Equivalent to specifying 0 for all 6 coordinates.

1 a
Once. Changes are applied a single time and then no further changes

re made until a new set of changes are posted.

2 (mm/sec or deg/sec) and are not
Continuous, ignore System Speed. Changes are interpreted as speeds

 affected by the setting of the System
rol Panel. Speed on the web interface Operator Cont

3 (mm/sec or deg/sec) and are
Continuous, consider System Speed. Changes are interpreted as speeds

 affected by the setting of the System Speed
on the web interface Operator Control Panel.

This mode will remain in effect until one of the following occurs:

1. The
all sp

Move.StopSpecialModes method is executed to terminate
ecial control modes for the robot.

stop occurs.

ng a
r any

Exampl

1: Move up/down in Z based upon DIO signals

 Dim rtmod As New Thread("rtmod")
 rtmod.Start ' Start RT change service thread
 Robot.Attached = 1
 Move.StartRealTimeMod(1,2) ' Turn on RT correction function
 Move.Loc(p0, pf0)
 Move.Loc(p1, pf0)
 Move.WaitForEOM
 rtmod.Abort
 Move.StopSpecialModes ' Turn off RT correction function
 Robot.Attached = 0
End Sub
Public Sub rtmod
 Dim rtm_spd(6) As Double
 While True
 Controller.SleepTick(2) ' Adjust every other traj tick
 If (Signal.DIO(20001)) Then
 rtm_spd(2) = 10 ' +10 mm/sec in Z

2. A hardware error or hard E-stop or soft E-
3. A ecel is issued. RapidD
4. The robot is detached by the user program either by issui

tach command or by halting user program execution fode
reason.

es

xample #E

ublic Sub MAIN P

245

GPL Dictionary Pages

 ElseIf (Signal.DIO(20002)) Then
 rtm_spd(2) = -10 ' -10 mm/sec in Z
 Else
 rtm_spd(2) = 0 ' Don't move
 End If
 Move.SetRealTimeMod(rtm_spd) ' Set new speed
 End While
End Sub

Example #2: Add Tool-Y weaving to baseline motions

Const WEAVE_SPEED As Double = 20 ' Weave moves at this mm/sec speed
Const WEAVE_MAGNITUDE As Double = 5 ' Weave magnitude
Const WEAVE_PRIORITY As Integer = 16 ' Execution priority for the RealTimeMod
 ' thread
Const WEAVE_HP_TIME As Double = 0.250' Estimated execution time
Const WEAVE_N_PHASE As Double = 0.500' RealTimeMod executed this many msec
 ' after trajectory generator.
Private WeaveMode As Integer ' Controls operation of weaving thread
 ' 0 = Not active
 ' 1 = Start weaving
 ' 2 = Weave executing
 ' 3 = Stop weaving
' Standard motion program.

Public Sub MAIN
 Dim weave As New Thread("Weave")
 WeaveMode = 0 ' Weaving not active
 weave.Start ' Start weaving thread
 Robot.Attached = 1

 Move.Loc(p0, pfj)
 Move.WaitForEOM

fs)
 (p2, pfs)
 Move.WaitForEOM

 WeaveMode = 3 ' Stop weaving
 While (weave.ThreadState = 2) ' Wait until weaving stops
 Thread.Sleep(2)
 End While
 Move.StopSpecialModes ' Turn off RT correction function
 Robot.Attached = 0
End Sub

' Weaving function

Public Sub Weave
 Dim rtm_spd(6), traj_rate, dy As Double
 traj_rate = Controller.PDbNum(600,1)*1000 ' Traj update rate in msec
 Thread.Schedule(WEAVE_PRIORITY, traj_rate, WEAVE_HP_TIME, _
 WEAVE_N_PHASE) ' Increase task priority

 While True
 Select WeaveMode
 Case 0 ' Weave not active

 Case 1 ' Start weaving
 rtm_spd(1) = WEAVE_SPEED ' Set default speed
 Move.SetRealTimeMod(rtm_spd) ' Start weaving
 WeaveMode = 2 ' Weaving active

 Case 2 ' Weaving active
 dy = Robot.RealTimeModAcm.Y ' Get current weave magnitude
 If (Math.Abs(dy) >= WEAVE_MAGNITUDE) Then
 rtm_spd(1) = -WEAVE_SPEED*Math.Sign(dy) ' Reverse direction
 Move.SetRealTimeMod(rtm_spd) ' Set new speed
 End If

 Move.StartRealTimeMod(3,2) ' Turn on RT correction function
 WeaveMode = 1 ' Start weaving
 Move.Loc(p1, p

 Move.Loc

246

Move Class

 Case 3 ' Stop weaving
 dy = Robot.RealTimeModAcm.Y ' Get current weave magnitude

 Then
tThread.Abort ' Weave at center, stop

 rtm_spd(1) = -WEAVE_SPEED*Math.Sign(dy) ' Reverse direction
 Move.SetRealTimeMod(rtm_spd) ' Set new speed
 End If
 End Select
 Thread.Sleep(1) ' Wait for next trajectory cycle

 If (Math.Abs(dy) <= 1.5*WEAVE_SPEED)
 Thread.Curren
 Else

 End While
End Sub

Datalog of Cartesian X/Y axes during weaving

See Also

Move Class | Move.SetRealTimeMod | Move.StopSpecialModes | Robot.CartMode |
Robot.RealTimeModAcm

247

GPL Dictionary Pages

Move.StartS

Starts, alters or stop matic control of an analog output channel (DAC) whose value
 computed based upon the robot's instantaneous tool tip speed.

peedDAC Method

s auto
is

Move.StartSpeedDAC (mode, n_segments, speed_array, dac_array)

Prerequisites

• The "Advanced Controls" license must be installed
• High power to the robot must be enabled.
• The robot must be homed.
• The robot must be Attached by the thread.
• This mode is only compatible with the standard position control mode and

Cartesian interpolated motions.

ters

mode

Parame

An optional numeric expression that is not currently used. This is a

n_segments

A required numeric expression that evaluates to the Integer number of

speed_array

define the ranges of speeds that are
interpolated in each piecewise linear segment. If n_segments is 1, the

 elements. If n_segments is 2, the
second array element (1) and the third (2) define the range of tool tip

ments. Speed values must be 0 or greater and must
monotonically increase within the speed_array. That is, element (1)

t be , and (2) must be gr c.
eed

dac_array

An optional s that define the ranges of DAC values that
are output for each of the piecewise linear interpolation segments. The
first two elements (0) and (1) define the range of DAC values that are

placeholder for future capabilities.

piecewise linear interpolation segments that define how tool tip speeds
are converted to raw DAC commands. If this value is 0 or negative, the
SpeedDAC mode is terminated. The maximum permitted value for this
parameter is 3.

An optional array of Doubles that

first array element (0) and the second array element (1) define the range
of tool tip speeds that are converted to DAC values by interpolating
between the first two dac_array

speeds that are converted by interpolating between the second and third
dac_array ele

mus
All sp

greater than element (0)
s are in units of mm/sec.

eater than (1), et

array of Double

248

Move Class

interpolated for the first segment. Each entry in this array is interpreted
as a raw DAC value from 32767 to -32768, which represent voltages
from +10VDC to -10VDC. There is no restriction on values stored in
each DAC element, i.e. sequential entries can be increasing, decreasing
or the same.

Remarks

This method initiates, changes or terminates a special trajectory mode that computes the
instantaneous commanded speed of the attached robot's tool tip and automatically sets
the value of an analog output channel (DAC) based upon the computed speed. The
trajectory generator computes the tool tip s
points. This comp e
tr ud at
due to the global test sp by the Ope
modifications, etc.

The computed tool tip speed is converted to
linear interpolation segments. If a single se
linearly converte es
in the speed ran ue
than the highest value range a
two or more linear segments are specified,
tip speeds and DAC values can be represe

s for a

peed each time it evaluates the path set
ration all of the characteristics of the
ions, motion blending, any reduced speed
rator Control Panel, real-time path

utation takes into consid
ing accelerations, deceler

eed set
ajectory incl

 a DAC value using one or more piecewise
gment is specified, a range of speeds are
. Speeds that are less than the lowest value

 in the DAC range. Speeds that are higher
re set to the last value in the DAC range. If
a piecewise linear relationship between tool
nted.

d to a range of DAC valu
ge are set to the first val

 in the speed

The following graph illustrates how tool tip speeds are converted to DAC value
sample two segment (n_segments=2) specification:

Once the DAC value is computed by the Trajectory Generator using the piecewise linear
de interpolates between
es the interpolated value

es that the DAC value will be

ode is

specification, the value is sent to the servo code. The servo co
sequential DAC values at the PID loop evaluation rate and writ
to the hardware DAC. This extra level of interpolation ensur
changed smoothly and accurately.

If this method is called with 0 segments specified, this special trajectory m
terminated and the DAC value is set to 0.

249

GPL Dictionary Pages

This mode can be started, modified and stopped at any time when the robot is idle or
moving. However, once started, only Cartesian interpolated motions (e.g. straight-line or
ircular interpolated) can be executed.

re important for the operation of the
SpeedDAC method.

c

There are several Parameter Database values that a

Parameter
Database ID

Parameter Name Description

2014 Speed DAC output map:
node, channel

This parameter must be set to the controller node
number and the number of the DAC to be
controlled. If this parameter is not set, the
SpeedDAC method can still be used to compute
the instantaneous speed of the robot's tool tip,
but no hardware analog output signal will be
generated. If this parameter is set, the output
value of the specified DAC channel will be
continuously written by the servo code even
when the SpeedDAC method is not enabled.
During this period, the "SpeedDAC mode DAC
output value" (DataID 3542) can be manually
written to output values to the DAC. The value of
DACs configured for SpeedDAC operation
should not be modified via GPL's Signal.AIO
methods.

3541 SpeedDAC mode tool tip
speed

If the SpeedDAC mode is enabled, this
parameter returns the robot's tool tip speed in
mm/sec. This is the actual tool tip speed and is
affected by the "System wide test speed" (DataID
601).

3542 SpeedDAC mode DAC
output value

If the SpeedDAC mode is enabled, this
parameter returns the value that is written to the
DAC and will range from 32767 to -32768. If the
SpeedDAC mode is disable but the DAC is
configured via the "Speed DAC output map:
node, channel" (DataID 2014), the servos control
the value of the DAC and this DataID can be
written to explicitly set the DAC value.

This mode will remain in effect until one of the following occurs:

1. A Move.StartSpeedDAC method is executed with a zero
n_segments parameter.

2. The Move.StopSpecialModes method is executed to terminate
all special control modes for the robot.

3. A hardware error or hard E-stop or soft E-stop occurs.
4. A RapidDecel is issued.
5. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Examples

250

Move Class

Dim prof1 As New Profile
Dim loc1 As New Location
Dim speeds(2), dacs(2) As Double
Robot.Attached = 1 ' Get control of robot #1

 ' At 30 mm/sec

prof1.Straight = True ' Must be Cartesian motion
YZ(10,20,-30,0,180,20) ' Define position to move to
oc(loc1, prof1) ' Move to loc1 using prof1

Move.WaitForEOM
Move.St nate mode
Robot.A se control of robot

See Also

speeds(0) = 30

dacs(0) = 1*32768/10 ' output 1 VDC

speeds(1) = 300 ' At 300 mm/sec

dacs(1) = 5*32768/10 ' output 5 VDC

Move.StartSpeedDAC(0, 1, speeds, dacs) ' Start SpeedDAC output

loc1.X
Move.L

artSpeedDAC(0,0) ' Termi
eattached = 0 ' Rel

Move Class | Move.StopSpecialModes | Robot.CartMode

251

GPL Dictionary Pages

Move.StartTorqueCntrl Method

Initiates execution of torque control mode for one or more motors.

Move.StartTorqueCntrl (motor_mask, adc_mask, torques_array)

Prerequisites

• High power to the robot must be enabled.
• The robot does not need to be homed.
• The robot must be Attached by the thread.

Parameters

motor_mask

A re t evaluates to a bit mask that specifies
the it
corresp

adc_mask

the single motor whose torque is to be directly controlled by the first ADC
input channel. This value should be zero if no motor is to be ADC
controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
correspondin d motor torque.

h
rque

 for the robot’s first motor. Array elements for motors that are not
ed as a

que
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

Remarks

This method places the specified motors into torque control. Motors that are not placed
into torque control mode continue to operate in position control mode and can be moved
by the standard Move Class Methods. Thus, some axes of the robot can continue to

quired numeric expression tha
motors to be placed into torque control mode. The least significant b

onds to the first motor for the attached robot.

A required numeric expression that evaluates to a bit mask that specifies

g motor at its full positive or negative rate
Sinc motor torque can usually be higher than the rated torque, e the peak
ADC values greater than +- 1.0 are permitted.

torques_array

A required array of Doubles that contains a torque specification for eac
moto
alue

r of the robot. The first array element (0) corresponds to the to
v
torque controlled are ignored. Each array element is interpret
percentage, where a value of +100 or –100 indicates that the tor

252

Move Class

follow a position-controlled path while others can exert a force or can move freely if their
torque output is set to zero.

ask, that motor’s torque output level is the sum of the
d the value defined by

 to be completed. It
then transitions the specified motors into torque control and sets their initial torque levels

values specified in the torques_array. The torque levels can subsequently be
ed by executing a Move.SetTorques method or by a change in the ADC signal.

Sin to p around a motor, the torque applied
is u f

If a motor is specified in the adc_m
percentage of rated motor torque specified in the torques_array an
the ADC input.

When this method is executed, it first waits for any in-process motions

to the
chang

ce rque control does not close
naf ected

 the position loo
 by the current setting of the "System Test Speed". This is the spee

 ca be set via the web Operator Control Panel o
d value

that n r the "System wide test speed in %"
(DataID 601) database parameter.

The specified motors will remain in torque control mode until one of the following occurs:

1. The method is executed to terminate

4. The robot is detached by the user program either by issuing a
detach command or by halting user program execution for any
reason.

Torque .
Howeve rol mode.

Examples

Dim torques(12) As Double ' All Double torques will be 0
Dim ii,
Robot.A
Move.St
For jj
 For

 Nex
Next jj
Move.StopSpecialModes ' Terminate torque mode

ached = 0 ' Release control of robot

See Also

Move Class

Move.StopSpecialModes
torque control mode for all motors.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.

control mode is compatible with both position and velocity control modes
r, torque control mode can only be initiated when in position cont

 jj As Integer
ttached = 1 ' Get control of robot #1
artTorqueCntrl(1, 0, torques) ' Set motor 1 to torque mode
= 1 To 10
 ii = 0 To 100
 Controller.Sleeptick() ' Wait till next trajectory cycle
 torques(0) = ii/10 ' New torque value
 Move.SetTorques(torques) ' Ramp torque from 0% to 10%
t ii

Robot.Att

 | Move.SetTorques | Move.StopSpecialModes

253

GPL Dictionary Pages

Move.StartVelocityCntrl Method

Switches all axes of a robot from position to velocity control mode.

Move.StartVelocityCntrl (mode, adc_mask, speeds_array, profile_1)

Prerequi

• The robot must be Attached by the thread.

Parame

sites

• High power to the robot must be enabled.
• The robot must be homed.

ters

mode

A required numeric expression that evaluates to the mode of velocity
control to be executed. Currently, this parameter is unused and should
be set to 0 for compatibility with future software releases.

ull 100% speed.

A re
axis t
spe each axis
of th
axes) or
maximu
"Max % owed" (DataID 2704).

file_1

d of

ccur if an axis
locity

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
the single axis whose speed is to be directly controlled by the first ADC
input channel. This value should be zero if no axis is to be ADC
controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
corresponding axis at its f

speeds_array

quired array of Doubles that contains a speed specification for each
he robot. The first array of element (0) corresponds to the target

ed for the robot’s first axis. One value must be provided for
e robot. Each array element is interpreted in units of mm/sec (linear

 deg/sec (rotary axes). These values are limited by the
m permitted joint speeds, "100% joint speeds" (DataID 2700) *
speed all

pro

A required Profile Object or an expression that evaluates to a Profile
 Object value. This value defines the acceleration, deceleration and

/deceleration ramp times to be use to change the speeacceleration
each axes. In ce p

ooting the target velocity, but the acceleration and
rtain cases, it may not be possible to honor the ram

times without over-sh
deceleration limits are adhered to. For example, this can o
is accelerating to a e
arget is specified.

 high velocity and suddenly a new, lower v
t

254

Move Class

Remarks

This method switches all of the axes of a robot from the standard position controlled
mode to velocity controlled mode. When in velocity controlled mode, each axis accepts a
target speed as its command rather than a position. The target speeds can be set by this
method or can be updated at any time using the Move.SetSpeeds method. Once each
axis has accelerated, it will continue to rotate at its target speed until the speed is
explicitly changed, velocity control mode is terminated or an error occurs.

As with position control mode, velocity control mode is compatible with torque control
mode. That is, when in velocity control mode, one or more motors can be in torque
control mode. (Note: Motors must be placed into torque control mode when the robot is in
position control mode. After motors are placed into torque control, the position-controlled
joints can then be switched to velocity control mode.)

If an axis is specified in the adc_mask, that axis' target speed is the sum of the
appropriate value in the speeds_array plus the value defined by the ADC input.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into velocity control mode and sets the initial
target speeds to the values specified in the speeds_array. The speed targets can
subsequently be changed by executing a Move.SetSpeeds method or by a change in the
ADC signal.

As a convenience in debugging applications, the velocity control target speed is affected
by the current setting of the "System Test Speed". This is the speed value that can be
set via the web Operator Control Panel or the "System wide test speed in %" (DataID
601) database parameter. In addition, software and hardware limit stop checking is still
performed during this mode of operation. If an axis is to be rotated continuously, motors
can be configured for continuous turn capability assuming that this capability is supported
by the robot's kinematic module.

The robot will remain in velocity control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate
velocity control mode.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Examples

Dim speeds(12) As Double ' All Double speeds will be 0
Dim pf1 As New Profile ' Use default accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control of robot #1
Move.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velocity control mode
For ii = 36 To 360 Step 36
 speeds(0) = ii ' New speed value
 Move.SetSpeeds(speeds) ' Ramp axis 1 speed
 Controller.Sleeptick(30) ' Wait a little while
Next ii
Move.StopSpecialModes ' Terminate velocity mode
Robot.Attached = 0 ' Release control of robot

255

GPL Dictionary Pages

See Also

Move Class | Move.SetSpeeds | Move.StopSpecialModes | Move.StartTorqueCntrl

256

Move Class

Move.StopSpecialModes Method

Terminates execution of any active special trajectory control modes.

Move.StopSpecialModes

Prerequi

High power to the robot must be enabled.
The robot must be Attached by the thread.

Parameters

Non

special trajectory modes are in effect, this method executes the equivalent of a
Robot.Ra to immediately decelerate any moving axes of the attached robot to a
stop. At s will be
termina e standard position control mode. If no special
modes are in effect, this method performs no operation and does not signal an error.

In particular, the following modes of execution will be terminated:

Jog (manual) control mode
aster/slave mode

Real-time trajectory modification mode

Examples

Move.StopSpecialModes ' Halts any special control modes in effect

See Also

Move Class

sites

•
•

e

Remarks

If any
pidDecel

 the completion of this operation, all special trajectory generation mode
ted and the robot will be in th

External trajectory control mode

M

Torque control mode
Velocity control mode

 | Move.StartJogMode | Move.StartRealTimeMod | Move.StartTorqueCntrl |
Move.StartVelocityCntrl | Robot.Rapid.Decel

257

GPL Dictionary Pages

Move.

at a
xt or current motion. Up to two independent

triggers can be set for a given motion.

Trigger Method

Primes the system to automatically assert a digital output signal or a thread event
prescribed trigger position during the ne

Mov rigger (ere.T mode, trigg _pt, channel)
-or-
Mov r (mode, trigger_pt, thread_object, event_mask) e.Trigge

Prerequisite

High pow he rob
The robot must be Se

Parameters

m

A required arithmetic
trigger position is def

trigger_pt

(Digital Output Trigger Only) A required arithmetic expression that

thread_object

hread Event Trigger Only) A required numeric expression that

s

• er to t ot must be enabled.
lected or Attached by the thread. •

ode

 expression that defines the manner in which the
ined.

A required arithmetic expression that defines the trigger position. The
interpretation of this value is a function of the mode.

channel

specifies the digital I/O channel whose output is set at the trigger point.
If the channel number is positive, the output is turned ON at the trigger
point. If the channel number is negative, the output is turned OFF at the
trigger point. If the value is 0, any previous Move.Trigger operation is
disabled.

(Thread Event Trigger Only) A required Thread Object that defines the
user thread whose event will be set at the trigger point.

event_mask

(T
specifies the events to be set at the trigger point. Each bit in event_mask
corresponds to a different event. Bit 0 (mask value &H0001) corresponds
to event 1. Multiple events may be specified. The maximum event is 16,
so the maximum value for event_mask is &HFFFF.

258

Move Class

Remark

meters will be asserted when the next or current motion reaches a specified trigger
position. The trigger position is defined by the mode and the trigger_pt values as
described in the following table:

s

After this instruction is executed, the digital output signal or thread event defined by the
para

mode trigger_pt Resulting Trigger Point

0 % (0-100)
% of change in position of the motion measured from the
start of the motion, e.g. 0 indicates start of motion.

1 % (0-100)
% of change in position of the motion measured from the
end of the motion, e.g. 0 indicates end of motion.

2 mm
Distance in millimeters from the start of the motion. Only
valid for straight-line and arc motions.

3 mm
Distance in millimeters before the end of the motion. Only
valid for straight-line and arc motions.

4 seconds Time after the start of the motion.
5 seconds Time before the end of the motion.

100+n

Applies to the currently executing motion instead of the next
motion. For example, a mode of 102 is the same as m
except that the trigger is with respect to the currently

ode 2

executing motion instead of the next motion.

1000+m

Defines the second trigger for the specified motion instead
of the first. For example, a mode of 1102 is the same as
mode 102 except that the second trigger of the currently
executing motion is primed instead of the first.

For example, if the mode is "1" and the trigger_pt is "10", if the next motion is joint

per

s 4 & 5, the trigger point is computed assuming that the system is operating
t via the Operator Control Panel) at a value of 100%. If the

ffective trigger point
to be independent of the System Speed,
value of the "System wide test speed in %"

).

If the next motion is blended with the subsequent motion and a mode is selected that is
ve to the end of the next motion, the trigger point will be relative to the end of the
ng period. Since the start and end of the blending period are a function of both the

next and the subsequent motions, the trigger point will vary as a function of both
motions. Likewise, if the next motion is blended with the previous motion, trigger points
defined relative to the start of the next motion will vary as a function of the motion
blending.

If you desire to trigger a signal when the robot reaches the end point of a motion, but that
motion is blended with the subsequent motion, it is possible to trigger at approximately

interpolated, the channel signal will be asserted by the first trigger when the joints are
 achieved with a90% of the way to their final values. Alternately, the same result could be

mode of "1001". In this case, the second trigger will be utilized. The two triggers
motion are completely independent and identical in their performance.

For mode
with the System Speed (as se
System Speed is set to 50%, the motion time is doubled and the e
time is doubled as well. To set the time value

r_pt value should be adjusted by the the trigge
(DataID 601

relati
blendi

the correct position without regard to the details of the blending algorithms. Specifically,
if you wish to trigger when the robot reaches position Pn, create two intermediate
positions that are equidistance before and after Pn (Pn minus a small delta and Pn plus a

259

GPL Dictionary Pages

small delta). Then rather than moving to Pn, move to Pn minus the delta and then Pn
plus the delta. If you set the trigger to occur 50% of the way through the motion between

ions, the signal will trigger when the robot is approximately at these two intermediate posit
Pn.

If a motion terminates in the standard manner, the digital output signal or thread event is

.

Exampl

lic Sub MAIN
 Dim Evt_Thd As New Thread("Bckgnd_thread")

 Move.Trigger(1001, 10, Evt_Thd, &H10)' Trigger event 90% into motion
 Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in tool coordinates

Robot.Attached = 0 ' Release control of robot
End Sub

 Bckgnd_thread()
 Thread.WaitEvent(&H10, -1) ' Wait for trigger
 Signal.DIO(20001) = 0 ' Turn off signal
 Console.WriteLine("Thread triggered")
End Sub

See Also

Move Class

guaranteed to be asserted at some point during the motion. However, if an error or
RapidDecel function prematurely terminates a motion, the trigger may not be asserted

es

Pub

 Dim pf1 As New Profile ' Use default accel/decel
 Evt_Thd.Start ' Start background thread
 Robot.Attached = 1 ' Get control of robot #1
 Signal.DIO(20001) = 0 ' Turn off signal
 Move.Trigger(0, 20, 20001) ' Turn on 20% into motion

Public Sub

260

Move Class

Move.WaitForEOM Method

Suspends execution of the current thread until the robot completes its current motion.

Move.WaitForEOM

Prerequi

Parameters

Remarks

This allows a program that is co rob ng its
execution with the robot by susp ec

mpleted. Th is
 controlled

Examples

Dim pro ' Create new profile set to default values
Move.Lo

 ' E
 ' E

See Als

Move Class

sites

• High power to the robot must be enabled.
• The robot must be Attached by the thread.

None

ntrolling a ot (i.e. Attached to) to synchronizi
ending ex ution of the thread until any current robot

 both motion has been co
position and velocity

is method
motions.

valid for waiting until the completion of

f1 As New Profile
c(loc1, prof1) ' Move to global loc1

Move.WaitForEOM
 :

xecution sus
xecution con

pended until robot at loc1
tinues here after robot stops

o

 | Move.Approach | Move.Loc | Move.OneAxis | Move.Rel

261

Networkin
Networking Classes Summary

The following pages provide detailed information on the properties and methods for the
vario ent Eth etworking commun

classes include
cket Class that is the basis and

re s; a TcpListener Class that is used for
pli TcpClient Class for implementing TCP client

UdpClient Cl t
communica

he tables below briefly summarize the properties and methods for each Class, which
scribed in greater detail in the following sections.

g Classes

us classes that implem ernet n ications.

The networking
addresses; a So

: a IPEndPoint Class for specifying IP and port
 for most networking I/O operations

contains the basic send and
implementing TCP server ap

ceive method
cations; a

applications; and finally a
side of UDP based

ass
tions.

for implementing both the server and clien

T
are de

IPEndPoint Member Type Description

New IPEndPoint Constructor
Method

Creates an Endpoint and allows the IP
Address and Port to be specified.

ipendpoint_obj.IPAddress Property Sets or gets the IP Address of an Endpoint.
ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.

Socket Member Type Description

socket_obj.Available G
aProperty ets the number of data bytes currently
vailable to receive from a Socket.

socket_obj.Blocking Property
Sets or gets the blocking mode for a Socket.
If True, the Socket blocks. If False, it does
not block.

socket_obj.Close Method Closes any connections associated with a
Socket.

socket_obj.Connect ReqMethod uests a TCP Client connection with a
remote TCP Server.

socket_obj.KeepAlive Property
Sets or gets the flag that controls whether a
keep-alive message is automatically

 current TCP connection. transmitted over the

socket_obj.Receive Method Re m from an open TCP
connection.

ceives a datagra

socket_obj.ReceiveFrom Method Receives a datagram from an open UDP
connection.

socket_obj.ReceiveTimeout Property Sets or gets the receive timeout, in
milliseconds, for a Socket.

socket_obj.RemoteEndPoint Property Gets information about the remote end point
of a TCP connection.

socket_obj.Send Method Sends a datagram on an open TCP
connection.

socket_obj.SendTimeout Property Sets or gets the send timeout, in

262

Networking Classes

milliseconds, for a Socket.

socket_obj.SendTo Method Sends a datagram to an open UDP
connection.

TcpClient Member Type Description

New TcpClient Constructor C
Method

reates an Object for a TCP Client and
optionally requests a connection.

tcpclient_obj.Client Method Returns the embedded Socket for
performing I/O.

tcpclient_obj.Close Method Closes a Client Socket and breaks any
connection.

TcpListener Member Type Description

New TcpListener Constructor
Method

Creates an Object for a TCP S
listen for connections.

erver to

tcplistener_obj.AcceptSocket Method Accepts a connection and returns a n
Socket Object

ew
 for use by the TCP Server.

tcplistener_obj.Close Method Stops listening and closes the listener
Socket.

tcplistener_obj.Pending Property
True if there is a pending conne
AcceptSocket will succeed. Otherw
False.

ction and
ise

tcplistener_obj.Start Method Starts listening for connection requests.

tcplistener_obj.Stop Method Stops listening and closes the listener
Socket. Same as Close method.

UdpClient Member Type Description

New UdpClient Constructor
Method Creates an Object for I/O using UDP.

udpclient_obj.Client Method performing I/O.
Returns the embedded Socket for

udpclient_obj.Close Method Closes a Socket.

263

GPL Dictionary Pages

New IPEndPoint Constructor

Constructor for creating an IP endpoint object and optionally initializing it.

New IPEndPoint (IP_address, port_number)

Prerequisites

None

Parameters

IP_address

An optional string containing a standard IP address in the form
“nnn.nnn.nnn.nnn”. This address identifies a computer or computer-
based device on the network. If omitted, or empty, the IP address is

port_number

igned
automatically.

Remarks

ss on a
 an

endpoint address consisting of these two items.

Examples

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address 192.168.0.2
Dim ep As New IPEndPoint("", 69) ' Port 69 at any address

See Also

Networking Classes

assumed to be a “wild card”, matching any address.

An optional number specifying the port number, from 0 to 65536 of a
process, protocol, or connection. If omitted, the port number is ass

The combination of IP address and port uniquely specifies a computer and proce
network. When messages are exchanged, both the sender and the receiver have

 | ipendpoint_object.IPAddress | ipendpoint_object.Port

264

Networking Classes

ipendpoint_object.IPAddress Property

Sets or gets the IP address associated with an IPEndPoint object.

ipendpoint_object.IPAddress = <ip_address_string>
-or-
...ipendpoint_object.IPAddress

Prerequisites

None

Parameters

None

Remarks

The IP Address identifies a computer or computer-based device on the network. If empty,
the IP address is assumed to be a “wild card”, matching any address.

 or from a string
value. The string value contains the address in the form nnn.nnn.nnn.nnn where each

 field is a decimal number representing 8 bits of the 32-bit IP address.

Examples

ep.IPAddress = "192.168.0.2" ' Assign the IP Address to the endpoint
nsole.Writeline(ep.IPAddress) ' Display the IP Address of the endpoint

Networking Classes

This property converts the IP Address part of an IPEndPoint Object to

nnn

Dim ep As New IPEndPoint()

Co

See Also

 | NewIPEndPoint | ipendpoint_object.Port

265

GPL Dictionary Pages

ipendpoint_object.Port Property

Sets or gets the port number associated with an IPEndPoint Object.

ipendpoint_object.Port= <port_number>
-or-
...ipendpoint_object.Port

Prerequ

Parame

ne

Remark

ndpoint. This number
may range from 0 to 65536.

f an IPEndPoint Object.

 of an endpoint object
rt of the endpoint

See Also

isites

None

ters

No

s

The port number specifies a process, protocol, or connection at an e

This property sets or gets the port number o

Examples

Dim ep As New IPEndPoint()
ep.Port =
Console.Wri

 1234 ' Set the port
teline(ep.Port) ' Display the po

Networking Classes | NewIPEndPoint | ipendpoint_object.IPAddress

266

Networking Classes

socket_object.Available Property

m a Socket. Gets the number of data bytes currently available to receive fro

...socket_object.Available

Prerequi

 and ready to receive data.

operty returns the number of bytes available on an open Socket. If this number is
greater than zero, a Receive or ReceiveFrom method may be called to read data.

rows an Exception if the Socket is not open or an error occurs.

Exampl

While ts.Available = 0 ' Test if anything to receive

See Also

Networking Classes

sites

The Socket must be open

Parameters

None

Remarks

This pr

Th

This method may be used to poll for data to read. A better solution is to set the
ReceiveTimeout property for the Socket.

es

 Thread.Sleep(1000) ' Wait 1 second
End While
ts.Receive(recv, 1500) ' Receive the data

 | socket_object.Blocking | socket_object.ReceiveTimeout

267

GPL Dictionary Pages

socke

Gets or sets the blocking I/O mode for a Socket.

t_object.Blocking Property

socket_object.Blocking <boolean_value> =
-or-
...socket_object .Blocking

Prerequi

cket must be open in order to set this flag.

Parame

Remark

is property sets or gets the state of the blocking mode for a Socket. If the Socket is in
cking mode, calls to receive data wait until data is available, and calls to send data

 are created in blocking mode.

ad by repeatedly issuing receive
requests and handling the Exception. A better solution is to use the Available property
or to set the ReceiveTimeout or SendTimeout property for the Socket.

Exampl

 = 0 ' Set to non-blocking mode
ilable = 0 ' Test if anything to receive

 Thread.Sleep(1000) ' Wait 1 second
d While
.Receive(recv, 1500) ' Receive the data

Networking Classes

sites

The So

ters

None

s

Th
blo
wait if the output queue is full. If the Socket is not in blocking mode, calls to send or
receive data throw an Exception if they would have to wait.

By default Sockets

Non-blocking mode may be used to poll for data to re

es

ts.Blocking
While ts.Ava

En
ts

See Also

 | socket_object.ReceiveTimeout | socket_object.SendTimeout

268

Networking Classes

socket_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

ne

Remark

 Close method may be used to close the network connection and free up resources.
 is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket

 actually closed.

Exampl

Dim tl As New TcpListener(ep)

tl.Close
sock.Close

See Also

Networking Classes

No

s

The
If it
is

If th cket is rrently open, no error occurs. e So not cu

es

Dim sock As Socket
...

269

GPL Dictionary Pages

socket_object.Connect Method

Initiates a TCP client connection with a remote TCP server.

socket_object.Connect (remote_endpoint)

Prerequi

t Object must have been created by a tcpclient_object.Client method with the
int parameter omitted.

Parame

te_endpoint

A required IPEndPoint Object that specifies the IP address and port
number of the remote endpoint to which you wish to connect.

Remarks

This method is only called when the remote endpoint of a connection was not specified in
the constructor for the initial TcpClient Object from which the Socket was obtained.

Examples

t

See Als

Networ

sites

The Socke
endpo

ters

remo

Dim tc As New TcpClient() ' Optional endpoint not specified
Dim sock As Socke
Dim ep As New IPEndPoint("192.168.0.3", 1234)
sock = tc.Client
sock.Connect(ep)

o

king Classes | New TcpClient Constructor

270

Networking Classes

socket_ob

Sets or gets the Boolean flag that controls whether a keep-alive message is
ransmitted over the current TCP connection.

ject.KeepAlive Property

automatically t

socket_object.KeepAlive = <boolean_value>
-or-
...socket_object.KeepAlive

Prerequisites

The Socket must currently be open to set this property.

Parameters

None

Remarks

This property sets, clears or returns the keep-alive flag for the current TCP connection.
When set, the local network node sends a special keep-alive packet periodically on the
TCP connection whenever it is idle for a period of time. This message permits the system
to detect if the network connection is broken (e.g. the network cable is unplugged) even if
the associated GPL thread has not recently communicated using the connection.

If this flag is not set, an idle TCP connection does not send any messages. If the network
path is broken, the local node will not detect the broken connection until it attempts to
send a message.

Using the keep-alive feature eliminates the need to implement “heartbeat” messages
within your application to detect broken connections. Also, since the keep-alive message
is only sent when the connection is idle, it does not increase traffic on a busy connection.

The keep-alive timing for GPL is pre-set as described below and cannot be changed.

1. If the connection is idle, a keep-alive packet is sent every 14 seconds.
2. If no response is received, additional keep-alive packets are sent every 2

seconds.
3. If no response is received after 9 successive keep-alive packets (a total of 32

seconds) the connection is closed locally.

The keep-alive flag only enables the local node to detect a broken connection. If the
remote node wishes to detect a broken connection, it must also set its keep-alive flag.

Examples

Dim tc As New TcpClient() ' Optional endpoint not specified
Dim sock As Socket
Dim ep As New IPEndPoint("192.168.0.3", 1234)

271

GPL Dictionary Pages

sock = tc.Client
sock.Connect(ep)

See Also

Networking Classes

sock.KeepAlive = True ' Enable keep-alive for this connection

272

Networking Classes

socket_object.Receive Method

Receives a message from an open TCP connection.

...socket_object.Receive(input_buffer, max_length)

Prerequisites

An active TCP connection must exist for the Socket.

r the
tcplistener_object.AcceptSocket method.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

 read. If more bytes are
available than this maximum, they must be read by subsequent Receive

alls.

Remarks

If blocki no
guarantee that an entire datagram is received at once.

This method returns the number of bytes of data received. If the number is zero, this

Examples

Dim input As String
Dim count As Integer
sock = tc.Client
count = sock.Receive(input, 2000)

See Als

Networ

The Socket Object must have been created by the tcpclient_object.Client method o

The maximum number of data bytes that are

method c

ng is enabled, this method blocks until some data is received. There is

indicates that the TCP connection has been broken by either the local or remote
endpoint. In this case, the program should close the Socket.

If any other network errors occur, this method throws an Exception.

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket

o

king Classes | socket_object.ReceiveFrom

273

GPL Dictionary Pages

socke

eceives a message from an open UDP Socket.

t_object.ReceiveFrom Method

R

...socket_object.ReceiveFrom(input_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Object must be open for UDP I/O.

The Socket Object must have been created by the udpclient_object.Client method.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they are lost.

remote_endpoint

A ByRef IPEndPoint Object that receives endpoint information
identifying the remote source of the received data. The original contents
of remote_endpoint are ignored and replaced by the new information.

Remarks

If blocking is enabled, this method blocks until some data is received. The entire
datagram is transferred by this method, if the max_length value is large enough.

Because of internal limitations on datagram size, max_length values greater than 1536
are not useful.

This method returns the number of bytes of data received. If that number is zero, this
indicates that the Socket has been disconnect and should therefore be closed.

If any other network errors occur, this method throws an Exception.

Examples

Dim local_ep As New IPEndPoint("", 1234) ' Receive data for port 1234.
Dim uc As New UdpClient(local_ep)
Dim remote_ep As IPEndPoint
Dim sock As Socket
Dim input As String

274

Networking Classes

Dim count As Integer
sock = uc.Client

remote_ep.IPAddress)
emote_ep.Port))

See Als

Networking Classes

count = sock.ReceiveFrom(input, 2000, remote_ep)
Console.Writeline("Remote IP address: " &
Console.Writeline("Remote Port: " & CStr(r

o

 | socket_object.Receive

275

GPL Dictionary Pages

socket_object.ReceiveTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
receive data.

socket_object.ReceiveTimeout = <timeout>
-or-
...socket_object.ReceiveTimeout

Prerequi

The Socket must currently be open to set this property.

Parameters

None

Remarks

This property allows you to set the timeout period for a Receive or ReceiveFrom
method. It only applies if the Socket is set to blocking. If a receive request blocks waiting
for data, it will only wait for the specified timeout period. If that time is exceeded, the
receive requests throws an Exception. If the timeout period is set to 0, the timeout is
disabled and a request may block indefinitely.

Examples

0) ' Receive the data

See Als

Networkin

sites

 30000 ' Timeout in 30 seconds ts.ReceiveTimeout =

e(recv, 150ts.Receiv

o

g Classes | socket_object.Blocking| socket_object.SendTimeout

276

Networking Classes

socket_object.RemoteEndPoint Property

 TCP connection. Gets remote end point information for an active

...socket_object.RemoteEndPoint

Prerequisites

None

Parame

None

Remarks

This property returns information about the opened end point for a TCP/IP connection.
This inf er a listener accepts a connection. The returned
object is of class IPEndPoint. The IPAddress and Port properties of the returned object

mation about the IP Address and Port of the remote client. If there is no
ction, the returned IPEndPoint object contains IPAddress "0.0.0.0" and Port

0.

Examples

Dim tl As New TcpListener(ep) ' Create listener object

Port))

See Als

Networking Classes

ters

ormation is especially useful aft

contain infor
active conne

Dim ep As New IPEndPoint("", 1234) ' Listen on port 1234
Dim rem_ep As IPEndPoint

Dim sock As Socket
tl.Start
sock = tl.AcceptSocket
rem_ep = sock.RemoteEndPoint
Console.Writeline("Remote IP = " & rem_ep.IPAddress)
Console.Writeline("Remote port = " & CStr(rem_ep.

o

 | tcplistener_object.AcceptSocket | IPEndPoint Class

277

GPL Dictionary Pages

socket_object.Send Method

ction. Sends a message to an open TCP conne

...socket_object.Send(output_buffer, max_length)

Prerequi

t exist for the Socket.

t Object must have been created by the tcpclient_object.Client method or the
ner_object.AcceptSocket method.

Parame

t_buffer

The String value that is sent.

max_length

Remark

locking is enabled, this method blocks if the output queue is full.

his method returns the number of bytes of data actually sent. If in blocking mode, the
requested. In non-blocking mode,

ould re-
issue the Send to output the remainder of the bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = tc.Client
...
count = sock.Send(output)

See Also

Networking Classes

sites

An active TCP connection mus

The Socke
tcpliste

ters

outpu

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

s

If b

T
returned value is always equal to the number of bytes

es requested. In that case, you shthe value may be less than the number of byt

 | socket_object.SendTo

278

Networking Classes

socke

ile waiting to

t_object.SendTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block wh
send data.

socket_object.SendTimeout = <timeout>
-or-
...socket_object.SendTimeout

Prerequisites

e

Parameters

None

Remarks

The pro only
applies if the Socket is set to blocking. If a send request blocks waiting for the output

wait for the specified timeout period. If that time is exceeded, the send
 Exception. If the timeout period is set to 0, the timeout is disabled and

a send may block indefinite

Examples

ts.SendTimeout = 30000 ' Timeout in 30 seconds

See Als

Networ asses

Non

perty allows you to set the timeout period for a Send or SendTo method. It

queue, it will only
request throws an

ly.

ts.Send(trns, 1500) ' Send the data

o

king Cl | socket_object.Blocking| socket_object.ReceiveTimeout

279

GPL Dictionary Pages

socket_object.SendTo Method

P Socket. Sends a message using an open UD

...socket_object.SendTo(output_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Object must be open for UDP I/O.

The Socket Object must have been created by the udpclient_object.Client method.

Parameters

output_buffer

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

remote_endpoint

An IPEndPoint Object that contains endpoint information identifying the
remote destination for the data sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If that number is less than
the number requested, you should re-issue the SendTo to output the remainder of the
bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim uc As New UdpClient()
Dim remote_ep As New IPEndPoint("192.168.0.5")
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = uc.Client
count = sock.SendTo(output, 0, remote_ep)
...
count = sock.ReceiveFrom(input, 2000, remote_ep) ' Get new remote endpoint
...

280

Networking Classes

count = sock.SendTo(output, 0, remote_ep) ' Reply to previous sender

Networ

See Also

king Classes | socket_object.Send

281

GPL Dictionary Pages

New TcpClient Constructor

Constructor for creating a TcpClient Object and optionally connecting to a remote TCP
server.

New TcpClient (endpoint)

Prerequisites

None

Parameters

endpoint

An optional IPEndPoint Object that contains the IP address and port

rmed.

 TcpClient Object and creates the underlying Socket. If
meter is specified, a connect request is sent immediately to the

 omitted, a Connect method must be called for the TCP client
Socket before I/O can be performed.

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address 192.168.0.2
Dim tc As New TcpClient(ep) ' Connect to remote endpoint

Dim tc As New TcpClient() ' Create socket but do not connect

See Also

Networking Classes

identifying the remote endpoint of a TCP server. If omitted, a Connect
method must be called later for the TCP client Socket before I/O can be
perfo

Remarks

This truc
int para

 cons tor creates a new
the optional endpo
remote server. If it is

Examples

 | socket_object.Connect

282

Networking Classes

tcpclient_object.Client Method

Returns the Socket Object associated with a TcpClient Object.

...tcpclient_object.Client

Prerequi

Parame

Remark

 all I/O is performed on Sockets, this method allows the Socket associated with a
t object to be accessed.

Examples

Dim tc As New TcpClient(ep)

See Also

Networking Classes

sites

None

ters

None

s

Since
TcpClien

Dim sock As Socket
sock = tc.Client

 | udpclient_object.Client

283

GPL Dictionary Pages

tcpclient_object.Close Method

UdpClient Object.
Closes the network connection associated with a Socket, TcpListener, TcpClient, or

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequi

None

Parameters

None

Remarks

sed.

Socket is not currently open, no error occurs.

Exampl

m tl As New TcpListener(ep)
Dim sock As Socket

sock.Close

See Also

Networking Classes

sites

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually clo

If the

es

Di

...
tl.Close

284

Networking Classes

New TcpListener Constructor

Constructor for creating a TcpListener Object that allows a TCP server to be created.

New TcpListener (endpoint)

Prerequisites

None

Parame

oint

An IPEndPoint Object that contains the IP address and port identifying
the local endpoint for connections accepted by this TCP server. The IP
address of this endpoint is ignored since GPL controllers only have a
single IP address. The port number determines the port on which the

Remark

This constructor creates a new TcpListener Object and creates the underlying Socket.
t method is called. These

Objects are the basis for implementing TCP servers.

Examples

tener(ep) ' Create listener object

See Also

Networking Classes

ters

endp

server listens.

s

It does not actually begin listening for connections until the Star

As New Point("", 1234) ' Listen on port 1234 Dim ep IPEnd

 New TcpLisDim tl As

 | tcplistener_object.Start

285

GPL Dictionary Pages

tcplistener_object.AcceptSocket Method

 Accepts a TCP connection and returns a new Socket Object for performing I/O on that
connection.

...tcplistener_object.AcceptSocket

Prerequi

CP listener associated with the tcplistener_object should have already been

None

ethod is used by a TCP server to accept a connection request from a remote TCP
It creates a new Socket for performing I/O with that client. If no connection

ests are pending, this method blocks until one is received. To avoid blocking, use the
nding property before calling AcceptSocket.

Exampl

Dim ep As New IPEndPoint("", 1234) ' Listen on port 1234
 tl As New TcpListener(ep) ' Create listener object
 sock As Socket

tl.Start
k = eptSocket

See Als

Networ

sites

The T
started.

Parameters

Remarks

This m
client.
requ
Pe

If any network errors occur, this method throws an Exception.

es

Dim
Dim

soc tl.Acc

o

king Classes | tcplistener_object.Pending

286

Networking Classes

tcplistener_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequ

None

Parame

Remark

 Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket

If the is not currently open, no error occurs.

Exampl

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

isites

ters

None

s

The

is actually closed.

Socket

es

287

GPL Dictionary Pages

tcplistener_object.Pending Property

es if there are any TCP connection requests pending. Gets a Boolean value that indicat

...tcplistener_object.Pending

Prerequi

P listener associated with the tcplistener_object must have already been started.

Parameters

Remark

is property is used by a TCP server to test if there are any pending connection
requests for a TcpListener Object. If so, it returns True. Otherwise it returns False. If
there is a pending request, call the AcceptSocket method to accept it.

If any network errors occur, this property returns False.

Examples

Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
If tl.Pending Then

 sock = tl.AcceptSocket

See Als

Networ

sites

The TC

None

s

Th

End If

o

king Classes | tcplistener_object.AcceptSocket

288

Networking Classes

tcplist

Start listening for TCP connection requests.

ener_object.Start Method

tcplistener_object.Start

Prerequ

None

Parame

ne

Remark

remote TCP clients. You can test if any requests are received by using the Pending
property. After a request is received, it is accepted by calling the AcceptSocket method.
After you accept a connection request, you can call the Stop method to cease accepting

 further connection requests if you wish. Executing the Stop method does not effect
e to service datagrams for connections that have already been

tablished.

If any network errors occur, this method throws an Exception.

Exampl

Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket

See Also

Networking Classes

isites

ters

No

s

This method is used by TCP servers to start listening for connection requests from

any
your ability to continu
es

es

 | tcplistener_object.AcceptSocket

289

GPL Dictionary Pages

tcplistener_object.Stop Method

Stop listening for TCP connection requests.

tcplistener_object.Stop

Prerequisites

None

Parameters

Remarks

This me
request ility to
continue ns that have already been established.

 error occurs if the listener is not active.

Examples

 tl As New TcpListener(ep) ' Create listener object
 sock As Socket

.Start

tl.Stop

None

thod is used by TCP servers when they are done listening for connection
s from remote TCP clients. Executing this method does not effect your ab
 to service datagrams for connectio

No

Dim
Dim
tl
sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener_object.Start

290

Networking Classes

New UdpClient Constructor

Constructor for creating a UdpClient Object.

New UdpClient (endpoint)

Prerequisites

nt

An optional IPEndPoint Object that contains the IP address and port
identifying the local endpoint for datagrams recognized by this UDP

port can be received.

 UdpClient Object and creates the underlying Socket. No
rated by this method.

 ' Port 1234
Dim uc As New UdpClient(ep) ' Create a socket for UDP communications

See Also

Networking Classes

None

Parameters

endpoi

Socket. The IP address of this endpoint is ignored since GPL controllers
only have a single IP address. If the port is non-zero, only datagrams to
the specified

Remarks

This constructor creates a new
network I/O is gene

Examples

Dim ep As New IPEndPoint("", 1234)

 | udpclient_object.Client

291

GPL Dictionary Pages

udpclient_object.Client Method

Returns the Socket Object associated with a UdpClient Object.

...udpclient_object.Client

Prerequi

Parame

Remark

 all I/O is performed on Sockets, this method allows the Socket associated with a
 Object to be accessed.

Examples

Dim tc As New UdpClient(ep)

See Also

Networking Classes

sites

None

ters

None

s

Since
UdpClient

Dim sock As Socket
sock = tc.Client

 | tcpclient_object.Client

292

Networking Classes

udpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequ

Parame

Remarks

The Clos may be used the network conne up resources.
TcpListener ent t

rrently error

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Als

Networ

isites

None

ters

None

e method to close ction and free
, TcpCli , or UdpClient Object, the underlying SockeIf it is called with a

is actually closed.

If the Socket is not cu open, no occurs.

o

king Classes

293

Profile Class
Profile Class Summary

The following pages provide detailed information on the properties and methods of the
Profile Class. This class defines the attributes of objects that are used to specify the
performance parameters for a typical motion. That is, a Profile Object contains speed,
acceleration, deceleration, in range criteria and other specifications that dictate how a
motion is to be performed. The basic motion instruction, Move.Loc, takes as its two
arguments a Profile Object and a Location Object. The Location Object specifies the
destination for the robot motion and the Profile Object specifies how the robot is to get to
the destination.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Profile Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input parameter
data types. Also, as appropriate, the properties and methods generally produce results
that are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeric overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

profile_obj.Speed Property Sets and gets peak motion speed specified
as a percentage of the nominal speed.

profile_obj.Speed2 Property

Sets and gets the secondary peak motion
speed specification as a percentage of their
nominal speeds for selected axes during
Cartesian motions.

profile_obj.Accel Property
Sets and gets peak motion acceleration
specified as a percentage of the nominal
acceleration.

profile_obj.Decel Property
Sets and gets peak motion deceleration
specified as a percentage of the nominal
deceleration.

profile_obj.AccelRamp Property Sets and gets duration for ramping up to the
peak acceleration, specified in seconds.

profile_obj.DecelRamp Property Sets and gets duration for ramping up to the
peak deceleration, specified in seconds.

profile_obj.Straight Property Sets and gets Boolean indicating if the robot
is to follow a straight-line path.

profile_obj.InRange Property

Sets and gets constraint that specifies if the
robot should be stopped at the end of the
motion and when the robot is close enough to
the final destination to be considered at its
final position.

profile_obj.Text Property Sets and gets a String value not used by
GPL. Available for general use by

294

Profile Class

applications.
profile_obj.Clone Method Method that returns a copy of the profile_obj.

295

GPL Dictionary Pages

profile_object.Accel Property

Sets and gets the peak motion acceleration defined as the percentage of the nominal
acceleration.

profile_object.Accel = <new_value>
-or-
...profile_object.Accel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Accel property defines the peak acceleration
that the motion can achieve. An Accel value of 100 corresponds to the nominal (100%)
acceleration for the specified type of motion. The Accel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the acceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the acceleration percentage is applied to the joint
angles.

The acceleration that the robot actually achieves for a given motion may be different than
the Accel value for a number of reasons: if an AccelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified acceleration;
the Accel value may be limited by the maximum permitted Accel value; or the Accel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Accel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Accel = 50 ' Only accelerate at 50% of nominal rate
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

296

Profile Class

See Also

Profile Class | profile_object.AccelRamp | profile_object.Decel | profile_object.DecelRamp

297

GPL Dictionary Pages

profile_object.AccelRamp Property

nds. Sets and gets the duration for ramping up to the peak acceleration, specified in seco

profile_object.AccelRamp = <new_value>
-or-
...profile_object.AccelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the AccelRamp property specifies how long, in
seconds, its takes for the Accel to achieve its specified value. Likewise, this time is also
used for ramping the Accel down to zero. If the AccelRamp time is set to zero, at the
start of a motion, the Accel command instantaneously jumps up to its specified value and
then, at the end of acceleration period, instantaneously drops down to zero. A zero
AccelRamp time corresponds to a square wave acceleration curve and commands an
infinite jerk, i.e. rate of change of the acceleration. A non-zero AccelRamp time produces
a trapezoidal acceleration curve, which is often referred to as an s-curve profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low accelerations or for very stiff robots,
a square wave acceleration profile may be more beneficial.

The actual acceleration ramp time for a given motion may be different than the
AccelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Accel value; or the AccelRamp value may
be automatically scaled by with the Accel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified AccelRamp and Accel values with the
Speed so that slow motions have gentler accelerations with shorter ramp times and fast
motions accelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the AccelRamp
parameter only needs to be set if you wish to deviate from the default value.

298

Profile Class

Examples

' Create new profile set to default values
prof1.Accel = 50 ' Only accelerate at 50% of nominal rate

achieve 50% nominal accel

 ' location, loc1 with performance “prof1”

See Also

Dim prof1 As New Profile

prof1.AccelRamp = 0.1 ' Take 0.1 sec to
Move.Loc (loc1, prof1) ' Perform motion to previously defined

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.DecelRamp

299

GPL Dictionary Pages

profile_object.Clone Method

Method that returns a copy of the profile_object.

...profile_object.Clone

Prerequi

None

Parameters

jects, if a program contains a simple assignment statement:

object_1 = object_2

sites

None

Remarks

For ob

the result is that object_1 points to the same data as object_2. Any subsequent change o
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

f

object_1 = object_2.Clone

Exampl

See Also

Profile

es

Dim prof1 As New Profile ' Create new profile set to default values
Dim prof2 As Profile ' Create new profile with no data allocated
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
prof2 = prof1.Clone ' Makes a copy of prof1 data
prof2.Accel = 50 ' Doesn’t affect prof1 data

Class

300

Profile Class

profile_object.Decel Property

Sets and gets the peak motion deceleration defined as the percentage of the nominal
deceleration.

profile_object.Decel = <new_value>
-or-
...profile_object.Decel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Decel property defines the peak deceleration
that the motion can achieve. An Decel value of 100 corresponds to the nominal (100%)
deceleration for the specified type of motion. The Decel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the Deceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the deceleration percentage is applied to the joint
angles.

The deceleration that the robot actually achieves for a given motion may be different than
the Decel value for a number of reasons: if an DecelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified deceleration;
the Decel value may be limited by the maximum permitted Decel value; or the Decel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Decel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

301

GPL Dictionary Pages

Profile Class | profile_object.Accel | profile_object.AccelRamp | profile_object.DecelRamp

302

Profile Class

profile_object.DecelRamp Propert

n seconds.

y

Sets and gets the duration for ramping up to the peak deceleration, specified i

profile_object.DecelRamp = <new_value>
-or-
...profile_object.DecelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the DecelRamp property specifies how long, in
seconds, its takes for the Decel to achieve its specified value. Likewise, this time is also
used for ramping the Decel down to zero. If the DecelRamp time is set to zero, at the
start of the motion deceleration period, the Decel command instantaneously jumps up to
its specified value and then, at the end of the motion, instantaneously drops down to
zero. A zero DecelRamp time corresponds to a square wave deceleration curve and
commands an infinite jerk, i.e. rate of change of the deceleration. A non-zero DecelRamp
time produces a trapezoidal deceleration curve, which is often referred to as an s-curve
profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low decelerations or for very stiff robots,
a square wave deceleration profile may be more beneficial.

The actual deceleration ramp time for a given motion may be different than the
DecelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Decel value; or the DecelRamp value may
be automatically scaled by with the Decel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified DecelRamp and Decel values with the
Speed so that slow motions have gentler decelerations with shorter ramp times and fast
motions decelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the DecelRamp
parameter only needs to be set if you wish to deviate from the default value.

303

GPL Dictionary Pages

Examples

te new profile set to default values
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate

See Also

Profile Class

Dim prof1 As New Profile ' Crea

prof1.DecelRamp = 0.1 ' Take 0.1 sec to achieve 50% nominal decel
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

 | profile_object.Accel | profile_object.AccelRamp| profile_object.Decel

304

Profile Class

profile_object.InRange Property

d at its
Gets and sets the constraint that specifies if the robot should be stopped at the end of the
motion and when the robot is close enough to the final destination to be considere
final position.

profile_object.InRange = <new_value>
-or-
...profile_object.InRange

Prerequ

akes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

Whenever the robot picks up a part or places it at its final destination, the robot should
normally be brought to a complete stop and any small position errors should be
eliminated (nulled) before the part is grasped or released. Conversely, if the robot is
moving through intermediate (via) positions simply to clear obstacles, bringing the robot
to a stop at these positions increases the cycle time without providing any benefit. Also,
when the robot is to be brought to a stop, there are instances where it is beneficial to
spend more time reducing the final positioning errors to the tightest possible position
constraint for the robot and other times when a looser constraint is acceptable to save
cycle time.

The InRange property specifies if the robot is to stop at the end of motion and, if so, how
tight a position error constraint should be applied to determine when the robot has
reached its final destination. The value of this property is interpreted as follows:

isites

T

InRange Value Interpretation

<0 Don’t stop the robot at the end of the motion. Blend with the next
motion if possible.

0 Stop the robot at the end of the motion, but do not apply any position
error constraints. This means that as soon as the final set point
command has been issued to the servos, GPL will signal that the
motion has been completed.

Small number >0 Stop the robot at the end of the motion, but use a very small (loose)
position error constraint. This will ensure that the robot has
approximately reached the specified destination before GPL considers
that the motion has been completed.

Large number <=
100

Stop the robot at the end of the motion and apply a stringent position
error constraint. If this value is 100, the robot will have to be within its
tightest error envelope before GPL considers the motion completed.

305

GPL Dictionary Pages

Values greater than 100 can be specified, but these require smaller
error tolerances than are recommended by the manufacturer of the
robot.

When a New Profile is created, its properties are automatically set to reasonable default
values. Normally, the InRange property defaults to 100. Therefore, the InRange

this default value is not appropriate.

Exampl

rof1 As New Profile ' Create new profile set to default values
.InRange = 10 ' Stop at EOM, reduced requirement for inrange

Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1

See Also

Profile Class

parameter only needs to be altered if

es

Dim p
prof1

306

Profile Class

profile_object.Speed Property

Sets and gets the peak motion speed specified as a percentage of the nominal speed.

profile_object.Speed = <new_value>
-or-
...profile_object.Speed

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Speed property defines the peak speed that the
motion can achieve. A Speed value of 100 corresponds to the nominal (100%) speed for
the specified type of motion. The Speed value can range from 1.0 up to a maximum
value permitted for the robot. For a Straight-line motion, the speed is computed along
the path and about the Cartesian rotational angles defined by the robot’s kinematic
module. For joint motions, the speed percentage is applied to the joint angles.

While 100% is normally the maximum operating speed recommended by the robot
manufacturer, there are times that a greater Speed setting may be beneficial. Often, the
100% Speed setting is established for when the robot is carrying its maximum payload.
Also, 100% Speed may be the sustained maximum speed setting, but higher burst
speeds may be permitted.

The speed that the robot actually achieves for a given motion may be different than the
specified Speed value for a number of reasons: the motion may not be long enough to
ramp up to the specified speed given the available acceleration; the Speed value may be
limited by the maximum permitted Speed value; or the operator may have set a slow
“Test Speed” that scales down the specified Speed value.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Speed parameter
only needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Speed = 50 ' Only go at half of the rated speed
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

307

GPL Dictionary Pages

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed2

308

Profile Class

profile_object.Speed2 Property

Sets and gets the secondary peak motion speed specification as a percentage of their
nominal speeds for selected axes during Cartesian motions.

profile_object.Speed2 = <new_value>
-or-
...profile_object.Speed2

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified Cartesian motion segment is generated.

Parameters

None

Remarks

For all joint interpolated and the majority of Cartesian motions, the standard Speed
property is used to control the peak speed of the robot. However, for certain robot
geometries and certain Cartesian (straight-line) motions, it is beneficial to have a
secondary property to control motion speeds.

The Speed2 property only applies to Cartesian motions and is generally used to specify a
secondary speed setting to control the peak rotation speed for a motion. If Speed2 is
zero, both the peak translation and rotation are governed by the Speed property. If
Speed2 is non-zero, the peak Cartesian translation motion speed is limited by the Speed
property and the peak Cartesian rotation speed is limited by Speed2. For a such a
motion, the speed value that is more limiting will govern the overall motion timing.

For most motions, Speed2 should be set to 0. However, if your robot has a wrist that can
rotate very quickly and it is unpredictable as to whether the motion will be primarily a
translation or a rotation, Speed2 can be set low to limit the speed of a large rotation
without negatively impacting motions that are primarily translations.

For some special kinematic modules, Speed2 may also be applied to other degrees-of-
freedom. Please see the Kinematic Library for specific information on these special uses.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Straight = True
prof1.Speed2 = 25 ' Limit Cartesian rotation speed
prof1.Speed = 100 ' Keep translation speed at full
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

309

GPL Dictionary Pages

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed

310

Profile Class

profile_object.Straight Property

Sets and gets Boolean indicating if the robot’s tool tip is to follow a straight-line path or if
the path will be a function of the robot’s geometry.

profile_object.Straight = <new_value>
-or-
...profile_object.Straight

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

For certain motions, the path of the robot’s tool or the part being held by the robot is
important and moving along a straight line is desirable. In other cases, the path may not
be important. In the latter case, the robot may move faster if the path is defined by
interpolating between the joint angles of the initial and final Locations.

If the Straight property is True, by making use of the system’s built-in knowledge of the
robot’s geometry (i.e. kinematics), the robot’s tool tip is moved along a straight-line path
in Cartesian space. If Straight is False, the system will interpolate in joint angles to move
the robot to its destination.

If the robot is a simple 1, 2, or 3 degree-of-freedom Cartesian mechanism with all linear
axes, there is no difference between straight-line and joint interpolated motions.
However, if the Cartesian robot has a rotary theta axis or if the robot is a non-Cartesian
mechanism with rotary or parallel axes, the two motion types are quite different.

In situations where the path is not important, joint interpolated motions requires less
processor time and the robot will often move more quickly.

By default, when a New Profile is created, Straight is set to False.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Straight = True
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 by moving along a straight path

See Also

311

GPL Dictionary Pages

Profile Class

312

Profile Class

profile_object.Text Property

Sets and gets a String associated with a Profile Object. This field is not used by GPL
and is provided for use by application programs.

profile_object.Text = <string_value>
-or-
...profile_object.Text

Prerequ

Parame

Remark

ring
t

hen
itten.

Exampl

 ' Create new Profile object
prof1. = "This is my profile"

See Als

Profile Class

isites

None

ters

None

s

This Text property allows an application programmer to associate an arbitrary St
value with a Profile object. For example, this can be used to document how the objec
is employed or to store a description of the object that is subsequently displayed w
the object is accessed or wr

es

Dim prof1 As New Profile

Text
Console.WriteLine(prof1.Text)

o

 | location_object.Text | refframe_object.Text

313

Reference Frame Class
RefFrame Class Summary

s provide detailed inf ti e
s, RefFrame. o ts are defined with

respect to a RefFrame Object, when the posi
frame are altered, the position and orientation

sted as well.

RefFrame Objects are very useful when picki g several parts that are at
fixed positions relative to a base plate or when
in a rectangular grid or when the ro p
a printed circuit board is a common exa o
a machine for mounting electronic component CB is

d, typicall vi
 updated a

components to be placed are automatically adjus bots in the laboratory
ry provides a goo of the use of pallet reference frames. In
 to be tested are a tray and arranged in a rectangular grid

pattern. After the tray is located and its associated ref
s a simple r

conveyor reference frames are utilized to impl
 loca

ant in g

To allow different types of static and dynamic d, the
s a Type c, pallet and conveyor
orted. In the future, additio

 general, each type of reference frame only makes use of a subset of the properties
nd methods of the RefFrame Class. The tables below summarize the properties and

methods utilized for each type of reference frame.

The following page
reference frame clas

orma
If one or m

on on the properties and methods of th
re Location Objec

tion and/or orientation of the reference
of all associated Location Objects are

ng up or placin

automatically adju

 accessing pallets that have parts arranged
erate on a conveyor belt. The assembly of
f the first situation. When a PCB enters into

bot is to o
mple

s, the position and orientation of the P
sion system. The reference frame that
the positions and orientations of the

ted. The use of ro

first accurately determine
represents the PCB is then

y using a
nd all of

automation indust
this case, samples

d example
 placed on

erence frame updated, the
 stepping from sample to sample. Finally, RefFrame Class provide means fo
ement the GPL conveyor tracking
specified relative to a moving conveyor capability. This feature allows tions to be

line. This capability is import
transported on conveyors.

the packa ing industry where parts are often

reference frames to be represente
RefFrame Object include
reference frames are supp

 property. At present, only basi
nal types of reference frames may

be added.

In
a

Bas rence Frame ic Refe

Member Type Description

refframe_obj.Type Property Set to 0 to indicate a basic reference frame.

refframe_obj.Loc Prop
Lo
or
pr

c.Pos is set equal to the position and
ientation of the reference frame by a GPL
ocedure.

erty

Met
Returns the absolute (“total”) position and
orientation for any type of reference frame
obje

hod refframe_obj.Pos
ct.

Method
R
fra
fra

eturns the position for any type of reference
me while ignoring any further reference
mes.

refframe_obj.PosWrtRef

refframe_obj.Text Prop
S
G
ap

erty
ets and gets a String value not used by
PL. Available for general use by
plications.

314

Reference Frame Class

Pallet Reference Frame

Member Type Description

refframe_obj.Type Property icate a pallet reference
frame.
Set to 1 to ind

refframe_obj.Loc Property

Loc.X, Y and Z define the position of the
first row, column and layer. The orientation
of the X, Y, and Z axes of Loc define the
direction for each row, column, and layer
respectively.

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position for any type of
reference frame while ignoring any further
reference frames.

refframe_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

refframe_obj.PalletIndex Property Sets and gets the index for the next position
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletMaxIndex Property Sets and gets the maximum position index
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletNextPos Method Advances to the next pallet position.

refframe_obj.PalletOrder Property
Sets and gets the parameter that specifies the
order in which PlalletNextPos indexes along
the row, column, and layer indices.

refframe_obj.PalletPitch Property Sets and gets the step size for advancing along
each row, column, or layer.

refframe_obj.PalletRowColLay Method Sets the next pallet position row, column, and
layer indices in a single instruction.

Conveyor Reference Frame

Member Type Description

refframe_obj.Type Property Set to 2 to indicate a conveyor reference
frame.

refframe_obj.Loc Property
Not used. Conveyor reference frames
cannot be defined with respect to any other
reference frame.

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position of the "nominal"
transformation for the associated conveyor
robot.

refframe_obj.Text Property
Sets and gets a String value not used by
GPL. Available for general use by
applications.

315

GPL Dictionary Pages

refframe_obj.ConveyorOffset Property Sets or gets the property that specifies the
zero position of the conveyor belt's encoder.

refframe_obj.ConveyorRobot Property ro
e

Sets or gets the property that specifies the
bot module that is interfaced to the belt

ncoder and contains the data that defines
the conveyor.

316

Reference Frame Class

refframe_object.ConveyorOffset Property

For a conveyor reference frame, sets or gets the property that specifies the zero position
of the conveyor belt's encoder.

refframe_object.ConveyorOffset= <encoder_offset>
-or-
… refframe_object.ConveyorOffset

Prerequisites

• The refframe_object must be a conveyor reference frame.
• The Conveyor Tracking software license must be installed on the controller.

Parameters

None

Remarks

Since the raw reading of a conveyor’s encoder can increase almost without limit, an
offset to the encoder reading is provided to effectively zero the encoder value. This
permits a motion program to be taught in one region of the conveyor and then reused in
another region of the conveyor as the belt continues to advance. Whenever the belt
encoder's value is read, the ConveyorOffset is automatically subtracted from the
encoder's instantaneous reading.

When the encoder is zero'ed by setting the ConveyorOffset equal to the encoder's
current reading, the position and orientation of the belt will be equal to the "Nominal"
value defined in the conveyor's robot module (DataID 16060).

The ConveyorOffset is specified in units of millimeters.

If the conveyor encoder has rollover enabled, the system will automatically internally
adjust the ConveyorOffset to ensure that its value is within one rollover value of the
instantaneous encoder reading.

Examples

Dim belt1 As New RefFrame
Dim loc1 As New Location
belt1.Type = 2 ' Conveyor reference frame
belt1.ConveyorRobot = 2 ' 2nd robot is conveyor
belt1.ConveyorOffset = Robot.WhereAngles(2).Angle(1)
loc1.RefFrame = belt1 ' Zero encoder
loc1.Here ' Test current robot loc
If (loc1.ConveyorLimit(0) <> 0) Then
 Console.WriteLine("Out of range")
End If

317

GPL Dictionary Pages

See Also

RefFrame Class | location_object.ConveyorLimit | refframe_object.ConveyorRobot

318

Reference Frame Class

refframe_object.ConveyorRobot Property

nd contains the data that defines the conveyor.
For a conveyor reference frame, sets or gets the property that specifies the robot module
that is interfaced to the belt encoder a

refframe_object.ConveyorRobot= <robot_number>
-or-
… refframe_object.ConveyorRobot

Prerequisites

• The refframe_object must be a conveyor reference frame.
• The Conveyor Tracking software license must be installed on the controller.

Parameters

None

Remarks

ns its "nominal" transformation. The nominal
transformation defines the direction of travel of the belt and its approximate center point.

t

This property must be set before the position of a conveyor reference frame can be

The robot_number can range for 1 to N, where N is the total number of robots that are
ntroller.

Examples

Dim belt1 As New
Dim loc1 As New L
belt1 = 2
belt1 yorRob
belt1.ConveyorOff
loc1.RefFrame = b
loc1.Here
If (loc1.Conveyor
 Console.Write
End If

See Also

RefFrame Class

Most of the information that a conveyor reference frame computes is derived from the
data specified by a conveyor robot. A conveyor robot module defines the interface that is
connected to the belt encoder and contai

Since a controller can be interfaced to multiple conveyor belts, the ConveyorRobo
property provides the means for associating a reference frame with a particular conveyor
belt.

accessed.

configured in a co

RefFrame
ocation
 ' Conveyor reference frame
ot = 2 ' 2nd robot is conveyor
set = Robot.WhereAngles(2).Angle(1)
elt1 ' Zero encoder
 ' Test current robot loc
Limit(0) <> 0) Then
Line("Out of range")

.Type

.Conve

 | location_object.ConveyorLimit | refframe_object.ConveyorOffset

319

GPL Dictionary Pages

refframe_object.Loc

Sets and gets a re
positio rien

 Property

ference frame’s Location Object, which typically contains the nominal
tation of the frame. n and o

refframe_object.Loc = <Cartesian_location_object>
-or-
… refframe_object.Loc

Prerequi

one

Remark

Location Object that is
tion and orientation of the

c interpretation of this data

The refframe_object.Loc.RefFrame property points to the next reference frame if
or reference frames, Loc is
or reference frames cannot

be relative to another reference frame of any type.

The following table describes how to interpret the position and orientation data stored in
the Cartesian Location Object pointed to by refframe_object.Loc.

sites

None

Parameters

N

s

Most reference frame types have an associated Cartesian
pointed to by the Loc property. Typically, the nominal posi

 specifireference frame is stored in this Location although the
is a function of the reference frame type.

refframe_object is itself relative to another frame. For convey
unused and Loc.RefFrame must always be null since convey

RefFrame Type refframe_object.Loc Contents

Basic

Contains the reference frame position and orientation. So,
refframe_object.Loc.Pos represents the total position of
refframe_object and refframe_object.Loc.PosWrtRef is the position
and orientation of refframe_object with respect to any subsequent
reference frames. If a program wishes to change the position and
orientation of a basic frame, it must do so via refframe_object.Loc.
However, if a program wishes to read the reference frame position and
orientation, it is normally a better practice to use the
refframe_object.Pos and refframe_object.PosWrtRef methods. These
last two methods will return the current total and relative position for
any type of reference frame.

Pallet

The XYZ position of the refframe_object.Loc defines the position of
row 1, column 1, and layer 1 of the pallet. The orientation of
refframe_object.Loc defines the direction of the rows, columns, and
layers of the pallet. The X-axis of refframe_object.Loc defines the
index direction for a row. The Y-axis defines the index direction for a

320

Reference Frame Class

column. The Z-axis defines the index direction for layers.

Conveyor

module. This permits the direction of travel and nominal position of a
conveyor to be taught once, automatically loaded when the controller is
restarted, an

The Loc property is not used for conveyor reference frames. The
 conveyor reference frame is dynamically

 the associated conveyor robot

d referenced by multiple conveyor reference frames. The
Loc.PosWrtRef must always be NULL since conveyor reference

rence frame. The
refframe_object.Pos and refframe_object.PosWrtRef methods should

taneous and nominal positions of a
conveyor reference frame.

"nominal" position for a
extracted from the value stored in

frames cannot be relative to any other refe

be used to access the instan

As a convenience, when a new reference frame object is created, a Cartesian Location
nce frame. By default, this

ro.

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc
ref1.Lo
loc1.Re
loc1.XY ' Define loc1 poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07

nsole.Writeline(loc1.Pos.Y) ' Displays 97.07
nsole.Writeline(loc1.Pos.Z) ' Displays -80

See Als

RefFram

Object is automatically created and linked to the refere
Location will have its position and orientation angles set to ze

Examples

1 As New Location
c.XYZ(100,90,-80,0,0,45) ' Define base frame
fFrame = ref1 ' Define loc1 wrt ref1
Z(10,0,0,0,180,0)

Co
Co

o

e Class | refframe_object.Pos| refframe_object.PosWrtRef

321

GPL Dictionary Pages

refframe_object.PalletIndex Property

 next grid For a pallet reference frame, sets or gets the row, column or layer index for the
position to be accessed.

refframe_object.PalletIndex(row_col_lay) = <next_index>
-or-
… refframe_object.PalletIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the row index is to
be accessed, 2 if the column index is to be accessed, or 3 if the layer
index is to be accessed.

Remarks

This property permits a program to set or get the next row, column, or layer index to be
accessed in a pallet reference frame. Each index can range from 1 to the maximum value
for that dimension as specified by the object’s PalletMaxIndex property. The row,
column, and layer indices are always positive integer numbers. If you wish to step in a
negative direction, the appropriate PalletPitch property for the refframe_object can be
set to a negative number.

If you wish to set all 3 index values at once, you can make use of the object’s
PalletRowColLay method. If you want to just advance to the next logical pallet position,
the PalletNextPos method can be invoked.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1, 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletIndex(2) = 2 ' Set grid (1,2,1)
Console.Writeline(loc1.Pos.X) ' Displays 100

322

Reference Frame Class

Console.Writeline(loc1.Pos.Y) ' Displays 70

RefFram

See Also

e Class | refframe_object.PalletMaxIndex | refframe_object.PalletNextPos|
_objectrefframe .PalletRowColLay

323

GPL Dictionary Pages

refframe_object.PalletMaxIndex Property

For a pallet reference frame, sets or gets the number of rows, columns, or layers in the
pallet.

refframe_object.PalletMaxIndex(row_col_lay) = <maximum_index>
-or-
… refframe_object.PalletMaxIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the number of rows
is to be accessed, 2 if the number of columns is to be accessed, or 3 if
the number of layers is to be accessed.

Remarks

This property allows a program to set or get the number of rows, columns or layers for a
given pallet reference frame. The number of rows, columns or layers is specified by an
integer number greater than or equal to 1.

To specify a specific pallet position, the PalletIndex properties must be set to at least 1
and cannot be greater then the applicable maximum values defined by the
PalletMaxIndex property.

By default, when a new pallet reference frame is created, the maximum pallet indices are
each set to 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

324

Reference Frame Class

RefFrame Class | refframe_object.PalletIndex| refframe_object.PalletRowColLay

325

GPL Dictionary Pages

refframe_object.PalletNextPos Method

For a pallet reference frame, advances the pallet position to the next logical position.

refframe_object.PalletNextPos

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Given the current pallet position and the PalletOrder, this method advances the pallet to
the next logical position. For example, if the current pallet position is at the last element in
a row, 3rd column position, and 2nd layer, and the PalletOrder indicates that the pallet
should be incremented by row, column and layer, PalletNextPos will advance to the 1st
row element, 4th column element and 2nd layer.

If the initial pallet position is at the last row, column, and layer position, PalletNextPos
changes the pallet position indices to 1,1,1.

If you want to randomly select the next pallet position, a program can utilize PalletIndex
or PalletRowColLay instead of the PalletNexPos method.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer order

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

326

Reference Frame Class

RefFrame Class |refframe_object.PalletIndex| refframe_object.PalletOrder |
refframe_object.PalletRowColLay

327

GPL Dictionary Pages

reffram

t specifies the order in which

e_object.PalletOrder Property

For a pallet reference frame, sets or gets the parameter tha
the row, column, and layer indices are incremented.

refframe_object.PalletOrder = <indexing_order>
-or-
… refframe_object.PalletOrder

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Normally, the rows and columns of a pallet are defined such that a layer of rows and
columns lie in the world coordinate system X-Y plane. If the rows and columns are
defined in such a manner, you may wish to increment from one pallet position to the next
in a different order than the standard row first, then column, then layer pattern. For
example, you may want to stack from the bottom layer to the top layer before
incrementing to the next row or column. The PalletOrder parameter allows a program to
define the order in which the row, column, and layer indices are incremented.

The interpretation of this parameter is presented in the following table.

PalletOrder Value Incrementing Order

0 Row, column, layer
1 Row, layer, column
2 Column, row, layer
3 Column, layer, row
4 Layer, row, column
5 Layer, column, row

By default, when a new pallet reference frame is created, the PalletOrder is set to 0
(row,column,layer).

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size

328

Reference Frame Class

ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer order

loc1.PosWrtRef all 0’s
Set grid position

PalletNextPos

) ' Displays 70

See Also

RefFram

loc1.RefFrame = ref1 '
ref1.PalletRowColLay(3,1,1) '
ref1. ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y

e Class | refframe_object.PalletNextPos

329

GPL Dictionary Pages

refframe_object.PalletPitch Property

For a pallet reference frame, sets or gets the step size (pitch) between adjacent rows,
columns, or layers in a pallet.

refframe_object.PalletPitch(row_col_lay) = <pitch_size>
-or-
… refframe_object.PalletPitch(row_col_lay)

Prerequ

e_object must be a pallet reference frame.

Parame

row_col

be accessed, or 3 if the layer pitch is
to be accessed.

Remarks

This pro ntial
rows, co
millimet

Exampl

Dim ref
Dim loc

ref1.Ty et frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base

f1.PalletPitch(1) = 10 ' Spacing along row
f1.PalletPitch(2) = 20 ' Spacing along column

ref1.PalletMaxIndex(1) = 3 ' Define grid size

See Als

RefFram

isites

The reffram

ters

_lay

A required numerical expression that is equal to 1 if the row pitch is to be
accessed, 2 if the column pitch is to

perty allows a program to set or get the step size (pitch) between seque
lumns or layers for a pallet reference frame. The step sizes are in units of

ers and can be both positive and negative real numbers.

es

1 As New RefFrame ' Also allocates Loc
1 As New Location

pe = 1 ' Change to pall

re
re

ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

o

e Class

330

Reference Frame Class

refframe_object.PalletRow

ces for the next grid

ColLay Method

For a pallet reference frame, sets the row, column, and layer indi
position to be accessed.

refframe_object.PalletRowColLay(row, column, layer)

Prerequ

he refframe_object must be a pallet reference frame.

row

A required numerical expression that specifies the index for the next row
to be accessed, where the row number is interpreted as an integer value
that ranges from 1 to the maximum permitted row index for this pallet, i.e.
refframe_object.PalletMaxIndex(1).

column

A required numerical expression that specifies the index for the next
column to be accessed, where the column number is interpreted as an
integer value that ranges from 1 to the maximum permitted column index
for this pallet, i.e. refframe_object.PalletMaxIndex(2).

layer

A required numerical expression that specifies the index for the next
layer to be accessed, where the layer number is interpreted as an integer
value that ranges from 1 to the maximum permitted layer index for this
pallet, i.e. refframe_object.PalletMaxIndex(3).

Remarks

This is a convenience method that allows a program to explicitly set the row, column, and
layer indices for the next pallet element to be accessed. This method permits a program
to randomly set or reset the next element. For example, if values of 1,1,1 are specified as
the arguments to this method, the first pallet position will be accessed next.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1, 1.

The operation performed by this method can also be accomplished by utilizing the
PalletIndex property once for each of the three pallet indices or the PalletNextPos
method can be invoked to advance to the next logical pallet position.

Examples

isites

T

Parameters

331

GPL Dictionary Pages

Dim ref1 As New RefFrame ' Also allocates Loc

 ' Change to pallet frame
Loc.XYZ

 ' Spacing along column
3 ' Define grid size

ref1.PalletMaxIndex(2) = 3 ' Define grid size

c1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position

(loc1.Pos.X) ' Displays 110
e.Writeline(loc1.Pos.Y) ' Displays 90

See Als

lass

Dim loc1 As New Location

ref1.Type = 1
ref1. (100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20
ref1.PalletMaxIndex(1) =

loc1.RefFrame = ref1 ' lo

Console.Writeline
Consol

o

RefFrame C | refframe_object.PalletIndex| refframe_object.PalletMaxIndex|
refframe_object.PalletNextPos

332

Reference Frame Class

refframe_object.Pos Method

Returns a Cartesian Location equal to the current total position and orientation for any
type of RefFrame Object.

… refframe_object.Pos(location_object)

Prerequisites

None

Parameters

location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

For any type of reference frame object, this method returns a Cartesian Location whose
value is equal to the current (instantaneous) total position and orientation of the frame
taking into account any additional linked reference frames. In the case of a “basic”
reference frame, the current location is equal to the contents of refframe_object.Loc.Pos.
In the case of a dynamic reference frame, such as a pallet, the current total position and
orientation is computed based upon the object properties, e.g. nominal location, current
row, column and layer numbers. In the case of a conveyor reference frame, the
instantaneous position of the conveyor belt is computed and returned. For a conveyor
reference frame, the X-axis of this value points along the direction of travel for the belt.

This method returns the reference frame’s total position and orientation that is equivalent
to the value used to compute the total position and orientation of a Cartesian Location
that is defined with respect to the reference frame. For example, if a Cartesian Location,
loc1, has its RefFrame pointer set equal to a reference frame, ref1, then loc1.Pos is
equal to:

ref1.Pos(dummy).Mul(loc1.PosWrtRef)

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.Pos(dum).X) ' Displays 100
Console.Writeline(ref1.Pos(dum).Y) ' Displays 90
Console.Writeline(ref1.Pos(dum).Z) ' Displays -80

See Also

333

GPL Dictionary Pages

RefFrame Class | refframe_object.PosWrtRef

334

Reference Frame Class

refframe_object.PosWrtRef Method

Returns a Cartesian Location equal to the current position and orientation of a
RefFrame Object ignoring any further reference frames.

… refframe_object.PosWrtRef(location_object)

Prerequisites

None

Parameters

location_object

An optional Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

In general, this method returns a Cartesian Location whose value is equal to the current
position and orientation of the reference frame without taking into account any additional
linked reference frames.

RefFrame Type refframe_object.PosWrtRef

Basic Returns the contents of refframe_object.Loc.PosWrtRef.

Pallet

Returns the current pallet position and orientation based upon the
object properties, e.g. nominal location, current row, column and layer
numbers, without taking into consideration any linked reference
frames.

Conveyor

Returns the "Nominal" transformation for the conveyor as defined in
the associated conveyor robot (DataID 16060). The X-axis of is value
points along the direction of travel of the belt and the XYZ position of
this value is typically defined approximately at the center of travel for
the belt. The nominal value for a conveyor is stored in the conveyor
robot module to permit this transformation to be taught once,
automatically loaded when the controller is restarted, and referenced
by multiple conveyor reference frames.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.PosWrtRef(dum).X) ' Displays 100
Console.Writeline(ref1.PosWrtRef(dum).Y) ' Displays 90
Console.Writeline(ref1.PosWrtRef(dum).Z) ' Displays -80

335

GPL Dictionary Pages

See Also

RefFrame Class | refframe_object.Pos

336

Reference Frame Class

refframe_object.Text Property

d with a RefFrame Object. This field is not used by
GPL and is provided for use by application programs.
Sets and gets a String associate

refframe_object.Text = <string_value>
-or-
...refframe_object.Text

Prerequi

Parame

Remark

his Text property allows an application programmer to associate an arbitrary String
value with a RefFrame object. For example, this can be used to document how the

Examples

Dim ref1 A New RefFra
ref1.Text This is m
Console.WriteLine(ref1

See Also

RefFrame Class

sites

None

ters

None

s

T

object is employed or to store a description of the object that is subsequently displayed
when the object is accessed or written.

s
= "

me ' Create new RefFrame object
y reference frame"
.Text)

 | ation_obje loc ct.Text | profile_object.Text

337

GPL Dictionary Pages

refframe_object.Type Property

Sets and gets the Integer Type of a RefFrame Object, which indicates if the object is a
basic type or one of the special types of reference frames.

refframe_object.Type = <new_Integer_value>
-or-
...refframe_object.Type

Prerequisites

None

Parameters

None

Remarks

There are several different types of reference frames that can be represented by a
refframe_object. The Type property indicates which type of reference frame is stored in
a specific object. The possible values for the Type property are as follows:

Type Value Description

0 Basic RefFrame that stores the position and orientation of the
reference frame in the Loc Location.

1 Pallet RefFrame that defines a one, two or three-dimensional
rectangular grid of positions that are sequentially indexed.

2

Conveyor RefFrame whose value is dynamically computed and
is equal to the instantaneous position of a conveyor belt.
Requires that the Conveyor Tracking Software License be
installed in the controller.

For all reference frames, there are a few common properties that are always defined and
accessible. These common properties include the Type, Loc, Pos and PosWrtRef. In
addition, specific types of reference frames may have additional properties and methods
that are only meaningful for a specific type of refframe_object. For example, a pallet
reference frame has a PalletOrder property that is only relevant for that type of frame.

In general, if you attempt to access a property that is not relevant for a refframe_object,
an error will be generated.

When a “New” RefFrame is created, its Type is automatically set to 0, i.e. the basic type.

Examples

338

Reference Frame Class

Dim ref1 As New RefFrame ' Create new reference frame
Dim iType As Integer
iType = ref1.Type '

RefFram

iType will be set to 0

See Also

e Class

339

Robo
Robot Class Summary

rovide detailed inform
global Robot Class. This class provides ac bot
configured in the system, e.g. the current po

ce for eac ach
e to a halt, methods for ol

offsets, etc.

ons of the bo ciate a specific robot with
a specific thread and to grant exclusive cont

ire that a statement ei
previously Selected robot. For example, to
Selected robot will be accessed if no robot

a robot, a thre irst
exclusive access to it.

L, conver ee
Single, Double, are automatically performe umeric properties and
methods of the Robot Class, it is not neces

iffe ible o, as
an ge d as

Double’s. These results will automatically b er data types as
necessary, e.g. Double -> Integer, and will

cur.

The table below briefly summarizes the pro
following

t Class

The following pages p ation on the properties and methods of the
cess to the features and status of each ro
sition of a robot, processes for establishing
 robot, functions for forcing an in-process

setting and getting the robot's base and to
the position referen
motion to decelerat

h axes of e

The most important operati Ro t Class are to asso
rol of a robot to a thread. Most read-only

ther explicitly specify a robot or have a
read the current position of a robot, the

robot operations requ

is specified. More importantly, in order to
be Attached to a robot in order to gain control or move ad must f

As is standard in GP sions betw n different arithmetic types, e.g. Integer,
d as required. So, for n
sary to have different variations of these

 mixes of input parameter data types. Als
nerally produce results that are formatte
e converted to small

members to deal with the d
appropriate, the properties

rent poss
d methods

 not generate an error so long as numeric
overflow does not oc

perties and methods that are described in
greater detail in the sections.

Member Type Description

Robot.Attached Sets and gets the number of the robot that is
exclusively controlled by a thread. Property

Robot.Base Property ientation Sets and gets the position and or
offset for the base of the robot.

Robot.CartMode Property
at

ectory
Gets an Integer that contains flag bits th
indicate if any special Cartesian traj
modes are active.

Robot.Custom Property tation is specific to each
Sets and gets elements of a parameter array
whose interpre
kinematic module.

Robot.DefLinComp Method

Defines internal table of motor encoder
"Linearity compensation" correction values
that are automatically applied to encoder
values.

Robot.Dest Property
Returns a Cartesian Location whose valu
equal to the originally planned final
destination of the previously executed motion.

e is

Robot.DestAngles Property
Returns an Angles Location whose value is
equal to the originally planned final
destination of the previously executed motion.

340

Robot Class

Robot.Home Method e Attached robot to establish the
reference positions for each axes.
Homes th

Robot.HomeAll Method Homes all robots to establish the reference
positions for each of their axes.

Robot.JointToMotor Method
Converts an array of axis joint angles (in
degrees or millimeters) to an equivalent array
of motor positions (in encoder counts)..

Robot.LastProfile Property

Returns a Profile Object whose properties
are equal to those of the currently executing
motion or the last executed motion if no
motion is active.

Robot.MotorTempStatus Property Returns a code that indicates the temperature
status of a motor.

Robot.MotorToJoint Method
Converts an array of motor positions (in
encoder counts) to an equivalent array of axis
joint angles (in degrees or millimeters).

Robot.Payload Property
Asserts or retrieves the last asserted value
that specifies the mass of the payload being
carried by the robot.

Robot.RapidDecel Property
Sets the Boolean flag that forces any in-
process motion for a robot to be rapidly
decelerated to a stop.

Robot.RealTimeModAcm Property

Returns a Cartesian Location whose value is
equal to the accumulated modifications
generated by the Real-time Trajectory
Modification mode.

Robot.RestartBase Property
Gets the position and orientation offset for the
base of the robot that was set when the
controller was restarted.

Robot.RestartTool Property
Gets the position and orientation offset for the
tool or gripper of the robot that was set when
the controller was restarted.

Robot.Selected Property Sets and gets the default robot number to be
used when accessing a specific robot.

Robot.Source Property
Returns a Cartesian Location whose value is
equal to the initial position and orientation of
the previously executed motion.

Robot.SourceAngles Property
Returns an Angles Location whose value is
equal to the initial axes positions of the
previously executed motion.

Robot.SpeedAngles Property
Returns an Angles Location whose
components contain the instantaneous speed
of each axis.

Robot.Tool Property Sets and gets the position and orientation
offset for the tool or gripper of the robot.

Robot.TrajState Property
Gets an Integer that indicates the current
state of the Trajectory Generator for a given
robot.

Robot.Where Property
Gets a Cartesian Location whose value
indicates the current position and orientation
of a robot.

Robot.WhereAngles Property Gets an Angles Location whose value
indicates the current position of each axes of

341

GPL Dictionary Pages

a robot.

342

Robot Class

Robot.Attached Property

read. Sets and gets the number of the robot that is exclusively controlled by a th

Robot.Attached = <robot_number>
-or-
... Robot.Attached

Prerequisites

Non

Parameters

None

Remarks

In order nds, a robot
must be efore any motion commands can be issued by a thread and only a
single thread can be Attached to a robot at any given time.

While a robot is Attached by a thread, other threads are still permitted to read certain
er
y

 signal a Soft or Hard E-Stop, or force a robot to rapidly
decelerate.

When a robot is Attached, the system forces the Selected property to be equal to the

y generate the statements to ensure the
robot will be Attached at the start of program execution and un-Attached when the

Exampl

See Als

Robot C

e

 to ensure that a robot receives a consistent set of motion comma
 Attached b

properties of the robot, such as the current robot position and trajectory state. Also, oth
threads are able to alter the robots operation in ways that make sense. For example, an
thread can disable high power,

The Attached robot number is an Integer that ranges from 1 to N. If the Attached
property is set to 0, any robot attached to the thread is released (un-Attached).

Attached value.

Typically, if a project is intended to control a robot, the GPL software development
environment can be configured to automaticall

program is terminated or pauses execution.

es

Robot.Attached = 1 ' We now have exclusive control of robot #1
Robot.Attached = 0 ' This is how you give up control

o

lass | Robot .Selected

343

GPL Dictionary Pages

Robot

e robot.

.Base Property

Sets and gets the position and orientation offset for the base of th

Robot.Base = <Cartesian_location>
-or-
... Robot.Base (robot)

Prerequisites

• For the set operation, the robot must be attached to the current thread.
• For the set operation, the Location must be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the base of the robot to the origin of
the World coordinate system.

The Base definition is beneficial if you create an application using Cartesian Locations
and the base of the robot is subsequently shifted slightly. By adjusting the position of the
Base definition, a project can automatically correct all of the joint angle positions that will
be computed from Cartesian Locations.

For computational reasons, some robot kinematic modules may not support the Base
property. Also, as a computational efficiency, the value of Base can only contain a
positional offset in X, Y, and Z and a rotation about the Z-axis. That is, the Euler angles
for the Base must always be "X,Y,Z,0,0,Roll".

For most applications, the Base value is not used and its value is set to "0,0,0,0,0,0".

Once the Robot.Base has been set, these dimensions remain in effect until the Base
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Base " definition is automatically put into effect
based upon the values of "Base set at restart" (DataID 16052).

Changing the robot's Base instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts
to set the Base, GPL automatically waits until the motion is completed before executing
this instruction.

344

Robot Class

Examples

Robot.Attached = 1

(Robot.Base().X) ' Outputs a value of 10

See Als

Dim base As New Location

base.XYZ(10, 0, 0) ' Move base by 10mm in X
Robot.Base = base
Console.WriteLine

o

Robot Class | Robot.RestartBase

345

GPL Dictionary Pages

Robot.CartMode Property

Returns an Integer that contains flag bits that indicate if any special Cartesian trajectory
modes are active.

...Robot.CartMode (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

The Trajectory Generator supports a number of special operating modes that can only be
executed when Cartesian motions are being evaluated. This property returns an Integer
that contains flag bits that indicate if any of these special modes are currently active.

This is the same value that is returned in the "CartMode Trajectory Flags" (DataID 3526)
Parameter Database entry.

The bits within the value returned by this property are defined as follows:

CartMode Flags Description

&H01
Conveyor Tracking. If on, indicates that the robot is moving with respect to a
conveyor belt and is automatically adjusting the Cartesian set point to track the
belt.

&H02

Real-time Trajectory Modification. If on, indicates that the Cartesian set point
can be dynamically altered based upon input from a GPL program. The
Trajectory Generator incorporates the real-time modifications into the
computed Cartesian set point each trajectory cycle.

&H04
SpeedDAC. If on, indicates that the Trajectory Generator is computing the
instantaneous tool tip speed and using this information to control the value of a
analog output (DAC) device.

Examples

Dim flags As Integer
flags = Robot.CartMode() ' Reads current mode bits

See Also

346

Robot Class

Robot Class | Move.StartRealTimeMod | Move.StartSpeedDAC

347

GPL Dictionary Pages

Robot.Custom Property

nd gets elements of a parameter array whose interpretation is specific to each
kinematic module.
Sets a

Robot.Custom (index) = <New_value>
-or-
... Robot.Custom (robot, index)

Prerequisites

• For the set operation, the robot must be attached to the current thread.
• For kinematic modules that do not use the array of custom kinematic parameters,

setting or reading these parameters has no effect on the operation of the
associated robot.

Parameters

index

An optional numeric expression that specifies the element of the custom
kinematic parameter array (1-5) that is accessed. If this value is 1 or
unspecified, the first element will be accessed.

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Selected kinematic modules have special runtime parameters that alter their behavior in
a non-standard fashion. For example, the "Dual RPR" robot has two arms and two sets
of grippers that can be moved. At any given time, only one of the arms and one of the
grippers can be factored into the computation of the Cartesian position and orientation of
the robot. The "custom kinematic parameters" are utilized by this kinematic module at
runtime to specify which of the two arms is logically considered part of the robot.

In some instances, setting a parameter may cause the executing thread to pause waiting
for the attached robot to complete its current motion. This side effect and other similar
actions are controlled by the specific kinematic module type.

For a description of how these parameters are utilized in a specific robot and their side
effects, please consult the documentation on the Kinematic Robot Modules.

Examples

Robot.Attached = 1

348

Robot Class

Robot.Custom(1) = 1 ' Set custom parameter value

Robot C

See Also

lass

349

GPL Dictionary Pages

Robot.DefLinComp Method

Defines internal table of motor encoder "Linearity compensation" correction values that
are automatically applied to encoder values.

Robot.DefLinComp (robot, motor, enc_start, enc_step, num_cor, cor)

Prerequ

r linear compensation must be enabled.

Parame

robot

An optio
1-n). If

accesse

motor

rrected.

_step

c expression that specifies the step size in encoder
 successive encoder correction values. Must be greater

A required numeric expression that specifies the number of encoder
correction values that are defined in the cor array (1-n). The number of
values is only limited by the available system memory. Increasing the
number of correction values and decreasing the step size improves the
compensation and only effects memory, not execution time.

cor

A required array of double precision values that specifies the correction
in encoder counts at each sequential encoder position. The corrections
can include fractional encoder counts. Positive values indicate that the

isites

• Motor linear compensation must be permitted for the robot.
• Moto

ters

nal numeric expression that specifies the robot to be accessed
 this value is 0 or unspecified, the Selected robot will be
d.

(

A required numeric expression that specifies the motor to compensate
(1-n).

enc_start

A required numeric expression that specifies the first (and lowest)
encoder count to be co

enc

A required numeri
nts betweencou

than 0 and can be a fractional value.

num_cor

350

Robot Class

encoder should be reading a higher value and negative numbers indicate
the encoder reading should be lower.

Remarks

nd defines an internal table of encoder correction values for the
tor
n

ccurate axis positioning. In between
correction values, the corrections are interpolated. Outside of the correction range, the

lized.

n as this method creates and initializes the correction data, it is immediately put
fect.

nvenience, this instruction can be executed even when robot power is enabled.
e corrections are small, this will result in a small instantaneous motion of the

or.

This method creates a
specified motor of a robot. These corrections are automatically applied to each mo
command and to each encoder reading. This technique permits repeatable positio
errors to be corrected to yield more linear and a

raw encoder value is uti

As soo
into ef

As a co
So long as th
mot

WARNING: When first trying a new compensation data set, mot
power should be disabled to avoid any sudden, high speed moto
motions.

or
r

Correction data sets can be created for any motor of the robot that you wish to

d Procedures chapter of the Precise

Documentation Library for information on creating correction data sets and for more
information on this technique.

Examples

0, 3, cor)

See Als

Robot Class

compensate. It is not necessary to create a correction table for all motors. Correction
tables stay in effect until they are over-written or the controller is restarted.

Please see the "Motor Linearity Compensation" section in the Controller Software >
Software Setup > Selected Setup Details an

Dim cor(2) As Double
cor(0) = 0
cor(1) = -18 ' First step is too short
cor(2) = 5.3 ' Second step is too long
Robot.DefLinComp(1, 1, 5000, 100

o

351

GPL Dictionary Pages

Robot.Dest Propert

lanned final
estination of the previously executed motion.

y

Returns a Cartesian Location whose value is equal to the originally p
d

...Robot.Dest (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation that was
originally planned as the final destination for the previously executed motion. The
previously executed motion can still be in progress or could have already stopped
executing when this property is accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the Dest Location is not the same as
performing a Move.Rel instruction. The Move.Rel instruction will perform a incremental
motion relative to wherever the robot's final position was at the conclusion of the previous
motion. Moving relative to the Dest Location moves with respect to where the previous
motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to planned Cartesian position and orientation
destination of the previous motion.

RefFrame Always Null

Config Configuration bits for the planned destination of the previous
motion.

ZClearance 1.0e32 to indicate not initialized

352

Robot Class

All other properties Always zeroed.

Examples

Dim DestLoc As Location
DestLoc = Robot.Dest() ' Reads planned motion destination

See Also

Robot Class | Robot.DestAngles | Robot.LastProfile | Robot.Source | Robot.SourceAngles

353

GPL Dictionary Pages

Robot.DestAngles Propert

Returns an Angles Location whose value is equal to the originally planned final

y

destination of the previously executed motion.

...Robot.DestAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that were originally planned as
the final destination for the previously executed motion. The previously executed motion
can still be in progress or could have already stopped executing when this property is
accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the DestAngles Location is not the
same as performing a Move.Rel instruction. The Move.Rel instruction will perform a
incremental motion relative to wherever the robot's final position was at the conclusion of
the previous motion. Moving relative to the DestAngles Location moves with respect to
where the previous motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location

Angles Set equal to planned axes position destinations of the previous
motion.

RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

354

Robot Class

Dim DestLoc As Location

() ' Reads planned motion destination

See Also

Robot Class

DestLoc = Robot.DestAngles

 | Robot.Dest | Robot.LastProfile | Robot.Source | Robot.SourceAngles

355

GPL Dictionary Pages

Robot.Home Method

Homes the Attached robot to establish the reference positions for each axes.

Robot.Home

Prerequisites

• High power to the robot must be enabled.

cess

s

The axes homing sequence must be executed once for each axis after the system is

There are many different methods that can be employed to home an axis, e.g. home to

See Also

• A robot must be Attached by the thread.

Parameters

None

Remarks

This method allows a robot to be homed via a program statement. The homing pro
reestablishes the reference (e.g. zero) position for each axis of the robot. This enables
the robot to reliably move to the same positions after each time that the controller i
restarted even when the robot is equipped with incremental, not absolute encoders.

restarted and prior to executing any position controlled motions. Often, the homing
process is manually initiated via the operator control panel.

hard stop, home to limit switch, home to home switch, etc. The specific method for each
axis and the parameters for each method are pre-configured by the robot manufacturer.
The Home method simply executes the pre-configured method for the robot Attached to
the thread.

Examples

Robot.Attached = 1 ' Attach a robot to the thread
Robot.Home() ' Home the Attached robot

Robot Class | Robot.HomeAll

356

Robot Class

Robot.HomeAll Method

Homes all robots to establish the reference positions for each of their axes.

Robot.HomeAll

Prerequi

High power must be enabled.
• No robot can be Attached by a different thread.

Parameters

None

Remarks

This me homing
process es the reference (e.g. zero) position for each axis of each robot. This
enables the robots to reliably move to the same positions after each time that the

is restarted even when the robots are equipped with incremental, not absolute
encoders.

The axe ter the
system i e. Often, the
homing

There are many different methods that can be employed to home an axis, e.g. home to
ome to limit switch, home to home switch, etc. The specific method for each

axis and the parameters for each method are pre-configured by the robot manufacturer.
The Ho s.

Examples

bot.HomeAll() ' Execute home sequence for all robots

See Als

Robot C

sites

•

thod allows all robots to be homed via a program statement. This
reestablish

controller

s homing sequence must be executed once for each axis of each robot af
s restarted and prior to executing a robot in position controlled mod
process is manually initiated via the operator control panel.

hard stop, h

meAll method simply executes the pre-configured method for all robot

Ro

o

lass | Robot.Home

357

GPL Dictionary Pages

Robot.JointToMotor Method

o an equivalent array of
ccount any motor coupling

Converts rray of an a axis joint angles (in degrees or millimeters) t
s (in encoder counts). Automatically takes into amotor position

and other factors.

Robot.JointToMotor (robot, joint_pos, motor_pos)

Prerequisites

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

joint_pos

A required array of double precision values that defines the axis position
values, in either degrees (for rotary axes) or millimeters (for linear axes),
that are to be converted into an equivalent array of motor encoder
positions. This array must have one value for each of the axes of the
robot. joint_pos(0) must contain the position for axis 1.

motor_pos

A required array of double precision values into which the computed
equivalent motor encoder positions are written in encoder counts. This
array must have at least one element for each motor of the robot.
motor_pos(0) will contain the position for motor 1.

Remarks

This method converts an array of axis joint angles, specified in degrees for rotary joints
and millimeters for linear axes, into an equivalent array of motor positions, specified in
encoder counts.

For many robots, there is a simple scalar relationship between joint angles and motor
encoder counts. However, some robots have a much more complicated relationship due
to mechanical coupling of motors, linearity compensation, encoder roll-over
compensation, and other factors.

This method can be executed for any robot and all factors that affect the relationship
between joint angles and motor encoder counts are automatically taken into
consideration.

None

358

Robot Class

Examples

 As Double
Dim cur_pos As New Location

i

For ii = 1 To 4 ' Copy to jts array
(ii)

Robot.JointToMotor(1, jts, mot) ' Convert to enc counts
Robot.MotorToJoint(1, mot, jt2) ' Convert back to jt angles

See Also

Robot Class

Dim mot(4), jts(4), jt2(4)

Dim ii As Integer
cur_pos.Type = 1 ' Read joint posit ons
cur_pos.Here

 jts(ii-1) = cur_pos.Angle
Next ii

 | Robot.MotorToJoint

359

GPL Dictionary Pages

Robot.LastProfile Property

erties are equal to those of the currently executing
motion or the last executed motion if no motion is active.
Returns a Profile Object whose prop

...Robot.LastProfile (robot)

Prerequisites

None

Parame

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property extracts a copy of the motion Profile parameters that were specified for the
n of a Robot or the last motion if no motion is now in progress.

The extracted values are returned in a Profile Object.

If the previous motion was interrupted due to an error, this property, in combination with
the Dest or DestAngles properties, is very useful for retrying the motion.

Examples

See Als

Robot C

ters

currently executing motio

Dim Profile1 As Profile
Profile1 = Robot.LastProfile() ' Reads last Profile utilized

o

lass |Robot.Dest | Robot.DestAngles

360

Robot Class

Robot.MotorTempStatus Property

lue that indicates the temperature status of a motor. Returns an Integer va

...Robot.MotorTempStatus (robot, motor)

Prerequ

The motor must support temperature sensing and motor temperature monitoring must be
nabled. Motor temperature monitoring is enabled by setting Max motor temperature

D 10110) to a non-zero value.

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to be accessed
(1-n).

Remarks

This property returns an Integer code that indicates the temperature status of a motor.

This value permits a program to determine if a motor's temperature is within its normal
operating range without needing to know the configuration parameters for the motor. If
required, the specific motor temperature value can be accessed by reading the Motor
temperature (DataID 12110) parameter.

The following table describes the codes returned by this property.

isites

e
(DataI

Parameters

Returned
Code Description

-1
Temperature monitoring is not enabled for this motor. Use parameter
Max motor temperature (DataID 10110) to enable temperature
monitoring.

0 The motor's temperature is within its normal operating range.

1
The motor's temperature is within the warning temperature range. See
Warning motor temperature (DataID 10111) to set the warning
temperature value.

2 The motor's temperature has exceeded its maximum permitted value.

361

GPL Dictionary Pages

See the Motor Temperature Sensing section in the Controller Software Setup chapter
of the Precise Documentation Library for details on the operation of supported motor

Exampl

temp = Robot.MotorTempStatus(1, 2)

 Controller.SystemMessage("Motor temperature too high")

 Controller.SystemMessage("Motor temperature warning")
 End If

Robot Clas

temperature sensors.

es

Dim temp As Integer

If temp > 0 Then
 If temp > 1 Then

 Else

End If

See Also

s

362

Robot Class

Robot.MotorToJoint Method

quivalent array of axis
o account any motor

Converts rray of an a motor positions (in encoder counts) to an e
 degrees or millimeters). Automatically takes intjoint angles (in

coupling and other factors.

Robot.MotorToJoint (robot, motor_pos, joint_pos)

Prerequisites

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor_pos

A required array of double precision values that defines the motor
encoder position values that are to be converted into an equivalent array
of joint axis positions. This array must have one value for each of the
motors of the robot. motor_pos(0) must contain the position for motor 1.

joint_pos

A required array of double precision values into which the computed
equivalent joint axis positions are written in either degrees (for rotary
axes) or millimeters (for linear axes). This array must have at least one
element for each axis of the robot. joint_pos(0) will contain the position
for axis 1.

Remarks

This method converts an array of motor positions, specified in encoder counts, into an
equivalent array of axis joint angles, specified in degrees for rotary joints and millimeters
for linear axes.

For many robots, there is a simple scalar relationship between motor encoder counts and
joint angles. However, some robots have a much more complicated relationship due to
mechanical coupling of motors, linearity compensation, encoder roll-over compensation,
and other factors.

This method can be executed for any robot and all factors that affect the relationship
between motor encoder counts and joint angles are automatically taken into
consideration.

None

363

GPL Dictionary Pages

Examples

(4) As Double
Dim cur_pos As New Location

For ii = 1 To 4 ' Copy to jts array

.JointToMotor(1, jts, mot) ' Convert to enc counts
, jt2) ' Convert back to jt angles

Robot Class

Dim mot(4), jts(4), jt2

Dim ii As Integer
cur_pos.Type = 1 ' Read joint positions
cur_pos.Here

 jts(ii-1) = cur_pos.Angle(ii)
Next ii
Robot
Robot.MotorToJoint(1, mot

See Also

 | Robot.JointToMotor

364

Robot Class

Robot

erts or retrieves the last asserted value that specifies the mass of the payload being
carried by the robot (as a percentage of the maximum payload).

.Payload Property

Ass

Robot.Payload = <new_percentage>
-or-
... Robot.Payload (robot)

Prerequisites

• Setting the payload only affects the performance of the robot if the robot's
kinematic module supports Dynamic Feedforward compensation (DFF) and if
DFF is enabled.

• For the set operation, the robot must either be attached to the current thread or
must not be attached to any thread.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property either asserts or retrieves the last asserted value that specifies the mass of
the payload being carried by the robot. For clarity, this property does not measure the
mass of the payload, it simply sets the estimated mass or reads the last set value.

For robots that have Dynamic Feedforward compensation enabled (DFF), this property
will adjust the feedforward for each of the robot's axes to compensate for the mass of the
payload. If full DFF compensation is supported, changing this value will alter the gravity
compensation for each affected axis and will adjust the axes servo control loops to
command torques to compensate for the inertial load of each motor as well as to account
for such factors as centripetal and Coriolis forces.

For example, if a robot picks up a very heavy payload, specifying a new mass value that
correctly estimates the load will improve the gravity balancing of any axis that is placed
into Manual Control Free Mode. This improved estimate will also reduce the position
tracking errors of all axes during computer controlled motions.

For simplicity, the payload is specified as a percentage of the maximum mass defined by
the "Dynamic feedforward mass, kg" (DataID 16067).

Since changing the payload alters the behavior of the servo loops, as a precaution, if the
robot is in motion when the value of this property is altered, GPL automatically waits until
the motion is completed before applying the change. Once the payload is changed, the
new value will remain in effect until the Robot.Payload is altered or the controller is

365

GPL Dictionary Pages

powered down and restarted. As a convenience, when the controller is restarted, the
initial value of the payload is automatically set to the value specified by the "Dynamic

d" (DataID 16071).

Exampl

Robot.Attached = 1
 ' 1/2 maximum payload being carried
yload()) ' Outputs a value of 50

Robot C

feedforward default % payloa

es

Robot.Payload = 50
Console.WriteLine(Robot.Pa

See Also

lass

366

Robot Class

Robot.RapidDecel Property

Sets the internal Boolean flag that forces any in-process motion for a robot to
decelerated to a stop.

be rapidly

Robot.RapidDecel (robot)

Prerequisites

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

of any motion in

None

Parameters

robot

Remarks

Setting the RapidDecel flag immediately initiates a rapid deceleration
progress for the specified robot. At the conclusion of the deceleration, no erro
signaled and program execution continues un-interrupted. The motion will, however,
have been stopped at a location different from the original plan. If the robot was not in
motion, setting this flag is ignored. At the start of

r is

the next motion, the RapidDecel flag is
automatically reset.

In that t rocess motion, it is similar in effect to the Soft E-Stop, Hard
E-Stop, and Disable Power functions. However, those functions are typically used to
stop all robots s and they therefore
generate error c

Examples

Robot.RapidDecel

See Also

Robot Class

The RapidDecel feature can be used to stop motions prematurely due to an external
signal, such as tripping a switch, touch sensor, or force sensor. Since these are
expected events, program processing is not halted.

his flag stops any in-p

imultaneously when an unexpected event occurs
onditions.

() ' Triggers a rapid decel of Selected robot

 | C nabledontroller.PowerE | Controller.SoftEstop

367

GPL Dictionary Pages

Robot.RealTimeModAcm Property

Returns a Cartesian Location whose value is equal to the accumulated path
odifications generated by the Real-time Trajectory Modification mode. m

... Robot.RealTimeModAcm (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

When the Real-time Trajectory Modification mode is enabled (via the
Move.StartRealTimeMod method), this property can be used to sample the
instantaneous accumulated path modification value computed by this special mode of
operation. Knowledge of the accumulated change is not required in most applications,
but this value can be of use in certain situations.

The interpretation of the accumulated change Location is a function of the coordinate
frames utilized to apply the real-time modifications and to accumulate the changes. For
each of the primary modes of the Real-time Modification method, the planned set point
transformation is conceptually computed each trajectory cycle as follows:

World-World Mode

Updated_position = Accumulated_position +
SetPoint_position
Updated_orientation = Accumulated_orientation *
SetPoint_orientation

Tool-World Mode

Updated_transform = Accumulated_transform *
SetPoint_transform

Tool-Tool Mode

Updated_transform = SetPoint_transform *
Accumulated_transform

368

Robot Class

Examples

dz = Robot.RealTimeModAcm.Z ' Accumulated change in Z position

See Als

Robot C

Dim dz As Double

o

lass | Move.StartRealTimeMod | Move.SetRealTimeMod

369

GPL Dictionary Pages

Robot.RestartBase Property

Gets the position and orientation offset for the base of the robot that was set when the
controller was restarted.

... Robot.RestartBase (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

As a convenience, when the controller is restarted, the "base" for each robot is
automatically set equal to the position and orientation offset defined by its "Base set at
restart" (DataID 16052) value. Since many applications utilize the same base offset ea
day, this ensures that the Base dimensions are correctly set when the system is

ch

restarted.

qual to the Base dimensions
that were set the last time that the system was restarted.

property. See that property for additional information on the use and benefits of the Base
perty.

Examples

Robot.Attached = 1
bot.Base = Robot.RestartBase() ' Set base back to default

obot Class

This property returns a Cartesian Location value that is e

Once set, these Base dimensions can be easily modified using the Robot.Base

pro

Ro

See Also

R | Robot.Base

370

Robot Class

Robot.RestartTool Property

t
when the controller was restarted.
Gets the position and orientation offset for the tool or gripper of the robot that was se

... Robot.RestartTool (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remark

tically
set equal to the position and orientation offset defined by its "Tool set at restart" (DataID

per each day, this
ensures that the Tool dimensions are correctly set when the system is restarted.

rns a Cartesian Location value that is equal to the Tool dimensions
that were set the last time that the system was restarted.

Once set, these Tool dimensions can be easily modified using the Robot.Tool property.
 that pro onal information on the use and benefits of the Tool property.

Exampl

bot.Attached = 1
Robot.Tool = Robot.RestartTool() ' Set tool back to default

See Also

Robot Class

s

As a convenience, when the controller is restarted, the tool for each robot is automa

16051) value. Since many applications utilize the same tool or grip

This property retu

See perty for additi

es

Ro

 | Robot.Tool

371

GPL Dictionary Pages

Robot.Selected Property

ult robot number to be used when accessing a specific robot. Sets and gets the defa

Robot.Selected = <robot_number>
-or-
... Robot.Selected

Prerequisites

None

Parameters

None

Remarks

This pro properties and
method ce a robot allow the robot number to be explicitly specified or to be
unspecified and utilize the Selected robot number by default. However, there are some

ethods, such as the location_object.Here, that always access the Selected robot.

 the
lue.

Exampl

Dim iRobot As Integer

See Als

Robot C

perty allows a thread to set its default robot number. Most of the
s that referen

m

The Selected robot number is an Integer that ranges from 1 to N.

When a robot is Attached, the system forces the Selected property to be equal to
Attached va

es

Robot.Selected = 1 ' Robot #1 is now Selected
iRobot = Robot.Selected ' iRobot will be set to 1

o

lass | Robot.Attached

372

Robot Class

Robot.Source Property

Returns a Cartesian Location whose value is equal to the starting position and
orientation of the previously executed motion.

...Robot.Source (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation for the
starting position of the previously executed motion. The previously executed motion can
still be in progress or could have already stopped executing when this property is
accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the Dest Location to
reconstruct the previously planned motion. For example, this is beneficial for moving the
robot's tool back onto the previous path if the previous motion was prematurely
terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to starting Cartesian position and orientation of the
previous motion.

RefFrame Always Null
Config Configuration bits for the start of the previous motion.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

373

GPL Dictionary Pages

Examples

SourceLoc = Robot.Source() ' Reads starting motion location

See Als

Robot C

Dim SourceLoc As Location

o

lass | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.SourceAngles

374

Robot Class

Robot.SourceAngles Property

Returns an Angles Location whose value is equal to the starting axes positions of the
previously executed motion.

...Robot.SourceAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that represent the starting
position of the previously executed motion. The previously executed motion can still be
in progress or could have already stopped executing when this property is accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the DestAngles
Location to reconstruct the previously planned motion. For example, this is beneficial for
moving the robot's axes back onto the previous path if the previous motion was
prematurely terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location
Angles Set equal to initial axes positions of the previous motion.
RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim SourceLoc As Location
SourceLoc = Robot.SourceAngles() ' Reads initial motion position

375

GPL Dictionary Pages

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.Source

376

Robot Class

Robot.SpeedAngles Property

Returns an Angles Location whose components contain the instantaneous speeds of
each of the robot's axes.

...Robot.SpeedAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the instantaneous speed of each of the robot's axes. These speeds
are determined by sampling the encoder values, differencing and filtering these values,
and then converting them to joint angles. The conversion to joint angles takes into
consideration any mechanical coupling between the motors and other kinematic
considerations.

This property returns the axes speed values in the Angles properties of an Angles
Location. The speeds are in units of mm/sec or degrees/sec as appropriate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location

Angles Set equal to the instantaneous speeds for each of the axes of the robot
in mm/sec or deg/sec.

RefFrame Always Null
Config Always zeroed.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim RobotPos As Location
Dim jt3 As Double
RobotPos = Robot.SpeedAngles() ' How fast is each axis moving?
jt3 = RobotPos.Angle(3) ' Speed of axis 3

377

GPL Dictionary Pages

See Also

Robot Class | Robot.Where | Robot.WhereAngles| location_object.Here

378

Robot Class

Robot

pper of the robot.

.Tool Property

Sets and gets the position and orientation offset for the tool or gri

Robot.Tool = <Cartesian_location>
-or-
... Robot.Tool (robot)

Prerequisites

• For the set operation, the robot must either be attached to the current thread or
must not be attached to any thread.

• For the set operation, the Location must be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the last axis of the robot to the center
point of the robot's gripper (or tool).

The Tool definition is particularly beneficial for robots that can change the orientation of
the gripper. When the tool center point is properly defined and the system is instructed to
move along a straight-line path, the tool center point will move along a straight line even if
the orientation of the gripper is simultaneously changed. Also, in Jog-Tool control mode,
the operator can easily rotate the tool center point while maintaining the same position.

For the majority of simple grippers, the gripper dimensions consist of just an offset along
the Z-axis of the robot with no change in orientation. This corresponds to an Location
XYZ specification of "0,0,tool_length,0,0,0".

Once the Robot.Tool has been set, these dimensions remain in effect until the Tool
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Tool" definition is automatically put into effect
based upon the values of "Tool set at restart" (DataID 16051).

Changing the Tool dimensions instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts
to set the Tool, GPL automatically waits until the motion is completed before executing
this instruction.

Examples

379

GPL Dictionary Pages

Dim tool As New Location
Robot.Attached = 1
tool.XYZ(0, 0, 100) ' Simple tool with 100mm length
Robot.Tool = tool

) ' Outputs a value of 100

See Also

Robot C

Console.WriteLine(Robot.Tool().Z

lass | Robot.RestartTool

380

Robot Class

Robot.Tr tate P

Returns a num for the Trajectory Generator or
the currently e

ajS roperty

eric value that provides state information
xecuting motion for a given robot.

...Robot.TrajState (robot, mode)

Prerequ

Parameters

An op
(1-n).
acces

mo

An op
inform alue is specified, a mode of 0 is
assum

Remarks

ous state information for the trajectory generator or the currently
cific robot depending upon the value of the mode parameter.

isites

None

robot

tional numeric expression that specifies the robot to be accessed
 If this value is 0 or unspecified, the Selected robot will be
sed.

de

tional numeric expression that specifies the type of state
ation that is to be returned. If no v
ed.

This property returns vari
executing motion for a spe

mode 0: Basic Trajectory State

This property returns a value that indicates whether a trajectory is currently being
evaluated for the specified robot and, if so, what portion of the trajectory is being
generated. This value can be utilized to determine if a trajectory is being ramped up to its
maximum speed, being ramped, waiting for final position errors to be nulled, sitting idle,
performing a special control mode, etc.

The possible values returned by this property are presented in the following table:

TrajState D escription (Mode = 0, Basic Trajectory State)
0 Halted, Trajectory Generator not being executed and no robot attached

1 Idle, Trajectory Generator ready to service commands but no motion in
progress.

2 Position controlled mode, accelerating up to maximum speed
3 Position controlled mode, moving at constant velocity

381

GPL Dictionary Pages

4 controlled mode, blending two motions together Position
5 Position controlled mode, decelerating robot to a stop
6 Position controlled mode, force overlapping two motions together
8 Velocity controlled mode
9 Special motor speed control mode, usually indicates homing
10 Jog (manual) control mode
11 External trajectory control, special mode
15 Motion terminated, waiting for final position to satisfy InRange criteria

mode 1: Active Motion Status

This property returns a value that indicates whether the currently active or the previous
motion (if none is currently active) has been initiated or has terminated and, if so, whe
the motion ran to completion or was prematurely terminated.

ther

property are presented in the following table: The possible values returned by this

TrajState Description (Mode = 1, Active Motion Status)
0 No motion posted for execution yet.

1
Motion was posted to the trajectory generator but was rejected because it did
match the end point of the previous motion (this value is normally never
returned).

n't

2 Motion has been posted to the trajectory generator for execution but has not
started yet (this value is normally never returned).

3 Motion has been posted that is to be executed in continuous path mode with
e previous motion (this value is normally never returned). respect to th

4 Motion currently being executed.

5 Motion terminated or is being terminated, but the motion did not run to
completion and the robot did not or will not reach its planned destination.

6 Motion terminated and ran to completion and reached its planned destination.

mode 2: Motion Counter

Each time that a new motion is executed for a specific robot, the robot's Motion Counter
is incremented. This value can use used to verify that the data being analyzed is with
respect to the same motion. This is a 32-bit integer counter and should not roll-over for
most practical situations.

mode 3: Active Motion Type

This property returns a value that indicates the type of motion being executed, e.g.
Cartesian straight-line, joint interpolated, etc. Some of the values returned are for special
modes and are not documented.

TrajState Description (Mode = 3, Active Motion Type)
0 Joint interpolated motion
1 Cartesian straight-line motion
2 Circular interpolated motion

3 - 6 Special motion types, such as velocity or jog or external trajectory control

382

Robot Class

modes.

mode 4: Total Motion Time in Seconds

ly
eturns the total motion time in seconds. If the motion is part of a

continuous path, some of the specified time will be overlapped with the previous or the

mode

For the currently executing motion or the previous motion (if no motion is current
executing), this value r

next motion.

 5: Motion Elapsed Time in Seconds

This indicates the number of seconds that have elapsed since the start of the currently
ing motion or the previous motion (if no motion is currently executing). After a

motion completes execution, this timer continues to increase in value until the next
ion begins execution, at which time the timer is reset to zero.

mode

execut

mot

 6: Motion Interpolation Factor

This is t n the
starting , it has a value
of 0. At the end of the motion, it will have a value of 1. This factor can be used to
determine how far the trajectory has progressed. For example, for Cartesian straight-line

otions, this value indicates how far the robot is from the initial or the final position.

Exampl

istate = Robot.TrajState() ' Reads current trajectory state

See Als

Robot C

he factor that is computed by the Trajectory Generator to interpolate betwee
and the ending position of the currently executing motion. Initially

m

es

Dim istate As Integer

o

lass

383

GPL Dictionary Pages

Robot

Returns a Cartesian Location whose value is equal to the current position and
orientation of a robot.

.Where Property

...Robot.Where (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current position and orientation of a robot in a Cartesian
Location. This position and orientation automatically take into account both the robot's
Base and Tool offsets.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into an equivalent Cartesian position and
orientation. These sampled values are usually slightly different than the commanded
axes set point positions due to servo tracking errors and small positional errors.

The conversion to Cartesian coordinates make use of the optional Kinematic module for
the selected robot.

Note, if you wish to update the position and orientation of a Location variable, it is often
better to utilize the location_object.Here method rather than simply assigning the Where
Location to the variable. The Here method preserves the other properties of the
Location variable and will automatically take into account any reference frame
(RefFrame).

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Set equal to current Cartesian position and orientation of a robot.
RefFrame Always Null
Config Configuration bits for the current robot position and orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

384

Robot Class

Examples

RobotPos = Robot.Where() ' Where is the robot right now?

See Also

Robot C

Dim RobotPos As Location

lass | Robot.SpeedAngles| Robot.WhereAngles | location_object.Here

385

GPL Dictionary Pages

Robot.WhereAngles Property

Returns an Angles Location whose value is equal to the current axes positions of a
robot.

...Robot.WhereAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current positions of the axes of a robot in a Angles Location.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into equivalent axes positions. These sampled
values are usually slightly different than the commanded axes set point positions due to
servo tracking errors and small positional errors.

Note, if you wish to update the position of a Location variable, it is often better to utilize
the location_object.Here method rather than simply assigning the WhereAngles
Location to the variable. The Here method preserves the other properties of the
Location variable.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location
Angles Set equal to current position of each axes of a robot.
RefFrame Always Null
Config Configuration bits for the current robot position and orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim RobotPos As Location
RobotPos = Robot.WhereAngles() ' Where is the robot right now?

386

Robot Class

See Also

Robot Class | Robot.SpeedAngles | Robot.Where | location_object.Here

387

Signal Class
Signal Class Summary

The following pages provide detailed information on the properties and methods of the
des access to the simple hardware interfacing
uch as the digital and analog input and output (I/O).

s allow a GPL program to coordinate its actions with those of

the digital I/O, programs can employ semaphores to interlock their execution with
other equipment in the work cell such as feeders or processing machines. Using the

 I/O, programs can sample the values of simple sensors such as force or
sensors to alter the sequence of program execution.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Single, Double, are automatically performed as required. So, for numeric
s and methods of the Signal Class, it is not necessary to have different

variation meter
data typ results
that are to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeri not oc

The table mar properties an ds that are described in
greater d ing se

global Signal Class. This class provi
features of the Guidance controller, s
These common interface
other devices.

Using

analog
temperature

Integer,
propertie

s of these members to deal with the different possible mixes of input para
es. Also, as appropriate, the properties and methods generally produce
 formatted as Double’s. These results will automatically be converted

c overflow does cur.

 below briefly sum izes the
ctions.

d metho
etail in the follow

Member Type Description

Signal.AIO Property Sets and gets the values of the analog input
and output channels.

Signal.DIO Property Sets and gets the values of the digital input
and output channels.

388

Signal Class

Signal.AIO Property

Sets and gets the values of the analog input and output channels.

Signal.AIO(channel)=<new_value>
-or-
... Signal.AIO(channel)

Prerequisites

None

Parameters

channel

A required numeric expression that specifies the analog channel to be
accessed. The allocated ranges of channel numbers are as follows:

Channel Type Minimum number Max allocated number

Analog outputs 1 10000
Analog inputs 10001 20000

Please consult the hardware specification for your specific version of
controller for information on the maximum number of input and output
channels available on your system.

Only the value of an output channel can be written. The current values of
both input and output channels can be read.

Remarks

At the hardware level, both analog input and analog output signals levels are represented
by integer numbers whose ranges are a function of the specific model of your controller.
To generalize accessing these devices at the GPL level, analog values are represented
by floating point numbers that are scaled, offset, and thresholded relative to the raw
hardware values.

In many systems, analog values are configured to range from either +-1.0 or +-100.
Please consult the personnel who configured your controller for the applicable ranges of
possible analog values.

Examples

Dim sensor_reading As Single
sensor_reading = Signal.AIO(10001) 'Sets sensor_reading equal to the
 'scaled value of the first analog
 'input channel

389

GPL Dictionary Pages

See Also

Signal Class | Signal.DIO

390

Signal Class

Signal.DIO Property

Sets and gets the values of the digital input and output channels.

Signal.DIO(channel, c t)=<new_value> oun
-or-
... Signal.DIO(channel, count)

Prereq

Param

uired n ssion that spe annel to
ce bers a rang
l ty ranges orga

O points. The bank numbers start at 0. A signal number is formed by
g ue t nu

 a distributed servo network, general digital I/O signals on the slave
g

ignal number.

coun

tional num
hannels
, only a s

Boolean.

If specified, the p
er is not

If multiple channe
t-1 m

Remarks

cates

e input is at a logic high level. If the channel is –10001, the signal is
True if the input is at a logic low level.

Only an output DIO signal can be written. The current values of both input and output

uisites

None

eters

channel

A req
be ac
signa
96

umeric expre cifies the first digital ch
ssed. Signal num
pe. Within those

re organized into
, the signals are

es based on the
nized into banks of

 I/
addin

In

 the signal base val o 100 times the bank mber.

controllers may be accessed from the master controller by addin
100000 times the slave controller node number to the s

t

An op eric expression that specifies the number of successive
digital c
omitted

to be accessed. The value may range from 1 to 32. If
ingle channel is accessed and the property value is a

roperty value is a numeric bit mask. Omitting the count
paramet the same as specifying a count of 1.

ls are specified, all channels within the range signal to
ust be valid. signal+coun

When specifying DIO signal (channel) numbers, a positive base signal number indi
that the signal is True if its logical level is high. A negative base signal number indicates
that the signal is True if its logical level is low. For example, if the channel is 10001, the
signal is True if th

signals can be read.

391

GPL Dictionary Pages

If count is sp DIO specified by channel corresponds to bit 0 of tecified, the he
here

 property
 n < count.

 the bank.

value. channel+1 corresponds to bit 1, channel+n corresponds to bit n, w

The table b delow shows the possible signal numbers based on the type an

Signal Type Signal Base Signal Range Banks

Test 0 0

General 1 1 + 100*bank
96 + 100*bank

0 = Local outputs,
1-15 = Remote outputs on RIO
or MODBUS/TCP modules. outputs

Dedicated
outputs 8001 8001 + 100*bank

8096 + 100*bank
0 = Controller outputs,
1-15 = axis outputs.

General
inputs 10001 10001 + 100*bank

10096 + 100*bank

0 = Local inputs,
1-15 = Remote inputs on RIO or
MODBUS/TCP modules.

Dedicated
inputs 18001 18001 + 100*bank

18096 + 100*bank
0 = Controller inputs,
1-15 = axis inputs.

Software I/O 20001 20001 - 20064 Not used
Reserved 21001 21001 - 100000

Servo Network
node n general

outputs
100000*n + 13 100000*n + 20 0 = Local outputs only

Servo Network
node n general

inputs
100000*n + 10001 100000*n + 10012 0 = Local inputs only

The following describes the different type of digital IO signals:

DIO Type Description

Test Channel 0 is a special test value that always reads False no matter
what value is written to it.

General These are the “user” DIO signals that are provided in the controller or
remote I/O boards. They do not have a predefined use and can be
freely employed. In some cases, general DIO may be configured to
serve as dedicated IO. For example, a general DIO can be
configured as a joint over-travel limit.

Dedicated The dedicated DIO are pre-defined to fixed machine control functions
such as a home sensor. Some of these signals are assigned to
specific pins. However, others can be mapped to General DIO pins.

Software These “soft” IO do not drive or read actual hardware output or input
signals. They can be used as semaphores between threads or in
place of hardware DIO for testing control algorithms.

Please consult the hardware specification for your specific version of controller for
information on the maximum number of input and output channels of each type available
on your system.

Examples

Dim semaphore As Boolean

392

Signal Class

Signal.DIO(20001) = True 001 to True
semaphore = Signal.DIO(-20001) ' Will set semaphore value to False
Signal.DIO (20001) = 4 ' Sets soft signal 20001 to True
 ' since 4 is non-zero.

) = 4 ' Sets soft signal 20001 to False
) = 4 ' Sets soft signal 20001 to False

 ' and soft signal 20002 to False

See Als

Signal C

 ' Sets soft signal 20

Signal.DIO (20001, 1
Signal.DIO (20001, 3

 ' and soft signal 20003 to True

o

lass | Signal.AIO

393

Statements
Statements Summary

following pages pro ements that are
gral
 stan ming language such as

control structures, variable declarations, subroutine and function calls, etc. As much as
possible, these statements have been modeled after standard instructions provide by
other variants of the Basic Programming Language.

The table below briefly summarizes the statements that are described in greater detail in
the following sections.

The vide detailed information on the basic stat
provided as an inte
statements provide

portion of the Guidance Programming Language. These
dard functionality found in any program

Statement Description

Call Transfers control to a procedure and ignores its return value.

Case / Case Else
Used within a Select...Case...End Select sequence to specify
possible matches for the target value and to delineate the
statements to be executed if a match occurs.

Class Begins a Class definition.
Const Declares a read-only variable for use in a procedure.

Delegate
Creates a Delegate class that provides a means for indirectly
calling a function or subroutine procedure using an object
variable.

Dim Declares a variable for use in a procedure.

Do...Loop
Bounds a block of instructions that are repeatedly executed so
long as a specified expression evaluates to True or until the
expression value becomes True.

Else, ElseIf Used within an If…Then…Else…End If series of statements to
conditionally execute alternative blocks of instructions.

End Marks the end of a control structure or major project element
such as a program or function.

Exit Terminates the execution of a block of instructions within the
innermost control structure of a specified type or a procedure.

For...Next Bounds a block of instructions that are repeatedly executed a
specified number of times.

Function Begins a user-defined function procedure.

Get Begins a Get procedure block within a Property procedure
definition.

Goto Performs an unconditional branch and continues execution at a
specified labeled instruction.

If...Then...Else...End Conditionally executes a block of embedded statements based upon the
value of an expression.

Loop Marks the end of a Do…Loop block of instructions and in some
instances also specifies the loop termination condition.

Module Begins a user-defined module section. All variable definitions and
procedures must be inside a Module or Class definition.

Next Marks the end of a For…Next block of instructions.

Property Begins a user-defined Property procedure.

ReDim Increases or decreases an array size by changing the array's upper
bounds.

394

Statements

Return Causes a user-define procedure to return control to the calling
procedure and optionally return a value.

Select...Case...End
Select

Evaluates a target expression, compares its value to a series of values
and executes the block of statements associated with the first matching
value.

Set Begins a Set procedure block within a Property procedure definition.

Sub Begins a user-defined subroutine procedure.

While...End While Bounds a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True.

395

GPL Dictionary Pages

Call Statement

ocedure, and ignores its return value. This statement transfers control to pr

Call procedure_name([argument_list])
-or-
Call class_name.procedure_name([argument_list])
-or-
Call object_name.procedure_name([argument_list])

Prerequisites

None

Parameters

procedure_name

The name of procedure to be called. This procedure can be either user-
defined or built-in. It can be a function (Function), a subroutine(Sub) or a
method of a built-in class.

class_name

The name of a built-in class of which procedure_name is a member.

object_name

The name of a object that is an instance of a built-in class of which
procedure_name is a member

argument_list

A list of argument values that are passed to the procedure. The
argument_list may be empty, or may be a list of argument values,
separated by “,”, that correspond to the arguments in the called
procedure.

argument, argument, argument

The type and number of arguments must match the parameters in the
declaration of the called procedure. For a ByVal parameter, the
argument can be any expression of the matching type. For a ByRef
parameter, the argument must be a variable of the matching type.

Remarks

396

Statements

When a procedure is called, the current procedure is suspended until the called
procedure exits. Some procedures (e.g. Function procedures) can return a value. The

 the returned value to be accessed.

Examples

, 30) ' Same as above
 30, 0, MyProfile)

See Als

Statem

Call statement does not allow

The Call statement is optional. It can be omitted and the procedure_name specified as
the first item in the statement.

Call my_subroutine(10, 20, 30)
my_subroutine(10, 20
Call Move.OneAxis(1,

o

ents | Function Statements | Sub Statements

397

GPL Dictionary Pages

Case, Case Else Statements

ct...Case...End Select series of statements.
Each Case specifies possible matches for the value to be matched and delineates the

ccurs.

These instructions are used within a Sele

statements to be executed if a match o

Select match_value
 Case test_expression, ..., test_expression
 case_statements
 :
[Case test_expression, ..., test_expression
 [case_statements]]
[Case Else
 [else_statements]]
End Select

Prerequisites

n only be specified within a Select...Case...End Select series of statements.

Remark

See Also

Statements

Ca

s

Please see the documentation on the Select...Case...End Select statements for an
explanation on the use of the Case and Case Else instructions.

 | Select...Case Statements

398

Statements

Class Statement

This statement begins a Class definition.

[Public | Private] Class class_name

Prerequisites

A Class may only be declared at the top level of a file, within a Module, or within another
Cla

Parameters

class_name

The name of the Class being defined.

Remarks

A Class definition must always end with an End Class statement.

If a Clas e the Module or Class in
which it is defined. A Private Class can only be accessed within the Module or Class
where it is defined. I s to Private.

Other attributes such as Friend or Protected are not supported.

Variables, constants, and procedures defined within the Class are members of the Class
and can only be accessed by first specifying the Class or an object of the Class.

Examples

c object
End Class

Sub test
 Dim obj As New cc ' Create object of class cc

See Als

Statem

ss.

s is declared Public, it can be accessed from outsid

f the Public attribute is omitted, the Class default

Public Class cc ' Begin the class
 Public x As Single ' Variable x is in cc object
 Public y As Single ' Variable y is in c

 obj.x = 2.5 ' Set x value in new object
End Sub

o

ents | Module Statement

399

GPL Dictionary Pages

Const

iable for use in a procedure. Use the Dim
statement for normal read-write variables.

 Statement

This statement declares a read-only var

[Public | Private] [Dim] Const variable_name As type = init

Prerequisites

• A Const statement can only appear inside a class, procedure or a module.
• The Public and Private keywords cannot be used inside a procedure.

Parameters

variable_name

The name of the variable to be declared as a constant.

type

The type to be assigned to this variable. The type must be a primitive
type or a String. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

init

An expression that specifies the initial value for the new variable. It must
have a constant value. It may only be composed of numeric or String
constants, other Const variables, or built-in system functions.

Remarks

Only the Const statement can set the value of this variable. Everywhere else, an error
occurs if an attempt is made to modify the value.

The Dim keyword is optional.

If both Public and Private are omitted, the default is Private.

Const variables declared within a class definition are implicitly Shared.

Unlike other declarations, only a single variable may be declared in one Const
statement.

Const variables declared within a procedure definition are initialized in the order in which
they occur and are known only within that procedure. Const variables outside procedures
may arbitrarily make forward references to other Const variables.

400

Statements

Examples

er = 10
Const c2 As Integer = c1 + 1

See Also

Statem

Const c1 As Integ

Const ascii_a As Integer = ASC("a")

ents | Dim statements | ReDim statements

401

GPL Dictionary Pages

Delegate Statement

statement creates a Delegate class that provides a means for indirectly calling a
ubroutine procedure using an object variable.

This
function or s

[Public | Private] Delegate Function delegate_name([parameter_list]) As type
-or-
[Public | Pr e] Delegaivat te Sub delegate_name([parameter_list])

Prerequ

Parame

t

rameters that are passed to the procedure when it
ject. The number and type of the parameters

t mus whatever procedure is subsequently associated

 or Sub statement definitions for more details on

his is the type of the value returned by the
h the Delegate object. This is not used if this

Remark

emplate for indirectly
ype of procedure. A program can create Delegate objects that contain

pointers to Function or Sub procedures. These Delegate objects allow the associated
unction or Sub procedures to be called indirectly.

s declarations and may occur at the Module
level or Class level.

The AddressOf operator is used when creating new Delegate objects. When a new
Delegate object is created, the type of the procedure and the argument list of the
procedure must be identical to the parameter_list and type specified in the corresponding
Delegate statement. If a non-shared class method is specified, a reference to the object

isites

None

ters

delegate_name

The name of the Delegate class to be defined.

parameter_lis

A template for the pa
is called via a Delegate ob
in this lis t match
with a Delegate object. The list may be empty if the procedure has no

names of the parameters in this list are not important. parameters. The
nSee the Functio

ters lists. parame

type

For Function procedures, t
procedure associated wit
Delegate is for a Sub procedure.

s

Each Delegate statement defines a different Class that contains a t
executing a t

F

Delegate statements are equivalent to Clas

402

Statements

associated with that method is saved in the Delegate object and used when the
Delegate is referenced.

Module GPL

ub Test
 Dim del(1) As SubDel

 del(1) = New SubDel("TypeB")
 ii = 0 To 1

 del(ii)("message", ss)
 Console.WriteLine(ss)

 d

 b)
 outs = "A " & ins

End Sub

 Public Sub TypeB(ByVal ins As String, ByRef outs As String)
 "B " & ins

End Module

Module GPL2
 Pub

 End Class

ublic Delegate Function FunDel(ByVal arg As Integer) As String

 Pub

 obj.value = 2
 dc_del = Ne

 ss = dc_del(4)

 End Sub
End Module

See Also

Statements

Examples

 Public Delegate Sub SubDel(ByVal arg As String, _
 ByRef out As String)
 Public S

 Dim ii As Integer
 Dim ss As String
 del(0) = New SubDel(AddressOf TypeA)

 For

 Next ii
 ' Output is "A message", "B message"
 En Sub

Pu lic Sub TypeA(ByVal ins As String, ByRef outs As String

 outs =
 End Sub

lic Class D_Class
 Public value As Double
 Public Function Dcfun(ByVal arg As Integer) As String
 Dim ss As String
 ss = "Dcfun, value: " & CStr(value) & ", arg: " & CStr(arg)
 Return ss
 End Function

 P

lic Sub Test
 Dim obj As New D_Class
 Dim ss As String
 Dim dc_del As FunDel

w FunDel(AddressOf obj.Dcfun)

 Console.Writeline(ss) ' Output is "Dcfun, value: 2, arg: 4"
 Console.Writeline(dc_del(4).Length) ' Output is "23"

 | Function Statement | Sub Statement

403

GPL Dictionary Pages

Dim Statement

This statement declares a variable for use in a class or procedure.

[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [=
[New] init]
-or-
[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [=
[New] init], variable_name [, variable_name …] As [New] type [= [New] init], …

Prerequi

e.

• The Shared keyword cannot be used at the module level.

Parame

variable_name

The name of the variable to be declared.

In addition to the name, this field may include an array specification of
the form: variable_name(dim_1 [, dim_2 …]), where dim_1 through
dim_4 may be blank or contain an Integer constant defining the

dex of the corresponding array dimension. GPL allows up to

ned to this variable. The type may be a primitive
uilt-in class, or the name of a user-defined class.

The primitive type keywords are:

, Integer, Short, Single

If a class name is specified, the variable becomes an object variable.

init

An expression that specifies the initial value for the new variable. It does
not need to be a constant.

Remarks

If the Public or Private keywords are present, the Dim keyword may be omitted.

If the Shared keyword is specified, only a single copy of this variable is created. It exists
for all threads and persists even after the procedure in which is was defined has exited.

sites

• A Dim statement can only appear inside a class, procedure or a module.
• The Public and Private keywords cannot be used inside a procedur

ters

maximum in
four dimensions.

type

Th to be ae type ssig
type, the name of a b

Boolean, Byte, Double

404

Statements

All variables declared at the module level are implicitly shared, even though the Shared
keyword is not allowed.

procedure can only be accessed from within that procedure,

Shared Dim
sts only within that procedure, and it is initialized each time the procedure

hared keyword is not specified on a Dim statement within a class definition, a
rate copy of the variable exists in each object of that class type.

riable_name field is specified, no init clause may be specified.

w clause can only be specified for objects. If a New keyword is specified
mediately following the As keyword, no initializer value may be specified.

 no init clause is specified, the default value for numeric variables is zero, and for object
bles is Nothing.

fied for a Shared variable, the initialization takes place once when
ain thread begins execution. If an init clause is specified for a non Shared variable,
itialization takes place each time the defining procedure is executed, or each time a

 object of the class is created.

Exampl

 As Integer
 As Integer = 10

Public ii As Integer = 10
Shared Dim count As Integer
Dim ii, jj As Integer, x As Double

As Integer = 10, x As Double = 2.5
As Location

Dim start As New Location

See Also

Statements

Shared variables within a
but their values persist and may be accessed by a subsequent procedure call.

If the keyword is not specified on a statement within a procedure, the
variable exi
runs.

If the S
sepa

If more than one va

The Ne
im

If
varia

If an init clause is speci
the m
the in
new

es

Dim ii
Dim ii

Dim ii
Dim start

 | Const Statement | ReDim Statement

405

GPL Dictionary Pages

Do...L

.

oop Statements

These instructions bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True or until the expression value becomes True

Do While condition
 [statements]
Loop

-or-

Do Until condition
 [statements]
Loop

-or-

Do
 [statements]
Loop While condition

-or-

Do
 [statements]
Loop Until condition

Prerequi

None

Parame

ion

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just

ssions. Any expression that evaluates to <>0 is
 True condition.

tatem eatedly executed
l structure.

dly executes the statements so long as the condition is True or
until it becomes True. It can be used to implement program instruction loops.

sites

ters

condit

Boolean expre
rpreted as ainte

statements

Optional s ent or list of statements that are rep
within the contro

Remarks

This control structure either tests a condition at the start or the end of a block of
statements and repeate

406

Statements

For the Do While and Do Until forms of this control structure, the condition test is
performed prior to the execution of the statements. If the condition permits the loop to be

 will be executed once. At the conclusion of the loop, the test is
the statements should be executed again. So long as the

n

e never executed.

 Loop While or Loop Until forms of this control structure, the
lways be executed at least one time. For these forms, the test is

the execution of the statements. So long as the condition
tatements will be repeated executed. However, if the condition

t permit the execution of the loop on the first test, the statements will still have

forms of this control structure, when the condition test is not satisfied, program
 the first statement following the Loop instruction.

If the While form of the condition test is specified, the condition is satisfied and execution
of the statements is permitted so long as the value of the condition is True. For the Until
form of the condition test, the condition is satisfied and execution is permitted until the

r more complex logic, multiple Do… Loop sequences can be nested to an arbitrary
pth and can be combined with other nested control structures. For example, a Do…

xecution of the Do loop can be terminated by a number of different methods: the
ondition can be set to a value that does not satisfied the test; execution can be explicitly

transferred to an instruction outside of the loop, e.g. by the execution of a GoTo
 executed.

When an Exit Do statement is encountered, execution of the innermost Do…Loop
sequence is immediately terminated and execution continues at the instruction following
the Loop statement. There can be none or several Exit Do statements within each Do
loop.

Examples

Dim count As Integer
count = 10
Do ' Embedded statements always execute at least once
 If count = 5 Then
 Exit Do ' Prematurely stops Do loop
 End If
 count -= 1 ' Same as “count = count-1”
Loop Until count <= 0

See Also

Statements

executed, the statements
repeated to determine if
condition permits execution, the statements will be repeatedly executed. If not, executio
of the statements is terminated. In any case, if the condition does not permit the
execution of the loop on the first test, the statements ar

In contrast, for the
statements will a
performed at the conclusion of
permits execution, the s
does no
been executed one time.

For all
execution continues at

condition becomes True.

Fo
de
Loop can contain an If…Then…End If sequence which can in turn contain a
While…End While sequence.

E
c

instruction; or an Exit Do instruction can be

 | For…Next Statements | GoTo Statements | If…Then…Else…End If Statements |
While…End While Statements

407

GPL Dictionary Pages

Else, ElseIF Statements

ons are used within an If…Then…Else…End If series of statements to
conditionally execute alternative blocks of instructions.
These instructi

If condition Then
 [statements]
[ElseIf elseif_condition Then
 [elseif_statements]]
 :
[ElseIf elseif_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

Prerequisites

Can only be specified within an If…Then…End If series of statements.

Remarks

Please see the documentation on the If…Then…Else…End If Statements for an
explanation on the use of the Else and ElseIf instructions.

See Also

Statements | If…Then…Else…End If Statement

408

Statements

End S

 and major project elements such as
procedures or modules.

tatements

These statements mark the end of control structures

End Class
-or-
End Function
-or-
End Get
-or-
End If
-or-
End Module
-or-
End Property
-or-
End Select
-or-
End Set
-or-
End Sub
-or-
End While

Prerequisites

Remark

ach of the forms of the End statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the related statements

Sub

See Also

Statements

Must always follow and match the type of control structure or procedure that is
referenced.

s

E

and program elements for information on the End statements, e.g. see the While…End
While Statements for information on the End While and see Sub for information on End

.

 | Function Statement | If…Then…Else…End If Statements | Module Statement |
Select...Case Statements | Sub Statement | While…End While Statements

409

GPL Dictionary Pages

Exit Statements

These statements terminate the execution of a block of instructions within the innermost
control structure of a specified type or a procedure. Execution is continued after the end
of the control structure or the call to the procedure.

Exit Do
-or-
Exit For
-or-
Exit Function
-or-
Exit Property
-or-
Exit Select
-or-
Exit Sub
-or-
Exit Try
-or-
Exit While

Prerequisites

specified within the control structure or procedure type that is referenced.

Remarks

Each of trol structure or
procedure being terminated. Please see the documentation on the specific statements

 elements for information on the Exit statements, e.g. see the While…End
While Statements for information on the use of Exit While and Sub for the use of Exit
Sub.

See Also

Statements

Can only be

 the forms of the Exit statement are qualified by the type of con

and program

 | Do… Loop Statements | Exit Try Statement | For…Next Statements | Select...Case
Statements | While…End While Statements

410

Statements

For...Next Statements

These inst a specified
number

ructions bound a block of instructions that are repeatedly executed
 of times.

For vari ue Step increment able = initial_value To final_val
 [statem] ents
Next variable2

Prerequi

Parame

c
ated. The variable can be any

termine when loop execution is to terminate. This expression is
evaluated once when the For statement is executed and its value is

This expression is evaluated once when the For statement is executed
and its value is saved for subsequent tests by the Next statement.
Therefore, this value will not change once the For loop is entered. If this
expression is not specified, a step of 1 is assumed.

sites

None

ters

variable

Required control variable that is in remented each loop and whose value
determines when looping is to be termin
numeric type, i.e.. Byte, Integer, Short, Single or Double. Array
variables as well as object and structure fields are also permitted.
However, object and structure properties are not permitted.

initial_value

Required expression that is evaluated once when the For loop is first
entered. The variable is set to this initial_value and has this value at the
start of the first pass through the execution of the statements.

final_value

Required expression whose value is tested against the variable to
de

saved for subsequent tests by the Next statement. Therefore, this value
will not change once the For loop is entered.

increment

Optional expression that determines the amount by which the variable is
changed each loop and also whether the variable is tested for being
greater than or less than the final_value as the termination condition.

state ntsme

411

GPL Dictionary Pages

Optional statement or list of statements that are repeatedly executed
during each For loop.

variable2

l variable, which if specified, must exactly match the
control variable in the matching For statement. This is only used when
the program is compiled (and not at runtime) to ensure that the Next and
For statements match.

Remarks

This control structure loops and repeatedly executes the statements a specified number
of times (iterations). It can be used to implement program instruction loops and is
generally more efficient that the other means of looping.

The For statement begins execution by evaluating its arguments and saving their values
for future potential use by the matching Next statement. It then sets the value of the
control variable equal to the initial_value. If the variable’s value does not exceed the
final_value, then the statements are executed for the first time. If the variable’s value
does exceed the final_value, the statements are skipped and execution continues at the
first statement beyond the matching Next.

If the statements are executed, execution proceeds until the Next instruction is
encounter. When the Next statement is executed, the increment is added to the variable
and its value is compared again to the final_value. So long as the final_value is not
exceeded, the for_loop_statements are executed again and the process is repeated.
Otherwise, execution continues at the statement following the Next.

If the increment is a positive number, looping terminates when the variable’s value is
greater than the final_value. If negative, looping terminates when the variable’s value is
less than the final_value.

For more complex logic, multiple For…Next sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a For loop
can contain an If…Then…End If sequence which can in turn contain another For…Next
sequence.

Execution of the For loop can be terminated by a number of different methods: the
variable’s value can exceed the final_value; execution can be explicitly transferred to an
instruction outside of the loop, e.g. by the execution of a GoTo instruction; or an Exit For
instruction can be executed.

When an Exit For statement is encountered, execution of the innermost For…Next
sequence is immediately terminated and execution continues at the instruction following
the Next. There can be none or several Exit For statements within each For loop.

Examples

Dim count As Integer
For count = 1 To 10 ' Plan to execute 10 loops
 If count = 5 Then
 Exit For ' Prematurely stops For on 5 th loop
 End If

Optional contro

412

Statements

Next count ' count is optional in the Next

Statem

See Also

ents | Do… Loop Statements| GoTo Statements | If…Then…Else…End If Statements |
End While StatementsWhile…

413

GPL Dictionary Pages

Function Sta

This sta tion return
data type and d.

tement

tement begins a user-defined function procedure. It specifies the func
 any parameters that are passed when it is calle

[Public | Private | Shared] Function function_name([parameter_list]) As type

Prerequi

•
•

Parameters

function_name

The name of function to be defined.

parameter_list

d is associated
with a value when the procedure is called. The caller must provide

ified
in this statement.

The list may be empty if the function has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

r_name As type

The name of the variable associated

type

The type of this parameter. The type

e keywords are:

If a class name is specified, the variable
becomes an object variable.

sites

Procedures cannot be declared inside of other procedures.
Procedures can only be declared within modules or classes.

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable an

arguments that match the number and type of the parameters spec

[ByVal | ByRef] paramete

parameter_name

with this parameter. This name is known
only within the procedure being defined.

may be either a primitive type or the
me of a built-in class. The primitive na

typ

Boolean, Byte, Double, Integer, Short,
Single

414

Statements

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the called
routine can always change an object value, even when passed using a ByVal
parameter.

type

The type of the value returned by this function. The type may be a
primitive type, the name of a built-in class, or the name of a user-defined
class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

A Function procedure returns a value that can be used within an expression where a
value of the proper type is allowed. A Function can also be used with a Call statement or
by itself as a statement when the returned value is not needed.

A Function definition must always end with an End Function statement.

A Function procedure exits when it encounters the End Function statement, an Exit
Function statement, or a Return statement.

The returned value of function is specified by assigning a value to a variable named
function_name, or by a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the module or class where it is defined.

The Shared keyword can only be used within a class definition. If it appears, the
Function is associated with the entire class rather than with a particular object of that
class type.

Examples

Function add_function (x As Integer, y As Integer) As Integer
 add_function = x+y
End Function

a = add_function(4, 5) * 2 ' Variable a gets value 18

See Also

415

GPL Dictionary Pages

Statements | Delegate Statement | End Function Statement | Exit Function Statement | Return
Statement | Sub Statement

416

Statements

Get Statement

This statement begins a Get procedure block within a Property procedure definition.

Get

Prerequisites

• This statement can only appear within a Property definition.
The Property definition that contains this statement must not specify the
WriteOnly attribute.

Parameters

None

Remarks

The Get procedure block must always end with an End Get statement.

When a procedure gets the containing Property, the Get procedure is executed. It is up

The returned value of the Property is specified by assigning a value to a variable with the

Exampl

Class cc
 Private sizex2 As Integer = 44

Public ReadOnly Property As Integer

 Class
 :

Dim obj As New cc
nsole.WriteLine(obj.size) ' Displays value 22

See Als

Statem

•

to that procedure to retrieve or compute the property value and return it.

same name as the Property or by a Return statement.

es

 size
 Get
 Return sizex2/2
 End Get
 End Property

End

Co

o

ents | Property Statement | Set Statement

417

GPL Dictionary Pages

GoTo Statement

This statement performs an unconditional branch and continues execution at a specified
labeled instruction.

GoTo label

Prerequisites

None

Parameters

label

Required program instruction label. A label must conform to the naming
conventions for either be a valid variable name (e.g. label3) or an integer
literal (e.g. 1000).

Remarks

This instruction alters the sequence of program statement execution by setting the
label’ed statement as the next instruction to be executed.

The referenced label’ed instruction must be in the same procedure as the GoTo
instruction and can be on an instruction before or after the GoTo instruction. You should
not use a GoTo to jump from the outside of a control structure (e.g. a For…Next or
If…Then…Else…End If) to within a control structure.

To label an instruction, specify the label name followed by a colon (:) followed by any
standard instruction.

In general, GoTo instructions can make code difficult to read and debug. So, wherever
possible software should be written to make use of the other control structures, e.g.
If…Then…Else…End If, While…End While.

Examples

Dim too_big As Boolean, angle As Single
too_big = False
angle = 175.5
If angle > 360 Or angle < -360 Then
 too_big = True
 GoTo Error_Exit ' An Else clause would be better,
End If ' but this shows how to use GoTo
 my_routine(angle)

Error_Exit:

See Also

418

Statements

Statements | Do… Loop Statements | For…Next Statements | If…Then…Else…End If Statements |
While…End While Statements

419

GPL Dictionary Pages

If..Then...Els

A series that conditionally execute a block of embedded statements based
upon the value of an expression.

e...End If Statements

 of statements

If condition Then
 [statements]
[ElseIf elseif_condition Then
 [elseif_statements]]
 :
[ElseIf elseif_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

-or-

If condition Then statement

Prerequ

Parameters

statements

Optional statement or list of statements that are executed if the condition

d. Any
t

Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

elseif_statements

Optional statement or list of statements that are executed if the
associated elseif_condition evaluates to True.

isites

None

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

evaluates to True.

elseif_condition

Expression that is required if an optional ElseIf clause is specifie
expression that yields a numeric result can be specified, not jus

420

Statements

else_statements

l statement or list of statements that are executed if the Else
s present and the precedingcondition and elseif_condition values

Remarks

ntrol structure tests one or more expressions and conditionally executes at most
ts or a single statement. It can be used to implement simple “either-
 complex decisions based upon multiple conditions with multiple

The If…Then statement begins by first testing the value of the condition. If the condition
, the statements are executed, after which, all of the following program instructions

are skipped until the closing End If is encountered. If the condition is False, the
, Else, or End If

clause that follows the statements condition that evaluates to <>0 will be interpreted
 a True value.

An arbitrary number of ElseIf clauses can optionally follow the statements and precede
the Else. If the condition is False, the first ElseIf clause is processed by evaluating its
elseif_condition. If its elseif_condition is True, its elseif_statements are executed after

ch all of the following program instructions are skipped until the closing End If is
ncountered. If its elseif_condition is False, its elseif_statements are skipped and

processing continues at the next ElseIf, Else, or End If clause that follows the

An If…Then group of statements can contain a single optional Else statement. If the
condition and all optional elseif_conditions have tested false, the optional
else_statements will be executed.

For more complex logic, multiple If…Then…End If statements can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
For loop can contain an If…Then…End If sequence which can in turn contain another
If…Then…End If sequence.

Examples

Dim a As Boolean, b As Integer, c As Single
a = True
b = 20
If a AND (b > 10) Then ' This condition evaluates to True
 c = 3.14159 ' This assignment will be executed
Else
 c = 0 ' This assignment will be skipped
End If

See Also

Statements

Optiona
clause i
all test False.

This co
one block of statemen
or” types logic or more
possible outcomes.

is True

statements are skipped and processing continues at the first ElseIf
. Any

as

whi
e

elseif_statements.

 | Do… Loop Statements | For…Next Statements | GoTo Statements | Select...Case
Statements | While…End While Statements

421

GPL Dictionary Pages

Loop Statements

s mark the end of a Do…Loop block of instructions and in some
instances also specify the loop termination condition.
These instruction

Loop
-or-
Loop Until condition
-or-
Loop While condition

Prerequ

Must always follow and match a Do statement within a procedure.

Remark

Please tatements for an explanation of the
use of th

Statem

isites

s

see the documentation on the Do…Loop S
e Loop instructions.

See Also

ents | Do... Loop Statement

422

Statements

Module Statement

finitions and
procedures must be inside a Module or Class definition.
This statement begins a user-defined module section. All variable de

Module module_name

Prerequisites

Modules can only be declared at the top-level of a file.

Parameters

The name of module that is being started.

A Module must always end with an End Module statement.

A Module contains variable, procedures or class definitions. There can be multiple
modules defined in a single file.

All variables, procedures and classes defined within a module can be accessed
anywhere in that module. Only Public variables, procedures and classes can be
accessed outside the module.

Examples

Module main_module
 Public Dim Start As Location ' All modules can access Start
 Private Dim x1 As Location ' Only this module can access x1

 ' All modules can access add_function

 Public Function add_function (x As Integer,y As Integer) As Integer
 add_function = x+y
 End Function
End Module

See Also

Statements

module_name

Remarks

 | Class Statement | Dim Statement | End Module Statement | Function Statement | Sub
Statement

423

GPL Dictionary Pages

Next Statements

This instruction marks the end of a For…Next block of instructions.

Next variable

Prerequi

Must always follow and match a For statement within a procedure.

Remarks

se see the documentation on the For…Next Statements for an explanation of the
use of the Next instruction.

See Also

Statements

sites

Plea

 | For…Next Statements

424

Statements

Property Statement

This sta ta
type and

tement begins a user-defined Property procedure. It specifies the return da
 any parameters that are passed when it is called.

[Public e ([| Private | Shared | ReadOnly | WriteOnly] Property property_nam
parameter_list]) As type)

Prerequisites

• clared within class definitions.

Parameters

property

The name of the Property to be defined.

parameter_list

A list of parameters that are passed to the Property when it is called.
Properties often have an empty parameter list.

 and is associated
e

parameter_name

The name of the variable associated

The type of this parameter. The type

keywords are:

Properties can only be de

_name

Each parameter appears as a locally defined variable
with a value when the procedure is called. The caller must provid
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the Property has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

[ByVal | ByRef] parameter_name As type

with this parameter. This name is known
only within the procedure being defined.

type

may be a primitive type, the name of a
built-in class, or the name of a user-
defined class. The primitive type

425

GPL Dictionary Pages

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

 specified, but not both. If neither is
l. A ByVal parameter receives a copy of the

 the
 caller’s value. A ByRef parameter references
Any changes to a ByRef parameter in the

called routine are reflected in the calling routine.

variables always deal with pointers to object values, the
 change an object value, even when passed

al r.

type may be either
me of a user-

defined class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

Property procedures may set a value or get (return) a value.

Property procedures that set a value must include a set procedure block that begins with
a Set statement and ends with an End Set statement. The property_name and
parameter_list may be used on the left-hand side of an assignment statement.

A Property procedure that gets a value must include a get procedure block that begins
with a Get statement and ends with an End Get statement. A Get Property may be used
just like a Function within an expression or on the right-hand side of an assignment
statement, where a value of the proper type is allowed.

A Property definition must always end with an End Property statement.

If the Property contains only a get procedure, the ReadOnly keyword must be specified.
If the Property contains only a set procedure, the WriteOnly keyword must be specified.

A property procedure exits when it encounters the End Property statement, an Exit
Property statement or a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the class where it is defined.

Either ByVal or ByRef can be
ecified, the default is ByVasp

argument value from the caller. The local procedure can change
value without affecti eng th

ctly. the caller’s value dire

Since object
called routine can always

 parameteByVusing a

type

The type of the value returned by this Property. The
he naa primitive type, the name of a built-in class, or t

426

Statements

If the Shared keyword appears, the property is associated with the entire class rather
than with a particular object of that class type.

 Private size_value As Integer

lip value at 10
 Set (value As Integer)
 If value > 10 Then
 value = 10
 End If

End Get
End Property

Dim obj As New cc
obj.siz
Console

See Als

Statements

Examples

Class cc

 Public Property size As Integer ' Set size, c

 size_value = value
 End Set
 Get
 Return size_value

End Class
 :

e = 20 ' Sets size_value
.WriteLine(obj.size) ' Displays 10

o

 | Get Statement | Set Statement

427

GPL Dictionary Pages

ReDim Statement

This statement increases or decreases an array size by changing the array's upper
bounds.

ReDim [Preserve] variable_name (dim_1[, dim_2 …])

Prerequisites

be declared to be an array, with the same
number of dimensions, in a Dim, Public, or Private statement.

Parameters

variable_name

dim_1, dim_2, …

The new upper bounds for each dimension of the array. ReDim cannot

If the Preserve keyword is specified, all dimensions except the last

Remarks

The previous contents of an array are lost when an ordinary ReDim statement is
ecuted. If the Preserve keyword is specified, the previous contents of the array are

Examples

eDim array2(10)
eDim array2(2,3) ' Invalid, cannot change # of dimensions

 ReDim Preserve array(3, 10)
hange last dimension

See Also

Statements

The variable_name parameter must already

The name of the array variable that is to have its size changed.

change the number of dimensions, so the number of dimensions must
match the original array declaration.

(right-most) must remain the same.

ex
preserved.

As Integer Dim array(3,4)

() As String Dim array2

 ReDim array(4,6)
 R
 R

 ReDim Preserve array(4, 10) ' Invalid, can only c

 | Dim Statements

428

Statements

Return Statement

This statement causes a user-define procedure to return control the the calling procedure
and optionally return a value.

Return [value]

Prerequi

can only appear within a procedure.

Parame

value

The value to be returned to the calling procedure if the current procedure
is a Function. The value field must be specified in a Function procedure.
It must not be specified in Sub procedure.

rocedure exits when it encounters a Return statement and execution
continue ent thread is
termina

edure, a Return is equivalent to assigning a value to the function-name
 by an Exit Function statement.

Examples

Function add_function (x As Integer, y As Integer) As Integer
 Return x+y
End Function

Sub add
 resu
 Retu
End Sub

See Also

Statements

sites

Return

ters

Remarks

The current p
s with the calling procedure. If there is no calling procedure, the curr

ted with success.

In a function proc
variable followed

_sub (x As Integer, y As Integer, ByRef result As Integer)
lt = x+y
rn

 | Exit Function statement | Exit Sub statement

429

GPL Dictionary Pages

Select

...Case...End Select Statements

Evaluates a target expression, compares its value to a series of values and executes the
block of statements associated with the first matching value.

Select match_value
 Case test_expression, ..., test_expression
 case_statements
[Case test_expression, ..., test_expression
 [case_statements]]
 :
[Case Else
 [else_statements]]
End Select

Prerequ

Parame

ssion that defines the value to be
matched.

test_expression

d numeric or String expression that is specified with each Case
nt to define the values to be compared to the match_value.

ch Case statement must have at least one test_expression, but can
re than one.

Optional statement or list of statements that are executed if any of the
ciated Case statement match the

lse_statements

e

Remarks

This control structure executes one of several blocks of statements based upon matching
a numeric or String expression value. This control structure is similar to the

isites

None

ters

match_value

Required numeric or String expre

Require
atemest

Ea
have mo

case_statements

test_expressions for the asso
tch_value. ma

e

Optional statement or list of statements that are executed if the Case
Else statement is present and none of the test_expressions match th
match_value.

430

Statements

If…Then...ElseIf statements in that a series of values are compared to determine the
statements that are executed next. However, this control structure is more efficient and

than a series of If statements if a single value is to be compared to multiple
lues.

d
once and then sequentially tested against each test_expression specified in the following

t matching test_expression value is found, the associated
case_statements are executed. Following the execution of the appropriate

statements, execution continues at the statement following the End Select. If no
xpression is matched and a Case Else is present, the else_statements are

executed. If no test_expression is matched and a Case Else is not defined, none of the
cas t Select

The match_value and each of the test_expressions can be either a numeric or String
expression and can evaluate to any of the basic arithmetic data types (e.g. integer, real

ber, byte) or a String type. If the data type of a test_expression does not match that
of the match_value, it is automatically converted to the correct data type. If a String

formed, the comparison is case sensitive, e.g. "A" and "a" are
considered different.

A Selec Case Case Else
number of additional Case statements can be included, but only one Case Else is

itted and the Case Else must occur just prior to the End Select.

If an Ex ,
executio s at the
instructi

Dim target, s1, s2 As String

 Console.Writeline("Wrong")
 Case s1 & s2
 Console.Writeline("Right")
 Case Else

 Console.Writeline("Wrong")

See Als

Statem

convenient
possible va

The Select statement defines the value to be matched. The match_value is evaluate

Case statements. When the firs

case_
test_e

e_s atements are executed and execution continues after the End

num

comparison is per

t sequence must contain at least one or statement. Any

perm

it Select is encountered in either the case_statements or else_statements
n of the remaining statements in the block is skipped. Execution continue
on following the End Select.

Examples

target = "ab"
s1 = "a"
s2 = "b"
Select target
 Case s1, "dd"
 Console.Writeline("Wrong")
 Case s2

End Select

o

ents | Do… Loop Statements | For…Next Statements | GoTo Statements |
If…Then…Else…End If Statements | While…End While Statements

431

GPL Dictionary Pages

Set Statement

This statement begins a Set procedure block within a Property procedure definition.

Set (parameter_name As type)

Prerequisites

• This statement can only appear within a Property definition.
• The Property definition that contains this statement must not specify the

ReadOnly attribute.

Parameters

parameter_name

The name of the parameter that contains the new value to which the
property is being set.

type

The type of the parameter_name parameter. This type must be identical
to the type of the Property that contains the Set statement.

Remarks

The Set procedure block must always end with an End Set statement.

Unlike VB.NET, the clause (parameter_name As type) must always be specified.

When a procedure sets the containing Property, the new value for the property is copied
to the parameter_name variable, and the Set procedure is executed. It is up to that
procedure to use or save the new value as desired.

Examples

Class cc
 Private size_value As Integer
 Public WriteOnly Property size As Integer ' Set size, clip value at 10
 Set (value As Integer)
 If value > 10 Then
 value = 10
 End If
 size_value = value
 End Set
 End Property
End Class
 :
Dim obj As New cc
obj.size = 20 ' Sets size_value

432

Statements

See Also

Statements | Property Statement | Get Statement

433

GPL Dictionary Pages

Sub Statem

This sta
that are pa

ent

tement begins a user-defined subroutine procedure. It specifies any parameters
ssed when it is called.

[Public | Private | Shared] Sub subroutine_name([parameter_list])

Prerequisites

Parame

The name of the subroutine to be defined.

a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the subroutine has no parameters. Multiple
st elements are separated by “,’. Each element has the form:

[ByVal | ByRef] parameter_name As type

The name of the variable associated

type

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive
type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

• Procedures cannot be declared inside of other procedures.
• Procedures must be declared within modules or classes.

ters

subroutine_name

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with

parameter li

parameter_name

with this parameter. This name is known
only within the procedure being defined.

434

Statements

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of

 caller. The local procedure can change the
he caller’s value. A ByRef parameter references

Since object variables always deal with pointers to object values, the called
n always change an object value, even when passed using a ByVal
r.

Remarks

 procedure does not return a value and cannot be used within an expression. A
Sub procedure can be used with a Call statement or by itself as a statement.

A Sub definition must always end with an End Sub statement.

A subroutine procedure exits when it encounters the End Sub statement, an Exit Sub
statement, or a Return statement.

If Public s.
Otherwi d.

The Sha class definition. If it appears, the
subroutine is associated with the entire class rather than with a particular object of that

Examples

b add_sub (x As Integer, y As Integer, ByRef result As Integer)

e 9

See Als

Statem

argument value from the
value without affecting t
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

routine ca
paramete

A Sub

 is specified, this procedure can be called from other modules or classe
se it can only be called from the module or class where it is define

red keyword can only be used within a

class type.

Su
 result = x+y
End Sub

add_sub(4, 5, a) ' Variable a gets valu

o

ents | Delegate Statement | End Sub Statement | Exit Sub Statement | Return Statement | Sub
Statement

435

GPL Dictionary Pages

While.

These instructions bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True.

..End While Statements

While condition
 [statements]
End While

Prerequi

Parame

Required expression that is interpreted as a True or False value. Any

 condition.

statements

Optional statement or list of statements that are repeatedly executed so
long as the condition evaluates to True.

Remarks

This control structure tests an expression and repeatedly executes a block of statements.
It can be used to implement program instruction loops.

The While statement begins execution by testing the value of the condition. If the
condition is True, the statements are executed. When the End While instruction is
encountered, the condition is tested again. If the condition is still True, the statements are
executed once again. This process is repeated until the condition tests False or the
statements explicitly execute an instruction that continues execution outside of the loop. If
the condition ever tests False, execution continues at the instruction following the End
While.

If the condition is False when the While first begins execution, the statements are
skipped, in which case, the statements are not executed even once.

For more complex logic, multiple While…End While sequences can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
While loop can contain an If…Then…End If sequence which can in turn contain another
While…End While sequence.

sites

None

ters

condition

expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True

436

Statements

Execution of the While loop can be t mber of different methods: the
condition can be set False prior to th End While statement; execution
can be explicitly transferred to an instru the loop, e.g. by the execution of

tion; or an Exit While instruction can be executed.

End

Exampl

ndition initially evaluates to True
 If count = 5 Then

t-1”

See Also

Statem

erminated by a nu
e execution of the

ction outside of
a GoTo instruc

When an Exit While statement is encountered, execution of the innermost While…
While sequence is immediately terminated and execution continues at the instruction
following the End While. There can be none or several Exit While statements within
each While loop.

es

Dim count As Integer
count = 10
While count > 0 ' This co

 Exit While ' Prematurely stops While loop
 End If
 count -= 1 ' Same as “count = coun
End While

ents | Do… Loop Statements | For…Next Statements | GoTo Statements |
If…Then…Else…End If Statements

437

Strings
String

ormation on the properties, methods and
 are available to assist in manipulating String variables. Internally, Strings

are implemented using much of the same structure and procedures as other built-in
n to providing classic Basic functions for operating on

Strings, e.g. Len, String variable properties and methods are also available for
ny of the same operations.

 easy-to-use functions are provided for converting between String values
and numerical values, e.g. CStr, CDbl, CInt, Hex . Each of these built-in operations is

 on Functions.

izes the properties and methods of String variables that
 the following section.

 Summary

The following pages provide detailed inf
functions that

Classes. Therefore, in additio

performing ma

A number of

described in the section

The table below briefly summar
are described in greater detail in

Member Type Description

String.Compare Method Compares the values of two Strings in either
a case sensitive or case insensitive manner.

string.IndexOf Method
Searches for an exact match of a substring
within the string variable and returns the
starting position if found (0-n).

string.Length Property Returns the number of characters stored in a
String variable.

string.Split Method

Divides the string variable value into a series
of substrings based upon a specified
separator character and returns the array of
substrings.

string.Substring Method
Returns a substring of the string variable
starting at a specific character position and
with the specified length.

string.ToLower Method Returns a copy of the string with all lower case
characters.

string.ToUpper Method Returns a copy of the string with all upper
case characters.

string.Trim Method Trims off characters or white space from the
start and end of a String variable value.

string.TrimEnd Method Trims off characters or white space from the
end of a String variable value.

string.TrimStart Method Trims off characters or white space from the
start of a String variable value.

The following table summarizes the String functions that are also described in greater
detail in the subsequent section.

Function Description

Asc (string) Converts the first character of a String to its equivalent
ASCII numerical code.

438

Strings

Chr (expression) Given a numerical ASCII code, a String that consists of
the equivalent ASCII character is returned.

Format (expression, format_s) Converts a numerical value to a String value based
upon a specified output format specification.

FromBitString (string, type,
big_endian)

Extracts a number that has been packed in its internal
bit format into a String and returns the value of the
number.

Instr (start, string_t, string_s)
Searches for an exact match of a substring within a
String expression and returns the starting position if
found (1-n).

LCase (string) Returns a String value that has been converted to lower
case.

Len (string) Returns the number of characters in a String.

Mid(string, first, length)
Returns a substring of the string starting at the first
character position and consisting of length number of
characters.

ToBitString (expression, type,
big_endian)

Converts the value of an expression to a specific
numeric type and returns the internal bit representation
of the number packed into a String value.

UCase (string) Returns a String value that has been converted to
upper case.

439

GPL Dictionary Pages

String

ion or ignoring the case of
e characters and returns an indication of the results.

.Compare Method

Compares two String expressions either taking into considerat
th

...String.Compare(string_a, string_b, ignore_case)

Prerequisites

None

Parameters

string_a

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

string_b

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

ignore_case

An optional numeric expression. If the value of this expression is True,
the comparison is performed ignoring the case of the characters, i.e. "A"
will be equal to "a". If this value is False or not specified, the comparison
is performed in a case-sensitive manner.

Remarks

This shared method compares the values of two String expressions and returns an
indication of the results of the comparison. Depending upon the value of ignore_case, the
comparison is either performed taking into account the case of characters or ignoring the
case of characters. The returned value is interpreted as follows:

String Relationship Returned result

 string_a > string_b > 0
 string_a = string_b = 0
 string_a < string_b < 0

String comparisons can also be performed using the standard comparison operators, i.e.
=, <>, <, >, <=, >=. When two Strings are compared using the comparison operators, the
comparison is always performed taking into consideration the case of the characters.

440

Strings

Examples

 ' Create a new string variable
Dim ii As Integer

c

See Also

Strings

Dim stg As String

stg = "aBcdef"
ii = String.Compare(stg, "ab def") ' ii will be set <0

441

GPL Dictionary Pages

string

and returns the
starting position if found (0-n).

.IndexOf Method

Searches for an exact match of a substring within a string variable

...string.IndexOf(string_s, start)

Prerequisites

None

Parameters

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string value.

start

An optional numeric expression. This value specifies the first character
position that is tested in the string. If undefined, match testing begins
with the first character in string. Unlike the Instr function, a 0 specifies
the first character position in the string.

Remarks

This method searches the value of the string variable for an exact, case sensitive match
to the specified string_s value. The search begins at the character specified by start and
continues with successive characters until either the first match is found or the end of the
string is encountered.

Depending upon the outcome of the search, the following values are returned by this
method.

String Values Returned Value

string_s is found in string Character position where the match begins. 0
indicates matched started at the first character of

string.
string has a zero length -1

string_s has a zero length start value
string_s not found in string -1

Examples

442

Strings

Dim stg_a As String ' Create string variable
Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPqRsTuVwXyZaBcDeFgHiJk"
pos = stg_a.IndexOf("Fg") ' pos will be set to 5

IndexOf

See Als

Strings

pos = stg_a. ("FG") ' pos will be set to -1
pos = stg_a.IndexOf("Fg", 10) ' pos will be set to 31

o

 | Instr Function

443

GPL Dictionary Pages

string.Length Property

Returns the count of the number of characters stored in a String variable.

...string.Length

Prerequisites

None

Parameters

None

Remarks

Returns tring
variable

Examples

Dim stg As String ' Create a new string variable

See Als

Strings

 the Integer count of the number of characters that are stored in a S
. If the value of the String is empty, a count of 0 is returned.

Dim ii As Integer
stg = "123456"
ii = stg.Length ' ii will be set to 6

o

 | Len Function

444

Strings

string.Split Method

Divides a String variable value into a series of substrings based upon a specified
separator character and returns the array of substrings.

...string.Split(separator_string)

Prerequisites

None

Parameters

separator_string

xpression defines the
separator character. For example, to split a line containing substrings
separated by commas, this String should be set to ",".

Remarks

This me separator
charact r (or from
the start of the string if this is the first separator) and up to the new separator is taken as

 substring and stored in a String array that is returned by this method. If the string
oes not contain a separator character, the entire contents of the string are

Exampl

 stg_arr() As String ' Create array string variable
Dim stg As String

ng"

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. The first character of this e

thod scans the value of the string variable searching for the specified
er. Each time the separator is found, the text after the previous separato

a
variable d
copied to first element of the output array.

es

Dim

stg = "1,2 ,this is the 3rd string"
stg_arr = stg.Split(",") ' stg_arr(0) = "1"
 ' stg_arr(1) = "2 "
 ' stg_arr(2) = "this is the 3rd stri

See Also

Strings

445

GPL Dictionary Pages

string.Substring Method

string of the string variable starting at a specific character
position and with a specified length.
Extracts and returns a sub

...string.Substring(first_pos, length)

Prerequi

Parame

pos

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Mid function,
the first character position is 0 rather than 1.

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string starting at the first_pos will be copied.

Remark

his method extracts a substring from the value of a String variable and returns the
sults. The substring is specified by its starting character position in the string and the

Examples

Dim stg_a, stg_result As String ' Create two string variables
stg_a = "aBcdef"
stg_result = stg_a.Substring(3, 2) ' stg_result will be set to "de"

See Also

Strings

sites

None

ters

first_

length

s

T
re
number of characters to be extracted.

 | Mid Function

446

Strings

string

Returns a copy of a String value where all of the alphabetic characters have been
case.

.ToLower Method

changed to lower

...string.ToLower

Prerequ

Parame

ne

Remark

This method copies the value of a String variable and converts all of the alphabetic
racters to lower case while leaving all of the non-alphabetic characters unchanged.

Exampl

bles

g_b = stg_a.ToLower ' stg_b set to "abcdef"

Strings

isites

None

ters

No

s

cha

es

Dim stg_a, stg_b As String ' Create two string varia
stg_a = "aBcDeF"
st

See Also

 | LCase Function | string.ToUpper | UCase Function

447

GPL Dictionary Pages

string.ToUpper Method

changed to upper case.
Returns a copy of a String value where all of the alphabetic characters have been

...string.ToUpper

Prerequisites

None

Parameters

None

Remarks

This me
characters to upper case while leaving all of the non-alphabetic characters unchanged.

Examples

Strings

thod copies the value of a String variable and converts all of the alphabetic

Dim stg_a, stg_b As String ' Create two string variables
stg_a = "aBcDeF"
stg_b = stg_a.ToUpper ' stg_b set to "ABDCEF"

See Also

 | LCase Function | string.ToLower | UCase Function

448

Strings

string.Trim Method

Trims off characters or white space from the start and end of a String variable value.

...string.Trim(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start and th
end of the

e

string variable.

Examples

 test"

stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings

string. If a trimming character String is not specified, any
white space (e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at both the start and at the end of the

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"

TrimStart ' stg_t set to "this is a test221122" stg_t = stg_a. ("21")
Endstg_t = stg_a.Trim ("123") ' stg_t set to "112211this is a

stg_a = " another test "

 | string.TrimEnd| string.TrimStart

449

GPL Dictionary Pages

string.TrimEnd Method

Trims off characters or white space from the end of a String variable value.

...string.TrimEnd(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the end of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the end of the string variable.

Examples

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings | string.Trim| string.TrimStart

450

Strings

string.TrimStart Method

Trims off characters or white space from the start of a String variable value.

...string.TrimStart(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define

 is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

 If
trim characters are present in the string, trimming continues until a non-trim

character is encountered. Trimming is performed at the start of the string variable.

Examples

g variables

"this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"

g_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
g_a = " another test "

stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings

the individual characters that are to be trimmed from the start of the
string. If a trimming character String

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value.
multiple

Dim As String stg_a, stg_t ' Create strin
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to

st
st

 | string.Trim| string.TrimEnd

451

GPL Dictionary Pages

Asc Function

Converts the first character in a String variable or expression into its equivalent ASCII
numerical code and returns the Integer result.

...Asc (string)

Prerequisites

None

Parameters

string

A required String value. The string can be a String variable, constant,
method or concatenated value.

Remarks

Given a String variable or expression, the first character in the String is extracted and
equivalent numerical value is returned as an Integer. This routine is convenient if y
have a string that contains non-p

 its
ou

rintable characters and you wish to operate on their
values.

Exampl

 ii As Integer
 ss As String

 ' Line feed character
 ' ii will be set to 10

See Als

es

Dim
Dim
ss = Chr(10)

As ii = c(ss)

o

Strings | Chr Function

452

Strings

Chr Function

l ASCII code, a String that consists of the equivalent ASCII character is
constructed and returned.
Given a numerica

...Chr (expression)

Prerequi

Parame

ssion

quired numerical expression. The expression must have an Integer
value that ranges from 0 to 255.

Remarks

Given a numerical expression whose Integer value defines one of 256 possible ANSI
aracter codes, a String is constructed and returned that contains a single

character set to the ASCII code.

This rou non-
printabl

ge return character
ii = Asc(ss) ' ii will be set to 10

See Als

Strings

sites

None

ters

expre

A re

ASCII ch

tine is convenient if you wish to construct a String value that contains
e characters.

Examples

Dim ii As Integer
Dim ss As String
ss = Chr(10) ' Line feed character
ss = Chr(GPL_CR) ' Carria

o

 | Asc Function

453

GPL Dictionary Pages

Format Function

Converts a numerical value to a String value based upon a specified output format
specification.

...Format(expression, format_s)

Prerequ

No

Parameters

expression

A required numeri
to be converted to
Integer, Double, Boolean,

format_s

An optional String
output format to g
St value, the

Remarks

This fu rts a n
value specifies one of sev
format specification is not
place of a converted num

To specify a pre-defined formats, format_s must contain one of the single character
cifications described in the following table.

isites

ne

c expression. This defines the numerical value that is
 a string. This value can be any numeric type, e.g.

 etc.

 expression. This String expression defines the
enerate. If format_s is not specified or is an empty

ring default format ("G") is utilized.

nction conve umerical value to a String in a specified format. The format_s
eral pre-defined formats or defines a custom format. If the
 recognized, the contents of format_s are copied to the output in
erical value.

spe

Predefined Formats Output Format

"G" or "g" General purpose format. Displays a maximum of 17 characters
git

 is too large to display in 17
tically switches to scientific

including the sign character. Includes at least one integer di
with no leading space characters or trailing zero's in the
fractional part. If the number
characters, this format automa
notation.

"F" or "f" Fixed format. Always displays two fractional digits plus at least
quired. No leading or trailing one integer digit and more as re

space characters are generated.
"E" or "e" Scientific notation. Generates a value in the form of

454

Strings

"[s]n.nnnnnnesxx" where "s" is a "+" or "-" sign character and
"xx" is the base 10 exponent.

The custom format definition is a character by character literal description of the output
format. For example, "0.00#" specifies that the output is to contain as least one integer
digit and two fractional digits with an optional third fractional digit. If the numerical value
contains more integer digits than specified by the format, additional digits are added to
the left to fully display the numerical value. If additional fractional digits exist, the
fractional part is rounded to the specified number of fractional digits and only the
specified fractional digits are displayed. Leading and trailing space characters are not
included in the output.

The following table defines the character placeholders permitted in a custom format.

Custom Formats Output Format

"0" Displays a digit or "0" if none. If a "0" is to the left of the
decimal point, sufficient leading zeros are generated to display
the specified number of decimal digits. Likewise, a "0" to the
right of the decimal point always results in a digit or a "0"
character. For instance, when the number 23 is displayed
using the format "0000.0", the output of the Format function is
"0023.0".

"#" Displays a digit or nothing. If a "#" is to the left of the decimal
point, a digit is displayed if it is non-zero else nothing is added
to the output stream. Likewise, if a "#" is to the right of the
decimal point, only non-zero digits are displayed. For
instance, when the number 23 is displayed using the format
"###0.#", the output of this function is "23.".

"." Decimal point placeholder. Separates integer and fractional
placeholders. Also, results in a "." being included in the output
stream.

"E" or "e" Scientific notation. Outputs a number in scientific notation.
This format always generates one digit to the left of the decimal
point and a sign character and two digits in the exponent, e.g.
"[s]n.nnnnesxx". The significance of the custom format is to
specify the number of fractional digits to be included.

Examples

Dim stg_a As String ' Create string variable
stg_a = Format(2323) ' Default ("G") format, "2323"
stg_a = Format(2323,"G") ' General ("G") format, "2323"
stg_a = Format(2323,"F") ' Fixed ("F") format, "2323.00"
stg_a = Format(2323,"E") ' Exponential ("E") format, "2.323000e+03"

stg_a = Format(.2,".0#") ' Outputs ".2"
stg_a = Format(.23,".0#") ' Outputs ".23"
stg_a = Format(-.23,".0#") ' Outputs "-.23"
stg_a = Format(2.1,".##") ' Outputs "2.1"
stg_a = Format(23.23,".000") ' Outputs "23.230"
stg_a = Format(23.23,"0000") ' Outputs "0023"
stg_a = Format(23.23,"0") ' Outputs "23"
stg_a = Format(-.23,"0.00e000") ' Outputs "-2.30e-01"

455

GPL Dictionary Pages

See Also

Strings | CStr Function | Hex Function

456

Strings

FromBitString Function

Extracts a number that has been packed in its internal bit format into a String and returns
the value of the number.

...FromBitString (string, type, big_endian)

Prerequi

ring

quence
duce the

ing depends on

ring
,

ndian

c expression that determines the order in which bytes
rameter are processed. If the value is zero or False, the

bytes are assumed to be in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are assumed to be in "big-
endian" order, which means the most significant bytes in the value
appear first in the String (Motorola format).

Remarks

This function operates on a String that contains a numeric value that has been packed in
a internal number format. This function extracts the value of the packed number by
converting the bits in the string according to the type specification. The 8-bit characters in
the string are concatenated together to form an 8, 16, 32, or 64-bit internal representation
of the number. The interpretation of the type parameter and the required number of
bytes in the string are presented in the following table.

sites

None

Parameters

st

A required String expression whose 8-bit characters contain a se
of bits that are converted according to the type parameter to pro
returned numeric value. The minimum length of this Str
the type parameter.

type

A required keyword that determines how the bit sequence in the st
parameter is interpreted. Must be one of the following: Byte, Short
Integer, Single, Double.

big_e

A required numeri
in the string pa

Keyword Bytes Returned Value

Byte 1 Unsigned 8-bit value from 0 to 255
Short 2 Signed 16-bit integer

457

GPL Dictionary Pages

Integer 4 Signed 32-bit integer
Single 4 Single-precision IEEE floating point
Double 8 Double-precision IEEE floating point

The first byte of the string and any required successive bytes are used to obtain the bits.
The string parameter must be at least as long as the number of bytes required for the

When more than one byte is required, the order in which the bytes were packed into the
ecified by the big_endian parameter. If this parameter is True, the first byte of

the string is the most-significant byte in the value. This is the typical format for Motorola
sors such as PowerPC's. If this parameter is False, the first byte of the string is the
ignificant byte in the value. This is the normal format for PC’s (Intel) processors.

Dim stg As String
stg = T
Console

stg = T FE,BF
Console.Writeline(FromBitString(stg, Short, True)) ' Prints -321

oBitString(56720, Integer, True) ' Packs hex 0,0,DD,90
Console.Writeline(FromBitString(stg, Integer, True)) ' Prints 56720

stg = T
Console

stg = T , True) ' Packs hex 40,5E,D9,99,99,99,99,9A
Console.Writeline((stg, Double, True)) ' Prints 123.4

See Als

Strings

data type.

string is sp

proces
least-s

Examples

oBitString(23, Byte, True) ' Packs hex 17
.Writeline(FromBitString(stg, Byte, True)) ' Prints 23

oBitString(-321, Short, True) ' Packs hex

stg = T

oBitString(123.4, Single, True) ' Packs hex 42,F6,CC,CD
.Writeline(FromBitString(stg, Single, True)) ' Prints 123.4

oBitString(123.4, Double
FromBitString

o

 | ToBitString Function

458

Strings

Instr Function

arches for an exact match of a substring within a String expression and returns the
osition if found (1-n).

Se
starting p

...Instr(start, string_t, string_s)

Prerequ

one

start

A required numeric expression. This value specifies the first character
position that is tested in string_t. Unlike the IndexOf method, a 1
specifies the first character position in string_t.

string_t

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the target String that is searched for the
substring, string_s.

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string_t value.

Remarks

This method searches the value of the string_t expression for an exact, case sensitive
match to the specified string_s value. The search begins at the character specified by
start and continues with successive characters until either the first match is found or the
end of the string_t is encountered.

Depending upon the outcome of the search, the following values are returned by this
method.

isites

N

Parameters

String Values Returned Value

string_s is found in string_t Character position where the match begins. 1
indicates matched started at the first character of

string.
string_t has a zero length 0

459

GPL Dictionary Pages

string_s has a zero length start value
string_s not found in string_t 0

Exampl

Dim stg_a As String ' Create string variable

mNoPqRsTuVwXyZaBcDeFgHiJk"
pos = Instr(1, stg_a, "Fg") ' pos will be set to 6

Instr(1, stg_a, "FG") ' pos will be set to 0
Instr(10, stg_a, "Fg") ' pos will be set to 32

See Als

es

Dim pos As Integer
stg_a = "aBcDeFgHiJkL

pos =
pos =

o

Strings | string.IndexOf

460

Strings

LCase Function

 lower case.
Returns a copy of a String expression where all of the alphabetic characters have been
converted to

...LCase(string_exp)

Prerequisites

None

Parameters

string_exp

concatenation of these String elements.

nchanged, and returns the
resulting String value.

Examples

ring variable
stg_result = LCase("aBcDeF") ' stg_result set to "abcdef"

See Also

Strings

A required String expression. string_exp can be a String variable,
constant, function, method or a

Remarks

This function evaluates a String expression, converts all of the alphabetic characters to
lower case leaving all of the non-alphabetic characters u

Dim stg_result As String ' Create a st

 | string.ToLower | string.ToUpper | UCase Function

461

GPL Dictionary Pages

Len Function

unt of the number of characters contained in a String variable or
expression.
Returns the co

...Len (string)

Prerequi

Parame

g

equired String value. The string can be a String variable, constant,
method or concatenated value.

Remarks

he Integer count of the number of characters contained in the specified string. If
the value of the string is empty, a count of 0 is returned.

Examples

As Integer
n("123456") ' ii will be set to 6

See Also

Strings

sites

None

ters

strin

A r

Returns t

Dim ii
ii = Le

 | string.Length

462

Strings

Mid

Returns a substring of a String expression starting at the specified character position and

 Function

consisting of a specified number of characters.

...Mid(string_exp, first_pos, length)

Prerequ

e

Parame

string_e

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

first_pos

A required numeric expression. This specifies the position of the first
acter to be extracted and returned. Note, unlike the Substring

method, the first character position is 1 rather than 0.

length

ing_exp starting at the first_pos will be
copied.

Remarks

Examples

Dim s ' Cr
stg_r ("aBcdef", 4, 2) ' stg_result will be set to "de"

See Also

Strings

isites

Non

ters

xp

char

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the str

This function evaluates a String expression, extracts a substring from its value, and
returns the results. The substring is specified by its starting character position in
string_exp and the number of characters to be extracted.

tg_result As String
esult = Mid

 eate a string variable

 | string.Substring

463

GPL Dictionary Pages

ToBitString Function

Converts the value of an expression to a specific numeric type and returns the internal bit
representation of the number packed into a String value.

...ToBitString (expression, type, big_endian)

Prerequisites

Parame

and how many bytes the output String will contain. Must be one of the
following: Byte, Short, Integer, Single, Double.

A required numeric expression that determines the order in which bytes
in the String output are generated. If the value is zero or False, the
bytes are packed in "little-endian" order, which means the least
significant bytes in the value appear first in the String (PC/Intel format).
If the value is non-zero or True, the bytes are packed in "big-endian"
order, which means the most significant bytes in the value appear first in
the String (Motorola format).

Remarks

This function evaluates a numeric expression, converts the results to a specified numeric
type and packs the bits of the value into a String that is returned. The numeric value is
written in the bit format used to internally represent the specified numeric type.
Depending upon the type, the converted value may have 8, 16, 32, or 64-bits, which
correspond to an output String that will consist of 1, 2, 4, or 8 bytes.

The following table describes the output of this function.

None

ters

expression

A required numeric expression whose value is converted.

type

A required keyword that determines how the numeric value is interpreted

big_endian

Keyword Bytes Numeric Type Conversion

Byte 1 Unsigned 8-bit value from 0 to 255
Short 2 Signed 16-bit integer

Integer 4 Signed 32-bit integer

464

Strings

Single 4 Single-precision IEEE floating point
Double 8 Double-precision IEEE floating point

When more than one byte is returned, the order of the bytes in the resulting String is
determined by the big_endian parameter. If this parameter is True, the first byte of the
String is the most-significant byte in the value. This is the typical format for Motorola
processors, e.g. PowerPC’s. If it is False, the first byte of the String is the least-

alue. This is the normal format for PC’s (Intel processors).

g As String
stg = ToBitString(23, Byte, True) ' Packs hex 17

ole.Writeline(FromBitString(stg, Byte, True)) ' Prints 23

stg = ToBitString(-321, Short, True) ' Packs hex FE,BF
Console.Writeline(FromBitString(stg, Short, True)) ' Prints -321

stg = ToBitString(56720, Integer, True) ' Packs hex 0,0,DD,90
Console

stg = T
Console.Writeline(FromBitString(stg, Single, True)) ' Prints 123.4

g = ToBitString(123.4, Double, True) ' Packs hex 40,5E,D9,99,99,99,99,9A
Console.Writeline(FromBitString(stg, Double, True)) ' Prints 123.4

See Als

significant byte in the v

Examples

Dim st

Cons

.Writeline(FromBitString(stg, Integer, True)) ' Prints 56720

oBitString(123.4, Single, True) ' Packs hex 42,F6,CC,CD

st

o

Strings | FromBitString Function

465

GPL Dictionary Pages

UCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to upper case.

...UCase(string_exp)

Prerequi

Parame

.

Remark

This function evaluates a String expression, converts all of the alphabetic characters to
upper case of the non-alph aracters uncha rns the
resulting String value.

Examples

g ' Create a string variable

See Als

Strings

sites

None

ters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements

s

leaving all abetic ch nged, and retu

Dim stg_result As Strin
stg_result = UCase("aBcDeF") ' stg_result set to "ABCDEF"

o

 | LCase Function | string.ToLower | string.ToUpper

466

Thread Class
Thread Class Summary

The following pages provide detailed inf atio
ns fo

ports the sim s ex of up to 32 GPL program threads.
Each thread has its own execution stack and runs independently of all other threads. If
multiple threads are active, each thread executes for up to 1 millisecond before control
passes to the next ready thread.

When a GPL project is loaded, one procedure is designated as the main procedure in the
project file settings. This main procedure is started by the GDE interface, the web
Operator Control Panel, the Start console command, or automatically when the system is
restarted.

The main procedure can then start additional procedures as separate threads.

The table below briefly summarized the methods and properties that are described in
greater detail in the following sections

orm n on the methods of the Thread Class.
This class provides the mea
independent threads.

r starting, stopping, and monitoring the execution of

The GPL system sup ultaneou ecution

Member Type Description

New Thread Constructor
Method

Creates a thread object and associates it
with a procedure.

thread_object.Abort Method Stops execution of a thread such that it
cannot be resumed.

thread_object.Argument Property Sets or gets a numeric value that can be
used as a parameter for a thread.

Thread.CurrentThread Shared
Method

Returns a thread object for the currently
executing thread.

thread_object.Join Method Waits for a thread to complete execution,
with a timeout.

thread_object.Name Get Property Returns a String containing the name of
the thread associated with this object.

thread_object.Project Get Property Returns a String containing the name of
the project associated with this object.

thread_object.Resume Method Resumes execution of a thread that was
suspended.

Thread.Schedule Shared
Method

Changes the execution priority and thread
scheduling algorithm for the current
thread.

thread_object.SendEvent Method Sends an event to a thread to notify it that
a significant transition has occurred.

Thread.Sleep Shared
Method

Causes the current thread to stop
execution for a specified amount of time.

thread_object.Start Method Initializes and starts execution of a
procedure as an independent thread.

thread_object.StartProcedure Get Property Returns a String containing the name of
the start procedure associated with this

467

GPL Dictionary Pages

object.

thread_object.Suspend Method Suspends execution of a thread so that it
can be resumed.

Thread.TestAndSet Shared
Method

Atomically reads a numeric variable and
writes a new value. Used for restricting
access to data shared between threads.

thread_object.ThreadState Get Property state of a thread.
Returns an integer indicating the execution

Thread.WaitEvent Shared Causes the current thread to wait for an
Method event.

468

Thread Class

New Thread Constructor

d object and associating it with the procedure executed by Constructor for creating a threa
the thread.

New Thread(procedure_name, project_name, thread_name, stack_size)

Prerequisites

None

Parameters

procedure_name

A required string expression that specifies the name of the first
procedure to be executed by the thread. This procedure must be
declared as Public. That is, the Public keyword must be specified in its
definition.

project_name

An optional string expression that specifies the name of the project that
contains procedure_name. If this parameter is omitted, the name of the
current project is assumed. Specifying this parameter is not supported by
GPL at this time.

thread_name

An optional string expression that specifies the name of the thread to be
created. If this parameter is omitted, the procedure_name value is used
as the thread name.

stack_size

An optional numeric expression that specifies the number of kilobytes of
stack to allocate for this thread. If zero or omitted, the default stack size
for this project is used.

Remarks

This method does not actually create the thread in the system. It simply records the
names for use by the Start method. If the procedure or project does not exist, no errors
occur until the Start method is called.

Examples

469

GPL Dictionary Pages

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' Public procedure Test in the current project

 ' Public procedure Test with thread name Thread1

See Als

Thread Class

Dim thread1 As New Thread(“Test”,,“Thread1”) ' Create a thread object to execute

o

 | thread_object.Start

470

Thread Class

thread_object.Abort Method

Stops a thread’s execution immediately and does not allow it to be resumed. The thread
must be restarted from the beginning.

thread_object.Abort()

Prerequisites

None

Parameters

None

Remarks

This method stops the thread associated with the object and deallocates internal

spend method instead.

a separate thread

' Create a thread object to execute the
 ' procedure Test in the current project

read
ead and prevent resumption.
 in which it is executed

See Als

Thread

resources, just as if a console Stop command were issued. The thread cannot be
resumed, but can only be restarted using the Start method.

If you wish to be able to resume a thread, use the Su

If a thread executes the Abort method for itself, the thread exits with an error, but it is not
deallocated in the same way as

Examples

Dim thread1 As New Thread(“Test”)

Stathread1. rt() ' Start the th
Abothread1. rt() ' Stop the thr

Thread.CurrentThread.Abort Stops thread() '

o

 Class | thread_object.Start | thread_object.Suspend

471

GPL Dictionary Pages

thread_object.Argument Property

Sets or gets a numeric value that can be used as a parameter for a thread.

thread_object.Argument = <numeric_value>
-or-
... thread_object.Argument

Prerequ

Parame

ne

Remark

lar thread. The value may be set
prior to the execution of a thread and can be accessed by the thread during its execution,

s serving as a parameter for the thread. This value may also be changed while the
thread is executing, but that is not its intended use.

n array

 ThreadData(16) As String

Public Sub MAIN
 Dim t1 As New Thread("Test", , "Thread1")
 Dim t2 As New Thread("Test", , "Thread2")
 ThreadData(1)= "Thread data 1"
 ThreadData(2)= "Thread data 2"
 t1.Argument = 1
 t1.Start
 t2.Argument = 2
 t2.Start
End Sub

' The following thread writes "Thread data 1" then
' "Thread data 2"

Public Sub Test
 Dim index As Integer
 index = Thread.CurrentThread.Argument
 Console.WriteLine(ThreadData(index))
End Sub

See Also

Thread Class

isites

None

ters

No

s

This property associates a numeric value with a particu

thu

For example, this value can be interpreted as an index to access an element of a
that contains data for a thread.

Examples

Public

 | Thread.CurrentThread | thread_object.Name | thread_object.Start

472

Thread Class

Thread.CurrentThread Shared Method

Returns a thread object that corresponds to the currently running thread.

thread_object = Thread.CurrentThread()

Prerequisites

None

Parameters

None

Remarks

This sha hread.
This obj eed to be
associated with a thread object, only the thread class.

Examples

See Als

Thread

red method returns an object that corresponds to the currently running t
ect may be used to abort or suspend the current thread. It does not n

Dim mythread As Thread = Thread.CurrentThread() ' Create a thread object
 ' for the current thread.
Thread.CurrentThread.Suspend () ' Suspend the current thread.

o

 Class

473

GPL Dictionary Pages

thread_object.Join Method

Waits for a thread to become idle, with a timeout. Returns -1 (True) if the thread is
idle or

now
0 (False) if the timeout time was exceeded.

status = thread_object.Join(millisecond_timeout)

Prerequisites

None

Parameters

millisecond_timeout

The maximum time to wait for the thread associated with thread_object
to become idle. A value of 0 means do not wait, just test if the thread is

Remarks

When this method is called, the calling thread waits until the thread associated with
ad_object , or until the specified timeout value is exceeded. The

s not
ly a
lling

read is suspended externally and then resumed during the Join method, the value 0 is
turned even though the timeout time may not have been exceeded.

s
waiting. It only completes with True when the thread is idle or deleted.

Examples

Dim thread1 As New Thread(“Test”)' Create a thread object to execute the
 ' procedure Test in the current project
Dim status As Integer
thread1.Start() ' Start the thread
status = thread1.Join(10000) ' Wait for the thread to complete with a
 ' 10-second timeout.
If status Then
 Console.Writeline(“thread1 is complete”)
End If

See Also

Thread Class

idle. A value of -1 means do not timeout, wait forever for the thread.

thre becomes idle
e method is -1 (True) if the threa dle or if the thread doereturned value of th d is i

exist. The returned value is 0 (False) if the thread exists and is not idle. Normal
returned value of 0 indicates that the timeout time has been exceeded. If the ca
th
re

If the referenced thread is suspended or stops with an error, the Join method continue

 | thread_object.ThreadState

474

Thread Class

thread_object.Name Property

Returns a String value indicating the name of the thread associated with a Thread
object.

name_string = thread_object.Name

Prerequisites

None

Parameters

None

Remarks

This property returns a String containing the thread name as originally established when
the Thread object was created by its constructor.

Examples

Dim As New Thread("Test", , "Thread1") ' Create thread object thread1
Console.Writeline ("Created thread: " & thread1.Name)
 ' Displays "Created thread: Thread1"

See Also

Thread Class | Thread Constructor | thread_object.Project | thread_object.StartProcedure

475

GPL Dictionary Pages

thread_object.Project Property

Returns a String value indicating the name of the project associated with a Thread
object.

name_string = thread_object.Project

Prerequisites

None

Parameters

None

Remarks

Exampl

 thread1 As New Thread("Test", "Myproject") ' Create thread object
 ("Thread project: " & thread1.Project)

See Als

Thread

This property returns a string containing the project name as originally established when
the Thread object was created by its constructor.

es

Dim
Console.Writeline
 ' Displays "Thread project: Myproject"

o

 Class | Thread Constructor | thread_object.Name | thread_object.StartProcedure

476

Thread Class

thread_object.Resume Method

 was previously suspended. Resumes execution of a thread that

thread_object.Resume()

Prerequi

Parame

Remark

This method resumes the thread associated with the object, just as if a console Continue
command were issued. The thread may have been stopped by the Suspend method, or
by a break point, or by the console Break command.

If the thread is not suspended, this method does nothing.

Examples

Dim thr e

thread1
thread1
Thread.
thread1 sume the thread

See Als

Thread Class

sites

None

ters

None

s

ead1 As New Thread(“Test”) ' Create a thread object to execute th
 ' procedure Test in the current project
.Start() ' Start the thread
.Suspend() ' Suspend the thread for now.
Sleep(1000) ' Wait for 1 second
.Resume() ' Re

o

 | thread_object.Suspend

477

GPL Dictionary Pages

Threa

 thread scheduling algorithm for the current thread.

d.Schedule Shared Method

Changes the execution priority and

Thread.Schedule(priority, period, high_priority_time, phase)

Prerequisites

None

Paramet

prio

ired n that evaluate specifies
xe t threa
A curre

normal user thread priority and using the standard thread scheduling.

ust

high_pr

iority level. This value must be greater than zero

ers

rity

A requ numeric expressio s to an Integer that
a new e
0 to 16.

cution priority for the curren
 value of 0 specifies that the

d. This value can range from
nt thread is to execute at the

Values > 0 specify a higher than normal priority using an alternate
scheduling algorithm. Larger values indicate higher execution priority.

period

A required numeric expression that evaluates to a Double value that
specifies the scheduling repetition rate in milliseconds. This value m
be an even power of 2, multiplied by 0.125 msec, and greater than
0.125. Valid values are: 0.250, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, etc. This
value is ignored if priority is zero.

iority_time

A required numeric expression that evaluates to a Double value that
specifies the duration, in milliseconds, during which the thread runs at
the pr and less than the
period parameter. It may be a fractional value and will be quantized to a

phase

A required numeric expression that evaluates to a Double value that
specifies the phase offset, in milliseconds, when the thread begins to
runs at the priority level. This value must be non-negative and less than
the period parameter. It may be a fractional value and will be quantized
to a multiple of 0.125. The trajectory generator thread always runs at
phase offset 0. This value is ignored if priority is zero.

Remarks

multiple of 0.125. This value is ignored if priority is zero.

478

Thread Class

This shared method is associated with the Thread class, not a specific Thread Object.

This method allows a thread to change when it executes (how it is scheduled) relative to

would otherwise run. However, since the GPL system contains a number of system
threads that can never be preempted by user reads, the response of a user thread
cannot be absolutely guaranteed.

r time-critical applications.

other threads. This allows a thread to run more often or with greater regularity than it

 th

The standard thread scheduling algorithm for normal user threads is a simple round-robin
scheme where each standard thread gets to run for one millisecond before it is moved to
the back of the list of all other standard threads. User threads compete with each other
and with standard and higher-priority system threads as shown in the table below. If the
system is heavily loaded, a given user thread may only get to run for 1 out of 8 or more
milliseconds. That may be undesirable fo

Thread Priority Thread Type Specific Threads

> 16 (Highest) High-Priority System Threads Servos, trajectory generator, most
device drivers

1-16 (High) User Threads that execute
Thread.Schedule

User Threads that execute
Thread.Schedule

0 (Standard) Standard Priority Threads Standard user threads, web server,
FTP, serial console, disk driver

An alternate scheduling algorithm, enabled by the Thread.Schedule method, allows a
critical user thread to run in a timely manner, ahead of all other standard-priority threads.
This algorithm is based on the POSIX sporadic scheduling policy, with the addition of a
phase parameter. The algorithm schedules threads as follows:

 the start of its next high priority period.

The first diagram shows standard round-robin scheduling

1. Every period milliseconds, offset by phase, a high priority user thread has its
priority raised to the priority level above the standard thread priority.

2. After the thread has run for high_priority_time milliseconds, the thread's priority is
returned to the standard level, and it is placed at the end of the round-robin
queue of standard-level threads.

3. The thread may run at standard priority if it gets to the front of the round-robin
queue before

The diagrams below show how the Thread.Schedule method affects thread execution.
In these examples, we assume there are four user threads that are executing
continuously.

 where each vertical division
represents 125 usec.

479

GPL Dictionary Pages

Each th f
the 1 m

The x 0.25, 1)

read runs for 1 msec, which consists of eight 125 µsec clock ticks. At the end o
sec, the next thread begins, and the previous one goes to the end of the queue.

 ne t diagram shows the results of Thread C issuing Thread.Schedule(1, 2, .

This diagram shows Thread C having its priority raised every 2 msec, with a phase offset
f 1 msec. So it runs at times 1, 3, 5, and 7. The thread's priority remains high for 0.25
sec (or 2 clock ticks). At the end of each interval, the thread's priority drops back to the

ue. The other
 time from the

start of Thread D at time 2.25 to the end of Thread D at 3.5, greater than 1 msec because
Thread C preempts Thread D for 2 ticks.

The next diagram shows the results of Thread C issuing Thread.Schedule(1, 4, 0.25,

o
m
standard value and the thread is placed at the end of the round-robin que
threads each continue to run for a total of 1 msec each. Note that the real

0.5).

This diagram shows Thread C having it priority raised every 4 msec, with a phase offset
of 0.5 msec. So it runs at times 0.5 and 4.5. The thread priority remains high for 0.25
msec (or 2 clock ticks). At the end of each interval, the thread's priority drops back to the
standard value and the thread is placed at the end of the round-robin queue. The other
threads each continue to run for a total of 1 msec each. Note that at time 3.25, Thread C
runs at its normal priority because all the other threads in the round-robin queue ran after
Thread C completed at time 0.75. Thread C still runs at high priority at time 4.5, its next
scheduling interval.

Thread.Schedule can be used to synchronize a thread with the trajectory generator
when doing procedural motions or using the Move.SetRealTimeMod method. See the
Examples section below.

Additional notes and cautions:

• When using Thread.Schedule, it is possible to incorrectly specify parameters so
that all standard-priority threads never get any time to run. If this happens, the
serial console and the web interface will hang, and you will not be able to stop

480

Thread Class

your application. If the high priority thread is using the robot, pressing the E-
STOP button may cause the thread to stop. Otherwise you will need to reboot

d because of I/O or robot motions, or if it

• If a high priority user thread is preempted by a higher priority user thread or a
remainder of its high_priority_time interval once

the preempting thread is complete.
The standard round-robin scheduling provides a good balance for most
applications. Do not use the Thread.Schedule method unless necessary.

Exampl

' Synchronize with the trajectory generator.
 to be same as trajectory generator.
ule(1, Controller.Tick * 1000, 0.5, 0)

While True
 ...
 Move.
 Contr
End Whi

See Also

ass

your controller.
• If a high priority user thread is blocke

issues a Thread.Sleep or Controller.SleepTick method, when it wakes up, it
can still use the remainder of its high_priority_time interval.

system thread, it can still use the

•

es

' Set period
Thread.Sched

 ' Compute trajectory changes
SetRealTimeMod(changes)
oller.SleepTick(1) ' Wait until next trajectory tick
le

Thread Cl | Thread.Sleep | Controller.SleepTick | Move.SetRealTimeMod

481

GPL Dictionary Pages

thread_object.SendEvent Method

d. Sends an event to a specific thread to notify it that a significant transition has occurre

thread_object.SendEvent(event_mask)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the events to be sent. Each
bit in event_mask corresponds to a different event. Bit 0 (mask value
&H0001) corresponds to event 1. Multiple events may be specified
maximum event is 16, so the maximum value for event_mask is
&HFFFF.

. The

Remarks

Events are messages that are sent to synchronize one thread that is executing a GPL

• The thread waiting for an event uses almost no CPU time, as opposed to polling

et
osed to a polling method where

the worst-case latency is the polling period.

Exampl

tThread”)
tl.Start

SendEvent(&H10) ' Send event 5 to thread

See Als

Thread

project with another GPL project thread. Utilizing events has several advantages over
setting and polling a global variable:

a global variable.
• There is very little latency between when a message is sent and when the targ

thread wakes up and handles the event, as opp

For more details on events and event handling, see the WaitEvent method

es

Dim tl As New Thread(“Tes

 :
tl.

o

 Class | Thread.WaitEvent

482

Thread Class

Thread.Sleep Shared Method

it until a specified number of milliseconds have passed. Makes the current thread wa

Thread.Sleep(milliseconds)

Prerequi

Parame

The number of milliseconds that this thread should wait before continuing
execution with the next statement. May contain a fractional component.
A value of 0 means allow another thread to execute, but continue
execution of the current thread immediately if no other thread is ready. A
value < 0 means wait forever, and is equivalent to invoking the Suspend
method for the current task.

Remark

s, not an object. If it is

The milliseconds parameter may contain a fractional component that permits waiting for
less than 1 millisecond. Any fraction is rounded up to a multiple of 0.125 milliseconds,
which is the minimum wait time on a Precise controller.

uld not be used to generate
ort time-critical intervals. The Thread.Schedule method can be used to minimize
ractions with other threads of equal priority.

 time that

Examples

 ' The current thread waits for 5 seconds

Dim thread1 As New Thread(“Test”) ' Create an object for a different thread
thread1.Sleep(1000) ' The current thread waits for 1 second

See Also

Thread Class

sites

None

ters

milliseconds

s

This shared method is normally associated with the thread clas
used with an object, the current thread always waits, regardless of the thread object
contents.

Because of interactions between user threads and higher priority system threads, sleep
times can be subject to milliseconds of jitter. Software sho
sh
inte

If a sleeping thread is suspended and resumed, the wait period restarts from the
the thread was resumed.

Thread.Sleep(5000)

 | Thread.Schedule | thread_object.SendEvent | Thread.WaitEvent

483

GPL Dictionary Pages

thread

Starts the execution of an independent thread.

_object.Start Method

thread_object.Start()

Prerequisites

The procedure associated with thread_object must be declared Public.

The procedure associated with thread_object must be loaded into memory and compiled
t errors.

s

Remarks

This method begins a new thread that executes the procedure associated with the

 error.

 the thread is currently paused, it is restarted by clearing the execution stack and
executing the procedure associated with the object. If a thread is stopped by using the

If the project or procedure associated with the object does not exist, or if there were any
errors compiling the project, this method issues an error.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' Public procedure Test in the current project
thread1.Start() ' Start the thread

See Also

Thread Class

withou

Parameter

None

thread_object, just as if a console Start command were issued.

If the thread is currently active, this method does nothing and returns without

If

Abort method, it can only be restarted by using Start.

 | thread_object.Abort

484

Thread Class

thread_object.StartProcedure Property

tart procedure associated with a
Thread object.
Returns a String value indicating the name of the s

name_string = thread_object.StartProcedure

Prerequisites

None

Parameters

None

Remarks

Examples

Dim thread1 As New Thread("Test", "Myproject") ' Create thread object

See Also

Thread Class

This property returns a String containing the name of the start procedure as originally
established by the Thread object constructor.

Console.Writeline ("Start procedure: " & thread1.StartProcedure)
 ' Displays "Start procedure: Test"

 | Thread Constructor | thread_object.Name | thread_object.Project

485

GPL Dictionary Pages

thread_object.Suspend Method

Suspends the execution of an independent thread.

thread_object.Suspend()

Prerequisites

None

Parameters

None

Remarks

This me s the thread associated with thread_object, just as if a console
Break command were issued. The thread stops at the end of the current GPL instruction.

 may be resumed where it left off by the Resume method or by a console
Continue command.

If the thread does not exist, an error occurs. If the thread exists but is not currently active,
 error is generated.

Examples

thread1.Suspend() ' Suspend the thread for now.
ead.Sleep(1000) ' Wait for 1 second
ead1.Resume() ' Resume the thread

See Als

Thread

thod suspend

The thread

no

This method does not wait until the thread actually stops. Use the ThreadState property
to determine when the thread is suspended.

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the thread

Thr
thr

o

 Class | thread_object.Resume

486

Thread Class

Threa

tomically reads a numeric value from a variable and writes a new value. Used for
stricting access to data shared between threads.

d.TestAndSet Shared Method

A
re

old_value = Thread.TestAndSet(variable, new_value)

Prerequisites

None

Parameters

variable

A required numeric variable whose old value is first read and then
overwritten.

new_value

A required numeric expression whose value is written to variable.

Remarks

This method permits a thread to read and write a variable value, without any possibility
that another thread will change the value between the time it is read and the time it is
written.

In a multi-threaded application, this permits procedures to be developed that interlock
data structures that are accessed by more than one thread. This interlocking can avoid
problems created by having one thread access a data structure that is invalid because its
data is in the process of being modified by another thread.

Examples

' Thread-safe lock using Test and Set

Sub Lock (ByRef lock_var As Integer)
 ' Loop while someone else has the lock
 While Thread.TestAndSet(lock_var, 1) <> 0
 Thread.Sleep (0)
 End While
End Sub

' Thread-safe unlock after using Test and Set

Sub Unlock (ByRef lock_var As Integer)
 lock_var = 0
End Sub

' Thread-safe increment using Test and Set

Sub Inc_variable (ByRef inc_var As Integer)

487

GPL Dictionary Pages

 Dim old_value As Integer
 Do
 old_value = inc_var
 Loop While Thread.TestAndSet(inc_var,old_value+1) <> old_value
End Sub

Thread

See Also

 Class

488

Thread Class

thread_object.ThreadState Property

Gets a numeric value indicating the execution state of the thread specified by
thread_object.

state_var = thread_object.ThreadState

Prerequisites

None

Parameters

None

Remarks

This pro
returned ibed in the table below.

perty returns information about a thread’s execution state. The numeric value
 by this property is descr

ThreadState Value Description

-1 The thread does not exist. Either it was never started or it was
stopped and deleted by an Abort method.

0 The thread has completed execution normally and is idle. It cannot
be resumed, but it can be restarted with Start.

1 The thread is stopping execution. This state is transient.
2 The thread is executing normally.
3 The thread is paused without error and can be resumed.
4 The thread is paused with an error. If it is resumed, it will retry t

instruction that caused the error.
he

Examples

read
Console.Writeline(thread1.ThreadState) ' Display the state code for thread1

See Als

Thread Clas

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the th

o

s

489

GPL Dictionary Pages

Thread.WaitEvent Shared M

Wait for, test and clear even ived by the current thread. Returns a mask indicating
the received event

ethod

ts rece
s.

received_events = Thread. e_out) WaitEvent(event_mask, tim

Prerequisites

Non

Parameters

A required numeric expression that specifies the set of events to wait for.

The maximum event is 16, so the maximum value for

s are cleared, and all
received events are returned.

A required numeric expression that specifies the maximum time, in

rever.

Remark

t have been received. Bit 0 (mask
01) corresponds to event 1. The mask indicates either all pending events, or

y those matched by event_mask, as described below.

ends on the combination of parameters as described in

e

event_mask

Each bit in event_mask corresponds to a different event. Multiple events
may be specified.
event_mask is &HFFFF.

If event_mask is 0, no wait occurs, no event

time_out

milliseconds, to wait if no matching events are received. The maximum
wait time is 2147 seconds.

If 0, this method does not wait, but only tests pending events against the
event_mask. If < 0, this method does not timeout and waits fo

s

The returned value is a bit mask indicating events tha
value &H00
onl

The behavior of this method dep
e following table. th

event_mask
Value

time_out
Value

Description

 0 N.A.
The method does not wait for o
returns a bit mask indicating all

r clear any events, but simply
 received events.

 <> 0 0 The method does not wait. It clears all events that match the

490

Thread Class

 in event_mask. It returns a bit mask indicating the events
bination may be used
ents without waiting.

bits
that were cleared. This parameter com
to return and clear specific received ev

 <> 0 > 0

e event corresponding to a
d. If a matching event was

d, the method does not

Before returning, it clears all pending events that match the
bits in event_mask, and returns a bit mask indicating the
events that were cleared.

If no matching event is received before the timeout period, this
method returns a value of 0.

The method waits until at least on
bit in event_mask has been receive
previously received and not cleare
wait.

 <> 0 < 0
This case is the same as "event_mask <> 0, time_out > 0"
case except that it waits indefinitely for the events, and never
times out.

Events are synchronization messages that are sent from one thread executing a GPL
project to another thread that is executing a GPL project. Utilizing events has several
advantages over setting and polling a global variable:

• The thread waiting for an event uses almost no CPU time, as opposed to polling
a global variable.

• There is very little latency between when a message is sent and when the target
thread wakes up and handles the event, as opposed to a polling method where
the worst-case latency is the polling period.

Each thread can handle up to 16 different events. These 16 events are independent of
the events for all other threads. An event is specified by the target thread and a bit within
the thread’s event_mask.

Events handled by WaitEvent are automatically cleared, except for the special case
when event_mask = 0. A receiving thread can simply loop waiting for events, checking
the returned bit mask, and servicing whatever events bits are set. If the WaitEvent
event_mask specifies more than one event, be sure to check all possible events, since
more than one event may be returned simultaneously and be cleared.

In a client-server situation, a client thread can place a command in a global variable, and
then send an event to the server. When the server receives the event, it can examine the
global variable to determine the detailed command.

Examples

Public main_thread As Thread

Public Sub Main
 Dim t1 As New Thread("Testthread")
 main_thread = Thread.CurrentThread
 t1.Start
 t1.SendEvent(&H10) ' Send event 5 to thread
 Thread.WaitEvent(&H8, -1) ' Wait for event 4, clear it
 Console.Writeline ("Main thread event received")
End Sub

491

GPL Dictionary Pages

Public Sub Testthread
 Dim events As Integer
 events = Thread.WaitEv t
 If events = 0 Then

e ("Testthread event timeout")

 Console.Writeline ("Testthread event received")

See Als

Thread

ent(&H10,100) ' Wait with timeou

 Console.Writelin
 Else

 End If
 main_thread.SendEvent(&H8) ' Send event 4 back to main thread
End Sub

o

 Class | thread_object.SendEvent

492

Vision C
Vision

The following pages provide detailed information on the properties and methods for the
lasses that implement the interface to the PreciseVision machine vision system.

T sses: sion Class that ma nications
b ion an isResult Class tha le set of
results from a single vision tool. As a convenie

eciseVision. W Vi
 executed, G atically to the vision

system.

The tables below briefly summarize the proper
tail in the following s

lasses
 Classes Summary

c

his interface includes two cla
etween GPL and PreciseVis

 the Vi
d the V

nages commu
t stores a sing

nce, there is no explicit method for
sion methods Process, Result or
 establishes a connection

connecting to Pr
ResultCount are

henever the
PL autom

ties and methods for each Class, which
ections. are described in greater de

Vision Class Member Type Description

New Vision Co
Me

C Does not
c

nstructor
thod

reates an empty Vision object.
ommunicate with PreciseVision.

vision_obj.Disconnect Method C ith
a

loses any open connection associated w
 vision object.

vision_obj.ErrorCode Pro

R the last
e
in
in error.

perty

eturns the numeric error code for
xecuted vision process. A value of 0
dicates success; a negative value
dicates an

vision_obj.Instance Pro
S
P
with a vision object.

perty
ets and gets the number of the
reciseVision instance that is associated

vision_obj.IPAddress Pro
S
is
s ssociated with a vision object.

perty
ets and gets the IP address of the PC that
 running the PreciseVision application
oftware a

vision_obj.Process Method

R
v for it to complete.
Connects to PreciseVision if there is
currently no connection.

equests that PreciseVision execute a
ision process and waits

vision_obj.Result Method

Returns a VisResult object that contains a
single set of results from a previously
executed vision tool. Connects to
PreciseVision if there is currently no
connection.

vision_obj.ResultCount Method

Returns the number of sets of vision results
created by a vision tool the last time it was
executed. Connects to PreciseVision if
there is currently no connection.

vision_obj.Status Property

Returns a numeric value indicating the
status of a vision process:

0 = No vision process for this object,
1 = Process is running,
2 = Process complete but with error,

493

GPL Dictionary Pages

3 = Process complete with success.

vision_obj.ToolProperty Property

Sets or gets a property value of a
PreciseVision tool or a general "system"
property for the vision server connected to a
vision object.

VisResult Cl r ass Membe Type Description

New VisResult Constructor
Method

Creates an empty VisResult object. Not
useful since VisResult objects are
normally created by the
vision_object.Result method.

visresult_obj.ErrorCode Property

Returns the numeric error code for this
result. A value of 0 indicates success; a
negative value indicates an error. A
positive value indicates success with a
warning.

visresult_obj.Info Property Returns the nth numeric information field
contained in this set of results.

visresult_obj.InfoCount Property Returns the number of numeric
information items in this set of results.

visresult_obj.InfoString Property results includes text information.
Returns a String value if the set of vision

visresult_obj.InspectActual Property
Returns the value of the tool property that
was tested in the vision inspection
process.

visresult_obj.InspectPassed Property
Returns True if a property of the vision
results satisfied the tool's vision inspection
criteria.

visresult_obj.Loc Property
Returns the position and orientation from a
set of results as a Cartesian Location
object.

visresult_obj.Type Property Returns the type of this set of results.
Currently always zero.

494

Vision Classes

vision_object.Disconnect Method

Closes the network connection associated with a vision object.

vision_object.Disconnect

Prerequisites

None

losed.

Exampl

See Als

Vision

None

Parameters

Remarks

This method closes the TCP/IP connection to PreciseVision that is associated with a
vision object. No error occurs if there is currently no connection.

When a vision object is no longer referenced anywhere, the TCP/IP connection is
automatically c

es

Dim vobject As New Vision
vobject.Disconnect

o

Classes

495

GPL Dictionary Pages

vision_object.ErrorCode Property

Gets the Integer error code for the last executed vision process.

...vision_object.ErrorCode

Prerequi

 method must have been executed using the vision_object and the execution
e completed.

Parame

Remark

his property returns the Integer error code for the last vision process executed by the
vision_object. A value of 0 indicates success; a negative value indicates an error. If no

This property is different from the visresults_object.ErrorCode. The
r

ication error occurred between GPL and PreciseVision. This property never
signals an error if an individual tool fails for whatever reason.

If the vision_object.Status property returns a value of 2, indicating that an error has
urred, the ErrorCode property contains the specific error code that describes the type

r.

Exampl

bject.Process("find_part") ' Execute find_part process
 vobject.ErrorCode <> 0 Then

 ' Handle error

See Also

Vision Classes

sites

A Process
must b

ters

None

s

T

process was ever run, a value of 0 is returned. Please see the section on System Error
Codes in the Precise Documentation Library for a list of vision error codes and their
interpretation.

visresults_object.ErrorCode indicates if a specific Vision Tool encountered an erro
during execution, e.g. it didn't find what it was searching for. The
vision_object.ErrorCode indicates if a vision process could not be found or if a
commun

occ
of erro

es

Dim vobject As New Vision
vo
If

End If

 | vision_object.Status | visresult_object.ErrorCode

496

Vision Classes

vision_object.Instance Property

Sets and gets the number of the PreciseVision instance that is associated with
object.

 a vision

vision_object.Instance = <integer_value>
-or-
…vision_object.Instance

Prerequisites

When this property is set, the vision object must not be connected to PreciseVision.

Parameters

None

Remarks

Multiple, independent instances (copies) of the PreciseVision application software can
run on a single PC. When each copy of PreciseVision is started, its instance numb

be
er

must be explicitly specified if it is not the first instance. By default the first copy of

with
multiple instances of PreciseVision or with a specific instance. This property allows a

ect server instance 2

PreciseVision is instance 1.

For some applications, a single Precise Controller may need to communicate

GPL program to select the instance that is used as a vision server for the specified vision
object.

If the Instance property is not set, the default value is 1.

Examples

Dim vobject As New Vision
vobject.Instance = 2 ' Sel
vobject.Process("find_part")

See Also

Vision Classes | vision_object.IPAddress

497

GPL Dictionary Pages

vision_object.IPAddress Property

n application software associated with a vision object.
Sets and gets the IP address (as a String value) of the PC that is running the
PreciseVisio

vision_object.IPAddress = <string_value>
-or-
…vision_object.IPAddress

Prerequ

n this property is set, the vision object must not be connected to PreciseVision.

Parame

None

Remarks

By default, a Precise Controller connects to its PreciseVision server at the IP address
ecified by the configuration parameter "Vision server IP address" (DataID 424).

 made by the current vision object.

nn where

Exampl

vobject.Process("find_part")

See Also

Vision Classes

isites

Whe

ters

sp

For some applications, a single Precise Controller may need to communicate with more
than one PreciseVision server on different PCs. This property overrides the IP address
specified by DataID 424 for the connection

The properties String value contains the IP address in the form nnn.nnn.nnn.n
each nnn field is a decimal number representing 8 bits of the 32-bit IP address.

If the IPAddress property is not set, the value from DataID 424 is used.

es

Dim vobject As New Vision
vobject.IPAddress = "192.168.0.20"

 | vision_object.Instance

498

Vision Classes

vision_object.Process Method

ision to execute a vision process and waits for the process Issues a request to PreciseV
to complete.

vision_object.Process(vision_process_name)

Prerequisites

ust already be defined within the PreciseVision system.

Parameters

vision_process_name

A required String expression that specifies the name of the
PreciseVision process that is to be executed. This corresponds to the
name that is displayed in the "Process Manager" window in
PreciseVision.

Remarks

This method requests PreciseVision to execute the specified vision process. It then waits
until PreciseVision has completed the process. If PreciseVision does not respond within
30 seconds, an error exception is thrown.

Executing a vision process is the basic means that GPL utilizes to command
PreciseVision to take a picture and analyze it. From GPL's point of view, a vision process
is a single, indivisible operation. That is, after GPL starts a vision process, no results are
available until after the process completes its execution. When the process is done
running, GPL can then interrogate PreciseVision for information on the output of any
tool. Normally, a vision process consists of a command to take a picture (i.e. an
Acquisition Tool) followed by additional tools to process and analyze the picture. In the
simplest case, a process can consist of a single tool that operates on an existing picture.
At other times, a process can be quite complex and may consist of dozens of tools that
inspect multiple features of parts to verify that the part is correct.

In order for GPL to execute a process and retrieve the results, GPL has to know the
name that has been assigned to the process in PreciseVision and the names of any tools
for which results are desired.

Each time that a vision process is executed, all of the previous results of its tools are lost
and replaced by the newly computed results. However, if a different vision process is
executed using another Vision object, the results of first vision process are preserved.

The Status property can be used to determine if the process completed successfully.

The Process method performs communications with PreciseVision. If an Ethernet
network connection does not exist, a connection is automatically established. If a

The specified vision process m

499

GPL Dictionary Pages

connection cannot be setup or the communication link fails for any reason, this method
will throw an exception.

vobject.Process("find_part")

End If

Vision

Examples

Dim vobject As New Vision

If vobject.Status <> 3 Then
 ' Deal with error

See Also

Classes | vision_object.Status

500

Vision Classes

vision_object.Result Method

Returns a VisResult Object that contains a single set of results from a vision tool.

...vision_object.Result(vision_tool_name, index, location_object)

Prerequi

ethod must have been executed using the vision_object and the execution
st be completed.

Parame

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a

 single set of results generated by that tool will
 final tool in the

vision process is returned.

index

An optional numeric expression indicating which set of results to return
for the selected tool. The numeric value can range from 1 to
vision_object.ResultCount. If omitted, the first set is returned.

location_object

(Future enhancement) An optional Cartesian Location Object whose
value is sent to PreciseVision when the result is requested. Depending
on where the camera is mounted and the particular vision tool, this
location value may be used to determine the returned vision result.
Details on what value to pass in this parameter are described in the
PreciseVision documentation for specific vision tools.

Remarks

This method requests PreciseVision to return a set of results from a tool that was part of
the previously executed vision process. If the vision tool generated multiple sets of
results, the index parameter is utilized to specify the set of results to be returned. The
results data can be fetched any number of times from any tool that is part of the vision
process until the vision process is executed again. When a vision process is executed
again, all of the old results are lost and a new set of results data will be available.

When this method is executed, it returns a VisResult Object whose data can be
accessed by the standard properties and methods available for that object class.

sites

A Process m
mu

ters

vision_tool_name

tool name is specified, a
be returned. If omitted, a single set of results from the

501

GPL Dictionary Pages

For cameras mounted on a robot or for pictures of an object held by the robot, it may be
necessary to pass camera or robot location information to PreciseVision so that the result

se, the optional location_object parameter must be

successfully.

This property performs communications with PreciseVision. If an Ethernet network
ction does not exist, a connection is automatically established. If a connection
t be setup or the communication link fails for any reason, this method will throw an

Exampl

As New Vision
Dim result As VisResult
vobject.Process("find_part")
result = vobject.Result() ' Get result 1 of final vision tool
result = vobject.
result

See Also

Vision Classes

location may be determined. In this ca
specified.

The Status property can be used to determine if the previous vision process completed

conne
canno
exception.

es

Dim vobject

Result("hole1") ' Get result 1 of vision tool "hole1"
= vobject.Result(, 2) ' Get result 2 of final vision tool

 | vision_object.Process

502

Vision Classes

vision_object.ResultCount Method

s generated by a vision tool in the last executed vision process. Gets the number of result

...vision_object.ResultCount(vision_tool_name)

Prerequisites

been executed using the vision_object and the execution
must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, the number of sets of results generated by that
tool will be returned. If omitted, the number of sets of results for the final
tool in the vision process is returned.

Remarks

This property returns the number of sets of results generated by a vision tool. This is the

A Process method must have

same value as the PreciseVision ResultCount tool property.

A value of 0 indicates that no results are available or that some type of error occurred
when the tool was executed. Depending upon the basic type for the vision tool, zero,
one, or multiple sets of results may be generated each time the tool is executed. For
example, the tool that extracts the best fit line (i.e. the Line Fitter) will return at most one
set of results if a line can be fit or none if it is unsuccessful. On the other hand, the
general tool that locates parts (i.e. the Finder) can generate dozens of sets of results if
multiple identical parts are in the camera's field of view.

If one or more sets of results can be accessed, the Result method should be called as
many times as necessary to fetch the data for each set of results.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw an
exception.

Examples

Dim vobject As New Vision
Dim vresults As VisResult
Dim ii As Integer

503

GPL Dictionary Pages

Dim results As Integer
vobject.Process("find_part")

results = vobject.ResultCount()

For ii = 1 To results

 vresults = vobject.Result(,ii)

sults

Next ii

See Als

s

 ' Process re

o

Vision Classe | vision_object.Status

504

Vision Classes

vision

Gets the numeric status code for a vision process.

_object.Status Property

...vision_object.Status

Prerequisites

None

Parameters

Remarks

This me he
vision_o

None

thod returns the status code for the vision process associated with t
bject. The returned status codes are as follows:

Status Code Description

0 No vision process for this object
1 Vision process is running
2 Vision process completed but with error
3 Vision process completed with success

At this time, the value 1 is not seen because the Process method always waits until th
vision process is complete. A no-wait vision process may be added as a future
enhancement.

e

n a
or. For

Exampl

If vobject.Status <> 3 Then
 ' Handle non
End If

See Also

Vision Clas

If Status has a value is 2, the ErrorCode property can be used to determine the specific
type of error that has occurred. Note, this property returns an error if the process did not
exist or if a communication error occurs. However, if a specific tool fails, such as whe
Line Fitter cannot find enough edges to fit a line, Status does not indicate an err
tool analysis errors, please see the visresults_object.ErrorCode property.

es

Dim vobject As New Vision
vobject.Process("find_part")

-successful process

ses | vision_object.ErrorCode | visresults_object.ErrorCode

505

GPL Dictionary Pages

vision_object.ToolProp

Sets or gets a propert r
the vision server conn

erty Property

y value of a PreciseVision tool or a general "system" property fo
ected to a vision object.

vision_object.ToolPro > perty (property_name_string) = <property_value_string
-or-
…vision_object.ToolProperty (property_name_string)

Prerequisites

None

Parameters

property_name_string

tr
to get or set.
tool_name.pro
defined in Pre
within that too

Remarks

This property permits
defined within Precise
previ roces

The vision tools availa
appli prope
are described fully in t

Each time a ToolProp
Pre r and
Ethernet network conn
connection is automat
communication link fail

As a m r transm
Property recognizes "
e

A required S ing expression that contains the name of the tool property
This String is normally in the form:
perty_name, where tool_name is the name of a tool
ciseVision, and property_name is the name of a property
l.

a GPL program to dynamically change the properties of a tool
Vision. This capability allows a GPL program to use the results of a
s to adjust or refine the tools used by a future vision process. ous vision p

ble depend on what has been defined in your particular vision
rties associated with each tool, and the possible property values
he PreciseVision documentatio

cation. The
n.

erty procedure is invoked, messages are exchanged between the
 the PreciseVision system connected to the vision object. If an
ection does not exist when this property is referenced, a

ically established. If a connection cannot be setup or the

cise Controlle

s for any reason, this method will throw an exception.

itting system information to and from Precise Vision, Tool
System" as a special tool name. The information that can be

eans fo

xchanged using this special name is defined in the following table.

System.<property> Operation Description

Clear Calibration
Sets the calibration data for the specified camera (1-n) to the identity
(cleared) value so that returned position values are in pixels instead
of mm. Should be executed before loading new calibration data.

DisplayMode Defines the contents of the PreciseVision main window in the PC
screen. It accepts a single parameter, mode, that is interpreted as

506

Vision Classes

follows

 0 - Resets the display mode to the standard default PV d

:

isplay.
All standard windows, toolbars, menus, etc. are visible and
for use.
 1 - Displays only the camera window and the current Tool's
w
 2 - Displays only the

 available

indow. The PV form border, title, and status bars are hidden.
 camera window. The PV form border, title,

status bars and all dockable controls are hidden.
 3 - Minimizes the PV main window.

Info

ected to the system.

Returns "{PV Version},{CameraAcquireType},{Camera Status1,
…,Camera Status6}. This indicates the version of PV that is being
executed together with indications of which cameras have been
properly conn

ImportProject

Loads in the PreciseVision project contained in the file specified by
<property_value_string> and m

erges its contents with the currently

ols
is

libration

loaded project. If the new project contains any processes or to
whose names conflict with items that are already loaded, "_r"
appended to the name of the new item. Also, any camera ca
information that is contained in the new project is ignored.

LastProcessTime in the
ow.

Returns the total execution time for the last vision process that was
run, in seconds. This is the same information that is displayed
Application Status Bar at the bottom of the PreciseVision wind

LayOut

Selects one of the predefined panel layouts to be displayed within
the main PV window. Requires a single parameter, layout, whose
value is interpreted as follows:

 1 - Edit mode
 2 - Runtime mode
 3 - Calibration mode

LoadCal1

 Dynamically loads a specified calibration file into PreciseVision and
assigns it to camera #1. To load camera #n, specify "LoadCaln". If
the calibration file cannot be located, a -4022 error code will be
returned.

Lo ge adIma Loads an image from the file specified by <property_value_string>
into the camera display buffer.
Deletes t

LoadProject the currently loaded project has been modified, a -4023 e
will be returned and the load will not be attempted. To ignore the
any project modifications, please see the System.ProjectModified
property.

he currently loaded PreciseVision project and loads in the
project contained in the file specified by <property_value_string>. If

rror code

Performs the same fun

Lock the use

ction as the "Lock/Unlock Application" button
in the PreciseVision Main Menu bar. If set to the string value "true",

r interface prohi ng made. If set to
"fa

bits any changes from bei
lse", changes are again permitted.

MMToPixelTrans1

PixelToMMTrans1

(Superceded by new CamCal properties)
calibration matrices for camera #1. The elements of each 3x3
transformation are return as 9 numeric values delimited by commas
(", 1,
t12
#n

 Read the values of the

") in a String. The values are returned in the following order: t1
, t13, t21, t22, t23, t31, t32, t33. To access the data for camera

, specify ...Transn.

Position Po V window relative to the PC's screen.
Th elimited

sitions and sizes the main P
is property requires four parameters whose values are d

507

GPL Dictionary Pages

by

 <
 <
 <
 < ptional)

 ",":

xpos> - X position relative to the top-left of the screen
ypos> - Y position relative to the top-left of the screen
width> - Width of the main PV window (optional)
height> - Height of the main PV window (o

All units are in pixels.

Proje been mo
the g is
Tr de will
be returned.

ctModified

Re
loa

turns or sets a True/False flag that indicates if the currently
ded vision project has been modified. If the current project has

dified and you wish to load in a new project without saving
 new changes, you can set this property to False. If this fla

ue and you attempt to load a new project, a -4023 error co

Proj ectName
Projec th

Re
patPa

turns either the name of the currently loaded vision project or its file
th including the project name.

RefreshGraphics
Equivalent to pressing the "Refresh Camera Display Window
Graphics" button in PreciseVision. It redraws any graphics
generated by vision tools in the Camera Display window.

SaveImage{n} Stores the image contained in the specified camera buffer into the
file specified by <property_value_string>.

SaveProject Stores the currently lo t into the file
specified by <property

aded PreciseVision projec
_value_string>.

TopMost

Specifies whether the main PV window is on top of other windows

This property permits PV to stay on top of other applications while

on the PC's screen. It requires a single parameter, mode, which is
defined as follows:

 0 - Normal (resets topmost property)
 1 - Keeps window on top

the user clicks or drags other windows on the screen.

Zoom

Sets the "zoom" scale factor for the camera display window. It
requires a single parameter, scale_factor, that ranges from 0 to 5 in
steps of 0.1. A value of 0 will automatically set the zoom so that the

 within the camera display
window.
entire frame buffer will be displayed

In situations where a GPL program wishes to trigger the execution of a camera
calibration procedure, ToolProperty recognizes "Camcal" as a special tool name. For a

libration, the informatio using the Camcal
n the following table.

"Camera only" area ca
tool name is defined i

n that can be exchanged

Camcal.<property> Operation Description

Camera the number of the camera to be used, "1" to "n". Sets

CalType
Indicates the type of camera calibration to be performed. This
must be set to "1" for the simple stationary camera area
calibration.

CalErrorNum

CalErrorString

Returns an indication of whether or not the calibration process
executed without an error. CalErrorNum will be 0 if the
calibration was successful.

CalFileName
CalSave

Saves the calibration results into the specified disk file.

508

Vision Classes

Execute Initiates the calibration procedure.
SquareIsDark

SquareMinArea
SquarePitch
SquareSize

f a
quares, these parameters define the size and the pitch of

the squares in mm. The SquareDark indicates if the squares are

When the standard calibration target is utilized that consists o
grid of s

dark (1) or white (0). The SquareMinArea specifies the minimum
acceptable area of each square in pixels.

ResultMaxError
ResultNumCornerFound
R edesultNumCornerUs

ResultRMS

he
 target was matched, and information on the number of

Returns statistical results of the calibration process. This
includes the maximum and RMS error that indicate how well t
calibration
corners of the grid of squares that were located and utilized.

Threshold Defines the binary threshold applied during the calibration
process to initially locate the squares in the grid (0-255).

Width
Height

X
Y

OI to be processed during the
rs are in units of pixels.

Defines the size and center of the A
calibration procedure. These paramete

If the calibration scale
information can be exc

factors for a camera are to be explicitly set, the following
hanged using the Camcal tool name.

Camcal.<property> Operation Description

Camera Sets the number of the camera to be used, "1" to "n".

CalType ration
Indicates the type of camera calibration to be performed. This is
must be set to "0" for explicitly setting the values of the calib
matrix.

CalErrorNum

CalErrorString
Returns an indication of whether or not the calibration process
executed without an error. CalErrorNum will be 0 if the calibration
was successful.

CalFileName
CalSave

Saves the calibration results into the specified disk file.

dxPixPerMM
dyPixPerMM

d Explicitly specifies the pixel per MM scale factors in both the X an
Y directions.

Execute dure. Initiates the calibration proce

Independent of the cam llowing properties can be utilized to
retrieve camera setup and calibration results information.

era calibration method, the fo

Camcal.<property> Operation Description

Camera Sets the number of the camera to be accessed, "1" to "n".

CameraFrameSize The actual camera image may be sma
Returns the camera frame buffer size as "Width, Height" in pixels.

ller than the frame buffer
size.

PixelPerMM verage pixel per mm ratio for the specified camera. Returns the a
PixelToMMTrans Returns the calibration matrices that convert between camera pixels

509

GPL Dictionary Pages

MMToPixelTrans

and units of millimeters. These matrices are computed as a result
of performing the camera calibration using the standard grid of

ation are return as 9 numeric
,") in a String. The values are

returned in the following order: t11, t12, t13, t21, t22, t23, t31, t32,
hese matrices are 3x3's to include perspective distortion

correction.

For example, given a PixelToMMTrans value, a camera pixel
coordinate (Px,Py) can be converted to millimeters (adjusted for
perspective distortion) using the following equations:

 Cx = (t11*Px+t12*Py+t13)/pscale
 Cy = (t21*Px+t22*Py+t23)/pscale
 where
 pscale = (t31*Px+t32*Py+t33)

squares.

The elements of each 3x3 transform
values delimited by commas ("

t33. T

CameraToRobot

RobotToCamera

multiplied times the CameraToRobot transformation to compute t
equivalent position in the coordinate system of a robot.

The elements of each 4x4 homogeneous calibration transformati
are return as 16 numeric values delimited by commas (",") in

Returns the calibration matrices that convert between a camera's
frame of reference and a robot's frame of reference. These

 perspective distortion using
the PixelToMMTrans, the camera coordinate value can be

he

on
a

String. The values are returned in the following order: t11, t12,
t13, t14, t21, t22, t23, t24, t31, t32, t33, t34, t41, t42, t43, t44.

ons:

 Rx = t11*Cx+t12*Cy+t14
 Ry = t21*Cx+t22*Cy+t24

z = t31*Cx+t32*Cy+t34

matrices are computed as a result of performing a "robot vision
camera calibration". After a camera pixel coordinate has been
transformed to mm and corrected for

For example, given a CameraToRobot value, a camera X, Y
position (Cx, Cy) in millimeters can be converted to a robot XYZ
position using the following equati

 R

Exampl

Dim prop As String
Dim vobject As New Vision
prop = vobject.ToolProperty("hist.angle")

cal1") = "C:\cal1.dat"
em.mmtopixeltrans1")

See Also

Vision Classes

es

vobject.ToolProperty("system.load
prop = vobject.ToolProperty("syst

510

Vision Classes

visresult_object.ErrorCode Property

Gets the Integer error code for a vision results object.

...visresult_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

This pro same perty returns the Integer error code for the visresult_object. This is the
value as reciseVision ResultErrorCode tool property. the P

 value of 0 indicates that the result was computed successfully and is valid. A positive
value indicates a non-critical error occurred during processing, but the result information

ciated tool and all of the tools that are dependent
upon that tool are not processed. The dependent tools will also return a critical error

s

Exampl

 vresult As VisResult
vresult = vobject.Result()

Then

See Also

Vision Classes

A

is valid. A negative value is a standard GPL error code and indicates an error occurred
when PreciseVision was computing the result. Please see the section on System Error
Codes in the Precise Documentation Library for a list of vision error codes and their
interpretation.

When a critical error occurs, the asso

condition when they are queried. When a critical error is indicated, the other propertie
for the visresult_object may not contain valid information.

es

Dim

If vresult.ErrorCode <> 0
 ' Handle error
End If

 | vision_object.ErrorCode

511

GPL Dictionary Pages

visresult_object.Info Property

 result object's numeric information array. Returns a Double value from the vision

...visresult_object.Info(index)

Prerequi

None

Parameters

index

A required numeric expression that specifies the array index for the
information element that is to be returned. The first array element has an
index of 0. This parameter must have a value greater than or equal to
zero.

Remark

 Vision Tools are accessed via standard
properties of the VisResults Objects, e.g. the position and orientation of the results are

meric data
rs

m vresult As VisResult
vresult = vobject.Result() ' Get a tool's results
If vresult.Info(2) > .5 Then
 …

See Als

asses

sites

s

The common results values returned from the

available from visresult_object.Loc. However, some tools return special nu
that is specific to the tool. For example, the Finder Tool returns the X and Y scale facto
for the parts that it has located. This type of tool specific information is returned in the
visresult_object.Info array property.

For information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference
Manual". In the detailed descriptions for each tool, properties that are returned in the Info
array and their array index values are highlighted.

Examples

Di

o

Vision Cl | visresult_object.InfoCount | visresult_object.InfoString | visresult_object.Type

512

Vision Classes

visres

 the number of elements in the vision result object's numeric

ult_object.InfoCount Property

Returns, as an Integer value,
information array.

...visresult_object.InfoCount

Prerequisites

None

Parameters

None

Remark

om 0 to InfoCount - 1.

e Finder
tool, can return a variable number of numeric values. The InfoCount property allows a

 information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference

ual". In th escriptions for each tool, properties that are returned in the Info
re highlighted.

Examples

Dim vresult As VisResult
Dim ii As Integer

 Console.WriteLine(vresult.Info(ii))
Next ii

See Also

Vision Classes

s

The visresult_object.InfoCount property returns the number of elements in the
visresult_object.Info array for the current vision result. The index values for accessing
the Info array range fr

Some tools return special numeric data, which is specific to the tool, in the
visresult_object.Info array property. Some of these tools, for example the Edg

program to determine how many values are actually returned.

For

Man e detailed d
array and their array index values a

vresult = vobject.Result() ' Get a tool's results
For ii = 0 To vresult.InfoCount-1

 | vision_object.Info

513

GPL Dictionary Pages

visresult_object.InfoString Property

Returns a String value if the vision result object includes text results.

...visresult_object.InfoString

Prerequisites

None

Parame

Remark

he common results values returned from the Vision Tools are accessed via standard
properties of the VisResult Objects, e.g. the position and orientation of the results are

 is
contains

de that was found. This property is used to access such
tool specific text data.

Exampl

Dim vis As New Vision
m visRes As New VisResult

rcode",1)
alue = " & visRes.InfoString)

See Als

asses

ters

None

s

T

available from visresult_object.Loc. However, some tools return String data that
specific to the tool. For example, the Barcode Reader tool returns a String that
the type and value of the barco

For information on what data a tool returns in this property, please consult the
"PreciseVision Machine Vision System, Introduction and Reference Manual".

If a vision tool does not return any text data, this property returns an empty String ("").

es

Di
vis.Process("main")
visRes = vis.Result("read_ba
Console.WriteLine("Barcode V

o

Vision Cl | visresult_object.Info | visresult_object.InfoCount | visresult_object.Type

514

Vision Classes

visresult_object.InspectActual Property

Returns a Double that indicates the value of the tool property that was tested in the
vision inspection process.

...visresult_object.InspectActual

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectActual property in PreciseVision.

Parameters

None

Remarks

This property returns the value of the vision tool property that was tested for the
PreciseVision inspection process. This is the same value as the PreciseVision
InspectActual tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria. InspectActual is the property value
that was tested during this process. InspectPassed indicates the results of the test.

Examples

InspectPassed = False Then ' Inspection failed?
 If vresult.InspectActual < 10 Then ' By how much?

 ...

See Als

Vision

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.

o

Classes | visresults_object.InspectPassed

515

GPL Dictionary Pages

visresult_object.InspectPassed Property

Returns a Boolean that indicates if a property of the vision results satisfied the tool's
vision inspection criteria.

...visresult_object.InspectPassed

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectPassed property in PreciseVision.

Parameters

None

Remarks

This property returns a True or False indication of whether or not the set of results fr
vision tool satisfied the specified inspection criteria. This is the same value as the

om a

PreciseVision InspectPassed tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results

is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria and sets the value of InspectPassed

Exampl

Dim vresult As VisResult
vresult = vobject.Result()

 False Then ' Inspection failed?
tual < 10 Then ' By how much?

See Als

Vision C

property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria

appropriately. If the inspection fails, the tool is still processed in the normal fashion as
well as any tools that are dependent upon the failed result. However, both the failed tool
and any dependent tools will have their InspectPassed set to False.

As a convenience, the tool property value that was tested is returned in
visresults_object.InspectActual.

es

d =If vresult.InspectPasse

 If vresult.InspectAc
 ...

o

lasses | visresults_object.InspectActual

516

Vision Classes

visresult_object.Loc Property

Returns a Location Object containing the position and orientation information from a
vision result object.

...visresult_object.Loc

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the ResultAngle, ResultXPos, and ResultYPos properties in PreciseVision.

Parameters

None

Remarks

This property returns the position and orientation results data from a vision tool and
provides the information in the form of a Cartesian Location Object. The position and
orientation data are derived from the PreciseVision ResultXPos, ResultYPos and
ResultAngle tool properties.

While not all vision tools generate position and orientation data, many do. For example,
the general purpose object Finder tool returns the position and orientation of matched
parts. Likewise, the Point-Line Frame tool returns the position and orientation of its
computed reference frame.

To allow this data to be easily utilized within a GPL procedure, the Loc property returns a
Cartesian Location Object that is computed from the PreciseVision tool results but has
been translated into the robot's world reference frame. This translation is a defined by
PreciseVision's camera calibration data and the camera mounting (e.g., stationary, or
mounted on the robot). This Location can then be used as the reference frame for
gripping a part or can be combined with other data to perform further analysis.

Please see the PreciseVision manual for information on which vision tools return these
properties and how to interpret this data.

Examples

Dim vresult As VisResult
Dim visloc As Location
Dim x, y, z As Double
vresult = vobject.Result() ' Get a tool's results
visloc = vresult.Loc ' Get position/orientation output
x = visloc.X ' Vision "ResultXPos"
y = visloc.Y ' Vision "ResultYPos"
z = visloc.Roll ' Vision "ResultAngle"

See Also

517

GPL Dictionary Pages

Vision Classes | visresult_object.Info

518

Vision Classes

visresult_object.Type Property

Returns an Integer type code from a vision result object.

...visresult_object.Type

Prerequisites

None

Parame

Remark

sion
ays returns 0.

Exampl

vresult = vobject.Result()
If vresult.Type = 0 Then

See Als

Vision

ters

None

s

This method returns the numeric Type code for a vision result object. Currently, all vi
results are of type 0, so this property alw

This property will be used in the future to enhance the VisResult class.

es

Dim vresult As VisResult

...

o

Classes

519

XML C
XML C

The ailed i tion on the classe te, parse,
and rkup L ge) documents. T handle XML

g them m
ed XML t nsists of nodes for items in the

document, arranged in a tree that re w
The tree is constructed using a sub D e
Interfaces as described in: http://www.w3.org/T

lasses
lasses Summary

 following pages provide det
modify XML (eXtensible Ma

nforma
angua

s used to crea
hese classes

text documents by convertin
controller’s memory. A pars

 to and fro
 documen

 a tree structure that is stored in the
tree co

flects ho
set of the

 items in the text document are nested.
ocument Object Model (DOM) Cor
R/REC-DOM-Level-1 and methods similar

T.

s in GPL to dle

XmlDoc Class objects operate on t p-leve re
XML document. The nodes within th data from the document. The
XmlDoc methods deal with the document as a y

 There is one an e
document, althoug can be multiple pointers to this object. An XML DOM tree

lDoc object.

int to individual nod
fying node da p

the tree structure. These objects point to DOM
 ob a
tha p

to those found in Visual Basic.NE

There are two built-in classe han XML document objects.

he to
e tree con

l of a DOM tree, which contains an enti
tain the
 whole, for example loading it into memor
 XmlDoc object for each separate XML or saving it to a file.

h there
d only on

cannot exist without an Xm

XmlNode Class objects po
support accessing or modi

es in a DOM document tree. Its methods
roperties, and adding or removing nodes in ta or
 nodes but do not actually contain the
ted or destroyed, the underlying DOM
art of a DOM tree.

DOM nodes. When an XmlNode
nodes are not affected provided

ject is cre
t they are

XmlDoc Class Member Type Description

New Constructor
thod

Cre
eMe sp
ates a new document tree with the
cified name.

xmldoc_obj.CreateNode Method e
doc
R turns a new XmlNode object for this

ument with the specified type, and name.

XmlDoc.DecodeEntities Shared
Method

o
ent

 C

nverts a String containing encoded XML
ities into raw text.

xmldoc_obj.
DocumentElement ethod tM Re

of
turns the XmlNode element that is the root
he document.

XmlDoc.EncodeEntities Shared
Method

o
XM

 C nverts special characters in a String to
L entities.

xmldoc_obj.ErrorCode Get Pr e
 ifoperty R

0
turns the last parser error code number, or
 no error.

XmlDoc.LoadFile Shared
Method

Loa
 fi
ee a

tr

ds and parses an XML text document from
le and returns the created XmlDoc DOM
 object.

XmlDoc.LoadString Shared
Method

arses an XML text document from a String
rns the created XmlDoc DOM tree

j

 P
and retu ob ect.

xmldoc_obj.Message Get Pr “” if
o operty R

n
eturns the last parser error message, or

error.

xmldoc_obj.SaveFile Method o C nverts a DOM tree document to the XML
text format and writes the data to a file.

520

XML Classes

xmldoc_obj.SaveString Method o
x C nverts a DOM tree document to the XML

te t format and writes the data to a String.

The XmlNode class interface is sum inmarized the table below:

XmlNode Class Member Type Description

xmlnode_obj.AddAttribute Method Adds an attribute node as a child of this
node.

xmlnode_obj.AddElement Method Adds an element node as a child of this
node. Includes an optional value.

xmlnode_obj.AddElementNode

r the Method
Adds an element node as a child of this
node. Returns an XmlNode object fo
new node. Includes an optional value.

xmlnode_obj.AppendChild Method Appends a new child node as the last child
of this node. Merges text nodes.

xmlnode_obj.ChildNodeCount Property
ber of children of this

node.
Get Returns the num

xmlnode_obj.Clone Method
Returns a clone of this node. Optionally
recursively clones the subtree under this
node.

xmlnode_obj.FirstChild Method Returns the first child of this node.

xmlnode_obj.GetAttribute Method
Returns a String containing the value of
the specified attribute that is a child of this
node.

xmlnode_obj.GetAttributeNode Method
Returns the node corresponding to the
specified attribute that is a child of this
node.

xmlnode_obj.GetElement Method
Returns a String containing the value of
the specified element that is a child of this
node.

xmlnode_obj.GetElementNode Method
Returns the node corresponding to the
specified element that is a child of this
node.

xmlnode_obj.HasAttribute Method Returns True if the specified attribute is a
child of this node.

xmlnode_obj.HasChildNodes Get
Property

Returns True if the node has any non-
attribute child nodes.

xmlnode_obj.HasElement Method Returns True if a specified element is a
child of this node.

xmlnode_obj.InsertAfter Method
Inserts a new node as a child of this node
after a referenced child node. Merges text
nodes.

xmlnode_obj.InsertBefore Method
Inserts a new node as a child of this node
before a referenced child node. Merges
text nodes.

xmlnode_objLastChild Method Returns the last child of this node.

xmlnode_obj.Name Get
Property Returns the node name as a String.

xmlnode_obj.NextSibling Method Returns the next sibling of this node.

xmlnode_obj.OwnerDocument Method Returns the XmlDoc associated with this
node.

xmlnode_obj.ParentNode Method Returns the parent of this node.

521

GPL Dictionary Pages

xmlnode_obj.PreviousSibling Method Returns the previous sibling of this node.

xmlnode_obj.RemoveAttribute Method Removes a specified attribute from this
node's children.

xmlnode_obj.RemoveChild Method Removes a child node from the list of
children for this node.

xmlnode_obj.RemoveElement Method Removes a
node's child

 specified element from this
ren.

xmlnode_obj.ReplaceChild Method chi
Replaces an old child node with a new

ld node.

xmlnode_obj.SetAttribute Method Sets the value of an existing specified
attribute that is a child of this node.

xmlnode_obj.SetElement Method Sets the value of an existing specified
element that is a child of this node.

xmlnode_obj.Type Get
Property Returns the node type as a String.

xmlnode_obj.Value Get/Set
Property

Returns the node value as a String or sets
the node value.

522

XML Classes

New XmlDoc Constructor

Constructor for creating a new XML document tree object.

xmldoc_object = New XmlDoc(document_name)

Prerequisites

None

Parameters

document_name

 document. The name must not contain any special
characters.

Remarks

This me ment
node. It he name document_name as a child of
the document node.

The New constructor only needs to be called if you are creating a new document from

t.

Examples

Dim doc As XmlDoc
doc = New XmlDoc("my_doc")

See Also

XML Cla

A required String expression that specifies the name of the top-level
section in the new

thod creates a new XML DOM document tree including its top-level docu
 also creates a single element node with t

within GPL. You do not need to invoke it before calling XmlDoc.LoadFile or
XmlDoc.LoadString, which automatically create a new document tree objec

sses | XmlDoc.LoadFile | XmlDoc.LoadString

523

GPL Dictionary Pages

xmldoc_object.CreateNode Method

e. Creates and returns a new node object that can be added to a DOM tre

… xmldoc_object.CreateNode(type, name)

Prerequisites

e

Parame

 the type of the node to be
those shown below in the

ame

eated.
d for some node types and ignored for others. See

the table below in the Remarks section.

Remarks

This method creates a new node for a DOM tree, but does not add it to the tree. The
node type is specified by the type parameter as shown in the following table.

Non

ters

type

A required String expression that specifies
ng value must be one of created. The Stri

Remarks section.

n

A String expression that specifies the name of the node to be cr
The name is require

type String value name
parameter Description

attribute Required

An attribute. Normally has either a document or element as
its parent. In XML data, attributes are embedded inside the
element name start tag. For example an attribute named
color of element sample appears as <sample color="value">

cdatasection Ignored
A CDATA text node permits special characters in its data
section without requiring that they be encoded. The data
starts with “<!CDATA[” and ends with “]]>”

comment Ignored
A special text node that contains a comment not considered
part of the document data. The comment data begins with
“<?--“ and ends with “-->”.

element Required
The basic node type. An element corresponds to an XML tag
that begins with “<”. For example the element named sample
begins with “<sample>” and ends with “</sample>”

processinginstruction Required
A special text node that contains processor-specific
information. The information data begins with "<?" and ends
with "?>".

text Ignored The data contents of an element or attribute. It holds

524

XML Classes

whatever is between two element tags or the “value” of an
attribute.

To be meaningful, the new node must be added to the tree using one of the XmlNode
methods: AppendChild, InsertAfter, InsertBefore,or ReplaceChild.

For most applications, it is easier to build a tree by using the XmlNode methods
dAttribute) rather than using CreateNode.

Examples

c As XmlDoc
ot As XmlNode

Dim elem As XmlNode
As XmlNode

New XmlDoc("my_doc")
DocumentElement

("element", "section1")
text = doc.CreateNode("text")
text.va
elem.Ap
root.AppendChild(elem)

See Also

XML Classes

(AddElement, AddElementNode and Ad

Dim do
Dim ro

Dim text
doc =
root = doc.
elem = doc.CreateNode

lue = "This is the data for section 1"
pendChild(text)

 | xmlnode_object.AddAttribute | xmlnode_object.AddElement |
xmlnode_object.AddElementNode

525

GPL Dictionary Pages

XmlDoc.DecodeEntities Shared Method

coding an XML entry that contains special characters
 errors in XML text files.

Returns a String produced by de
that have been encoded to avoid

… XmlDoc.DecodeEntities(input_string)

Prerequisites

None

Parameters

input_string

A required String expression that contains the text to be decoded.

Remarks

Names and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to be
included in an XML entry. For efficiency the XML methods in GPL do not automatically
check for these characters since their use is not very common.

If you need to include these characters, this method can be used to decode any data
obtained from a GPL DOM document tree that includes encoded versions of these
special characters. To encode data before placing it in an XML document, see the
method XmlDoc.EncodeEntities.

This method converts the input_string value, decoding any encoded characters that it
encounters into standard UTF-8 characters according to the table below, and returns the
result as a String value. This method does not convert 8-bit ASCII (e.g. ISO-8859-1) to
UTF-8.

Character Hex
value Name Encoding

" &H22 double
quote "

& &H26 ampersand &
' &H27 apostrophe '
< &H3C less than <
> &H3E greater than >

Examples

Dim root As XmlNode
Dim ss As String
. . .

526

XML Classes

ss = root.GetElement("section1")
ss = XmlDoc.DecodeEntities(ss)

XML Cl

See Also

asses |XmlDoc.EncodeEntities

527

GPL Dictionary Pages

xmldoc_object.DocumentElement Method

ement as an XmlNode object. Returns the DOM document tree top-level el

…xmldoc_object.DocumentElement

Prerequi

None

Parameters

None

Remarks

All DOM documents, whether created by the XmlDoc constructor (New),
XmlDoc nt
whose descendents contain the rest of the document tree.

This method returns that top-level element as an XmlNode object.

Exampl

Dim doc As XmlDoc

See Als

XML Cl

sites

.LoadFile, or XmlDoc.LoadString, have a single top-level (or root) eleme

es

Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
Console.Writeline(root.Name) ' Displays "my_doc"

o

asses | XmlDoc New | XmlDoc.LoadFile | XmlDoc.LoadString

528

XML Classes

XmlDoc.EncodeEntities Shared Method

ncoding any special characters in an input String
expression, which permits their use in XML entity values.
Returns a String generated by e

… XmlDoc.EncodeEntities(input_string)

Prerequisites

None

Parameters

input_string

A required String expression that contains the characters to be encoded.

Remarks

Names and data within an XML text document must not contain the special characters
shown in the table below. So, these special characters must be encoded if they are to be
included in an XML entry. For efficiency the XML methods in GPL do not automatically
check for these characters since their use is not very common.

If you need to include these characters, this method can be used to encode the special
characters before they are inserted into a GPL DOM document tree. To decode data after
it has been extracted from a GPL DOM tree, see the method XmlDoc.DecodeEntities.

This method converts the input_string value, automatically encoding any special UTF-8
characters that it encounters into equivalent values according to the table below, and
returns the result as a String value. This method does not convert UTF-8 to 8-bit ASCII
(e.g. ISO-8859-1).

Character Hex
value Name Encoding

" &H22 double
quote "

& &H26 ampersand &
' &H27 apostrophe '
< &H3C less than <
> &H3E greater than >

Examples

Dim root As XmlNode

529

GPL Dictionary Pages

Dim ss As String
. . .
ss = XmlDoc.EncodeEntities(ss)
ss = root.SetElement("section1", ss)

See Als

XML Classe

o

s |XmlDoc.DecodeEntities

530

XML Classes

xmldoc_object.ErrorCode Property

Returns the error code for the most recent major operation on a DOM document tree.

…xmldoc_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

When a rmed on an XML document tree, for example creating it
or storing it, the error status is saved within the corresponding XmlDoc object. This

returns the GPL error code corresponding to that status or 0 if the last major
operation was successful.

This pro ethod.

Many internal XML processing errors are returned as -799, "XML error". If this error
curs, the property xmldoc_object.Message should be used to determine the details of

the error.

Exampl

 & ", " & doc.Message)
End If

See Als

XML Cla

 major operation is perfo

property

perty should always be checked after using the XmlDoc.LoadString m

oc

es

Dim doc As XmlDoc
Dim instr As String
. . .
doc = XmlDoc.LoadString(instr) ' Parse the input
If (doc.ErrorCode <> 0) Then ' Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _

o

sses | xmldoc_object.Message

531

GPL Dictionary Pages

XmlDo

d parses an XML text document from a file and returns the created XmlDoc
OM tree object.

c.LoadFile Shared Method

Loads an
D

… XmlDoc.LoadFile(input_file, options)

Prerequisites

None

Parameters

input_file

A required String expression that contains the name of the XML data file
to be read and parsed.

options

An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates a DOM tree in memory from a file containing XML text data. If it
completes successfully, it returns the XmlDoc object for the DOM tree that contains all of
the parsed data. The various XmlNode methods may then be used to access the data.

This method only throws an exception in the case of severe errors. Otherwise, it returns
the XmlDoc object that includes any parsing errors. To check if the XML data has been
properly parsed, you must verify that the xmldoc_object.ErrorCode method value is 0. If
non-zero, check the error code and the xmldoc_object.Message values to determine why
the parsing failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description

&H01 Recover Attempt to continue parsing even if an error occurs.
&H20 Suppress errors Suppress error reporting.
&H40 Suppress warnings Suppress warning reporting.

&H100 Remove blank nodes Remove nodes that contain only white space.

Examples

532

XML Classes

Dim doc As XmlDoc
doc = XmlDoc.LoadFile("/flash/test.xml") ' Parse the file

 & CStr(doc.ErrorCode) _
)

End If

See Als

XML Classes

If doc.ErrorCode <> 0 Then ' Check for errors
 Console.Writeline("Input error "
 & ", " & doc.Message

o

 | XmlDoc New | xmldoc_object.ErrorCode | XmlDoc.LoadString |
xmldoc_object.Message

533

GPL Dictionary Pages

XmlDoc.LoadString Shared Method

turns the created XmlDoc DOM tree Parses an XML text document from a String and re
object.

… XmlDoc.LoadString(input_string, options)

Prerequ

Parameters

A required String expression that contains the XML data to be parsed.
The string may be very long.

options

An optional numeric expression that specifies a bit mask of parsing-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates a DOM tree in memory from the XML text data contained in a
String. If it completes successfully, it returns the XmlDoc object for the DOM tree that
contains all of the parsed data. The various XmlNode methods may then be used to
access the data.

This method only throws an exception in the case of severe errors. Otherwise, it returns
an XmlDoc object that includes any parsing errors. To check if the XML data has been
properly parsed, you must verify that the xmldoc_object.ErrorCode method value is 0. If
non-zero, check the error code and the xmldoc_object.Message values to determine why
the parsing failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

isites

None

input_file

Bit Mask Name Description

&H01 Recover Attempt to continue parsing even if an error occurs.
&H20 Suppress errors Suppress error reporting.
&H40 Suppress warnings Suppress warning reporting.

&H100 Remove blank nodes Remove nodes that contain only white space.

Examples

534

XML Classes

Dim doc As XmlDoc

StreamReader("/flash/test.xml")
) >=0 ' Check if end-of-file

 line = inf.Readline()

inf.Close()
XmlDoc.LoadString(instr) ' Parse the input
c.ErrorCode <> 0) Then ' Check for errors

 Console.Writeline("Input error " & CStr(doc.ErrorCode) _
 & ", " & doc.Message)
End If

XML Cl

Dim instr As String = ""
Dim line As String

' Read the input file

Dim inf As New
While inf.Peek(

 instr &= line
End While

doc =
If (do

See Also

asses | XmlDoc New | xmldoc_object.ErrorCode | XmlDoc.LoadFile | xmldoc_object.Message

535

GPL Dictionary Pages

xmldoc_object.Message Property

e for the most recent major operation on a DOM
document tree.
Returns the detailed error messag

…xmldoc_object.Message

Prerequisites

None

Parameters

None

Remarks

When a ed on an XML document tree, for example creating it
or storing it, the error status is saved within the corresponding XmlDoc object. If an error

s indicated by xmldoc_object.ErrorCode being non-zero, this property returns a
ssage.

Many in 9, "XML
error". I to
determine the details of the error.

doc = XmlDoc.LoadString(instr) ' Parse the input

)

See Also

XML Classes

 major operation is perform

occurs, a
detailed me

ternal XML processing errors return an xmldoc_object.ErrorCode of -79
f this error occurs, the xmldoc_object.Message property should be used

Examples

Dim doc As XmlDoc
Dim instr As String
. . .

If (doc.ErrorCode <> 0) Then ' Check for errors
Console.Writeline("Input error " & CStr(doc.ErrorCode) _
 & ", " & doc.Message
End If

 | x objectmldoc_ .ErrorCode

536

XML Classes

xmldoc_object.SaveFile Method

Converts a DOM tree document to the XML text format and writes the data to a file.

xmldoc_object.SaveFile(output_file, options)

Prerequisites

None

Parameters

output_file

A required String expression that contains the name of the file to receive
the XML text output data.

options

An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates XML text data from a DOM tree and writes it to a file. It throws an
exception if any error occurs during conversion. If an error occurs, check the values of
xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the conversion
failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description

&H01 Format Format the output by adding new-lines
and indenting nested elements.

&H02 Suppress declarations
Suppress output of the standard XML
declarations comments at the start of the
output.

&H04 Suppress empty tags Suppress output of empty sections.

Examples

Dim doc As XmlDoc
doc = New XmlDoc("My_doc")
. . .

537

GPL Dictionary Pages

doc.SaveFile("/flash/xml/test.xml")

XML Classes

See Also

 | xmldoc_object.ErrorCode | XmlDoc.LoadFile | xmldoc_object.Message |
xmldoc_object.SaveString

538

XML Classes

xmldoc_object.SaveString Method

Converts a DOM tree document to the XML text format and writes the data to a String.

xmldoc_object.SaveString(output_string, options)

Prerequisites

None

Parameters

output_string

A required ByRef String variable that receives the XML formatted text
output. The string value may be very long.

options

An optional numeric expression that specifies a bit mask of format-
related options. The bits in the mask are defined as shown in the table
below. If omitted, all option bits are assumed to be 0.

Remarks

This method creates XML text data from a DOM tree and writes it to a String. It throws
an exception if any error occurs during conversion. If an error occurs, check the values of
xmldoc_object.ErrorCode and xmldoc_object.Message to determine why the conversion
failed.

The options parameter is composed of bit flags that are defined in the table below. Bits
not shown in the table should be set to 0.

Bit Mask Name Description

&H01 Format Format the output by adding new-lines
and indenting nested elements.

&H02 Suppress declarations
Suppress output of the standard XML
declarations comments at the start of the
output.

&H04 Suppress empty tags Suppress output of empty sections.

Examples

Dim doc As XmlDoc
Dim ss As String
doc = New XmlDoc("My_doc")
. . .
doc.SaveString(ss)
Console.Writeline(ss)

539

GPL Dictionary Pages

See Also

XML Classes | xmldoc_object.ErrorCode | XmlDoc.LoadString | xmldoc_object.Message |
xmldoc_object.SaveFile

540

XML Classes

xmlnode_object.AddAttribute Method

Creates a new XML attribute and appends it as a child of the current tree node.

xmlnode_object.AddAttribute(attribute, value)

Prerequisites

The current node must be of type "element" or "document".

A required String expression that specifies the name of the attribute to
be created.

Parameters

attribute

value

An optional String expression that specifies the value of the attribute to
be created.

Remarks

This is a convenience method that creates, initializes, and links a node to add an attribute
to a DOM tree. The new attribute appears as the new last child of xmlnode_object.

Examples

Dim doc As XmlDoc
Dim ro As XmlNode ot
doc = New XmlDoc ("my_doc")
root DocumentElement = doc.
root.AddAttribute("color", "orange")

See Also

XML Classes | xmldoc_object.CreateNode | xmlnode_object.AddElement |
xmlnode_object.SetAttribute

541

GPL Dictionary Pages

xmlnode_object.AddElement Method

Creates a new XML element and appends it as a child of the current tree node.

xmlnode_object.AddElement(element, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to
be created.

value

An optional String expression that specifies the value of the element to

Remarks

This is a convenience method that creates, initializes, and links a node to add an element
to a DOM tree. The new element appears as the new last child of xmlnode_object.

Examples

New XmlDoc("my_doc")
t = doc.DocumentElement

root.AddElement("section1", "Data for section 1")

See Als

XML Cl

be created.

Dim doc As XmlDoc
Dim root As XmlNode
doc =
roo

o

asses | xmldoc_object.CreateNode | xmlnode_object.AddAttribute |
xmlnode_object.SetElement

542

XML Classes

xmlnode_object.AddElementNode Method

ject for the newly created element node.
Creates a new XML element and appends it as a child of the current node. Returns an
XmlNode ob

…xmlnode_object.AddElementNode(element, value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

t to
be created.

value

An optional String expression that specifies the value of the element to
be created.

Remarks

t for
dditional levels in

your document tree.

This is a convenience method that creates, initializes, and links a node to add an element
to a DOM tree. The new element appears as the new last child of xmlnode_object.

elem = root.AddElemen ("section1", "Data for section 1")
elem.AddElement("section1-1", "Data for sub-section 1-1")

See Als

s

element

A required String expression that specifies the name of the elemen

This method is identical to AddElement except that it also returns an XmlNode objec
the newly created element. This new node may be useful in creating a

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement

tNode

o

XML Classe | xmldoc_object.CreateNode | xmlnode_object.AddElement | xmlnode_object.SetElement

543

GPL Dictionary Pages

xmlnode_object.AppendChild Method

Appends a new node as the new last child of the current node. Text nodes are merged as
appropriate.

xmlnode_object.AppendChild(new_node)

Prerequisites

None

Parameters

new_node

A required XmlNode object that is to be appended.

Remark

This method appends a node to the specified node. The new node becomes the last child
of the specified node. If a text node is being appended to an element whose last child is
already a text node, the new text is merged with the old text node and the new node is

d.

he node to be added may be created by XmlDoc.CreateNode or may have been
ng RemoveChild. If you are appending a new attribute or

 to use AddAttribute or AddElement.

cument tree to a different
document tree. Use the Clone method to make a copy of a node from a different

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")
text.value = "This is the data for section 1"
elem.AppendChild(text)
root.AppendChild(elem)

See Also

XML Classes

s

free

T
removed from the tree usi
element, it is more convenient

You cannot append a node that is a member of one do

document.

Examples

 | xmldoc_object.CreateNode | xmlnode_object.AddAttribute |
xmlnode_object.AddElement

544

XML Classes

xmlnode_object.ChildNodeCount Property

f the current node. Returns the number of children o

…xmlnode_object.ChildNodeCount

Prerequi

Parame

e

Remark

This pro red
children

lnode_object.HasChildNodes is more efficient if you only want to know if
a node has children but do not care how many it has.

Examples

m doc As XmlDoc
m root As XmlNode

doc = New XmlDoc("my_doc")

D
odeCount) ' Output is "1"

See Als

s

sites

None

ters

Non

s

perty counts the number of children of a node. Attributes are not conside
 and are not included in this count.

The method xm

Di
Di

root = doc.DocumentElement
root.AddElement("section1", " ata for section 1")
Console.Writeline(root.ChildN

o

XML Classe | xmlnode_object.HasChildNodes

545

GPL Dictionary Pages

xmlno

 is a clone of the current node.

de_object.Clone Method

Creates a new XML node that

…xmlnode_object.Clone(deep, xmldoc_object)

Prerequ

Parame

ep

xmldoc_object

An optional XmlDoc object that specifies the document tree that will
contain the new node. If omitted, the clone will be a member of the same
document tree as the original copied node.

Remark

nd also provides a means for copying
.

 parameter is
ate a new subtree.

Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim sub1 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
sub1 = elem1.AddElementNode("section-a", "Sub-section data")
elem2 = root.AddElementNode("section2", "Data for section 2")
' Duplicate section-a under section 2
elem2.AppendChild(sub1.Clone(True))

See Also

XML Classes

isites

None

ters

de

A required Boolean numeric expression that determines if a deep or
shallow copy of the node should be made.

s

This m tes a copethod crea y of an existing node a
nodes to a new document tree

If the deep parameter is False, only the current node is copied. If the deep
True, all nodes beneath the current node are copied recursively to cre

Examples

Dim doc As XmlDoc

 | xmldoc_object.CreateNode

546

XML Classes

xmlnode_object.FirstChild Method

Returns the first child node of the current node.

…xmlnode_object.FirstChild

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the first child node of the
rrent node. If the current node does not have any children, the returned object is

Nothing

Exampl

 doc As XmlDoc
root As XmlNode

e

 "Data for section 1")

cu

This method does not create a new node in the DOM tree.

es

Dim
Dim
Dim elem1 As XmlNod
Dim elem2 As XmlNode
doc = ("my_New XmlDoc doc")
root = doc. DocumentElement

lementNodeelem1 = root.AddE ("section1",
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(root.FirstChild.Name) ' Displays "section1"

See Also

XML Classes | xmlnode_object.LastChild | xmlnode_object.NextSibling | xmlnode_object.ParentNode |
xmlnode_object.PreviousSibling

547

GPL Dictionary Pages

xmlnode_object.GetAttribute Method

Returns a String containing the value of an existing attribute of the current node.

… xmlnode_object.GetAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to

Remarks

is is a convenience method that finds a named attribute and returns the value of the
attribute. The attribute must be an immediate child of the current node.

Exampl

t
ew XmlDoc("my_doc")

root = doc.DocumentElement

XML Cl

be accessed.

Th

If the name is not found, an exception is thrown.

es

Dim doc As XmlDoc
Dim roo As XmlNode
doc = N

root.AddAttribute("color", "orange")
Console.Writeline(root.GetAttribute("color")) 'Output is "orange"

See Also

asses | xmlnode_object.GetAttributeNode | xmlnode_object.GetElement |
xmlnode_object.SetAttribute

548

XML Classes

xmlnode_object.GetAttributeNode Method

ed
attribute name.
Returns the attribute node that is a child of the current node and has the specifi

… xmlnode_object.GetAttributeNode(attribute)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

pression that specifies the name of the attribute to
be found. If the String is omitted or empty (""), the node for the first
attribute is returned.

Remark

This is a convenience method that finds an attribute node that has a specified attribute

e attribute parameter is omitted or empty, the first attribute of the current node is
returned. If there are no attributes for the current node, a Nothing object is returned.

specified but no matching attribute is found, an exception is

 attr
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")
attr = root.GetAttributeNode("color")
Console.Writeline(attr.Name) 'Output is "color"

See Also

XML Classes

An optional String ex

s

name. A new XmlNode object corresponding to the attribute is returned.

If th

If the ute parameter is attrib
thrown.

The attribute node e an imme te child of the current node. must b dia

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim As XmlNode

 | xmlnode_object.GetAttribute | xmlnode_object.GetElementNode |
xmlnode_object.SetAttribute

549

GPL Dictionary Pages

xmlnode_object.GetElement Method

Returns a String that contains the value of a child element of the current node.

…xmlnode_object.GetElement(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the child

Remarks

is is a convenience method that finds a named element. The element must be an
immediate child of the current node.

d, an exception is thrown.

Exampl

t
ew XmlDoc("my_doc")

root = doc.DocumentElement

XML Cl

element to be found.

Th

If an element with the specified name is not foun

es

Dim doc As XmlDoc
Dim roo As XmlNode
doc = N

root.AddElement("section1", "data")
Console.Writeline(root.GetElement("section1")) ' Output is "data"

See Also

asses | xmlnode_object.GetAttribute | xmlnode_object.GetElementNode |
xmlnode_object.SetElement

550

XML Classes

xmlnode_object.GetElementNode Method

 has the specified
element name.
Returns the element node that is a child of the current node and

…xmlnode_object.GetElementNode(element)

Prerequisites

The current node must be of type "element" or "document".

Parameters

element

ression that specifies the name of the child
element to be found. If the String is omitted or empty (""), the node for
the first child element is returned.

Remark

This is a convenience method that finds a named child element node. A new XmlNode

e element parameter is omitted or empty, the first child element of the current node is
returned. If there are no child elements for the current node, a Nothing object is returned.

specified but no such element is found, an exception is

 elem
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddElement("section1", "data")
elem = root.GetElementNode("section1")
Console.Writeline(elem.Name) ' Output is "section1"

See Also

XML Classes

An optional String exp

s

object corresponding to the element is returned.

If th

If the ent parameter is elem
thrown.

The element must be an immediate ch f the current node. ild o

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim As XmlNode

 | xmlnode_object.GetAttributeNode | xmlnode_object.GetElement |
xmlnode_object.SetElement

551

GPL Dictionary Pages

xmlnode_object.HasAttribute Method

Returns True if the named attribute node is a child of this node.

… xmlnode_object.HasAttribute(attribute)

Prerequisites

The current node must be of type "element" or "document".

e

A required String expression that specifies the name of the child
attribute to be found.

Remark

ust be an
e.

e name is found, a True value is returned. Otherwise, a False value is returned.

Exampl

ot.AddAttribute("color", "orange")
nsole.Writeline(root.HasAttribute("color")) ' Output is "-1"

XML Classes

Parameters

attribut

s

This is a convenience method that finds a named attribute node. The attribute m
immediate child of the current nod

If th

es

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
ro
Co

See Also

 | xmlnode_object.GetAttribute | xmlnode_object.GetAttributeNode |
xmlnode_object.HasElement

552

XML Classes

xmlnode_object.HasChildNodes Property

Returns True if the current node has any non-attribute child nodes.

… xmlnode_object.HasChildNodes

Prerequisites

None

Parameters

None

Remarks

This property returns True if the current node has any children, otherwise it returns
lse. Attributes are not considered children and are not included in this test.

Exampl

 doc As XmlDoc
 root As XmlNode

doc = New XmlDoc("my_doc")
t = d

tion1", "Data for section 1")
t.HasChildNodes) ' Output is "-1"

See Als

XML Classes

Fa

To determine how many children a node has, use the method
xmldoc_object.ChildNodeCount.

es

Dim
Dim

roo oc.DocumentElement
root.AddElement("sec
Console.Writeline(roo

o

 | xmlnode_object.ChildNodeCount

553

GPL Dictionary Pages

xmlnode_object.HasElement Method

child of the current node. Returns True if a specified element is a

… xmlnode_object.HasElement(element)

Prerequi

The current node must be of type "element" or "document".

Parameters

element

A required String expression that specifies the name of the element to
found.

Remarks

convenience method that finds a named element. The element must be an
immediate child of the current node.

If an ele ified name is found, a True value is returned. Otherwise, a
False value is returned.

Examples

root = doc.DocumentElement

See Also

XML Cl

sites

be

This is a

ment with the spec

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")

root.AddElement("section1", "Data for section 1")
Console.Writeline(root.HasElement("section1")) ' Output is "-1"

asses | xmlnode_object.GetElement | xmlnode_object.GetElementNode |
_object.xmlnode HasAttribute

554

XML Classes

xmlno

s a new node, after a specified node, in the list of children of the current node. Text
odes are merged as appropriate.

de_object.InsertAfter Method

Insert
n

xmlnode_object.Inser After(t new_child, ref_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that is to be inserted into the list of children.

ref_child

An optional XmlNode object. If specified, it must be an existing child of
the current node.

Remarks

The new_child node is inserted as a child of the current node, and a sibling of the
ref_child node. It is inserted immediately after the ref_child node in the DOM tree.

If ref_child is omitted, the new_child is added to the end of the list of children.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")

555

GPL Dictionary Pages

root = doc.DocumentElement
elem1 = doc.CreateNode("element", "section1")

tion 1"

AppendChild

See Also

XML Classes

text = doc.CreateNode("text")
text.Value = "This is the data for sec
elem1.AppendChild(text)
root. (elem1)
elem2 = doc.CreateNode("element", "section2")
root.InsertAfter(elem2, elem1)

 | xmldoc_object.CreateNode | xmlnode_object.AppendChild |
t.xmlnode_objec InsertBefore

556

XML Classes

xmlno

serts a new node, before a specified node, in the list of children of the current node.
ext nodes are merged as appropriate.

de_object.InsertBefore Method

In
T

xmlnode_object.InsertBefore(new_child, ref_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that is to be inserted into the list of children.

ref_child

An optional XmlNode object. If specified, it must be an existing child of
the current node.

Remarks

The new_child node is inserted as a child of the current node, and a sibling of the
ref_child node. It is inserted immediately before the ref_child node in the DOM tree.

If ref_child is omitted, the new_child is added to the beginning of the list of children.

The node to be added may be created by XmlDoc.CreateNode or may have been
removed from the tree using RemoveChild.

You cannot insert a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to insert a copy of a node from a
different document.

If a text node is inserted next to another text node, the new text is merged with the old
text node and the new node is freed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = doc.CreateNode("element", "section1")
text = doc.CreateNode("text")

557

GPL Dictionary Pages

text.Value = "This is the data for section 1"
elem1.AppendChild(text)

section2")

See Als

XML Cl

root.AppendChild(elem1)
elem2 = doc.CreateNode("element", "
root.InsertBefore(elem2, elem1)

o

asses | xmldoc_object.CreateNode | xmlnode_object.AppendChild | xmlnode_object.InsertAfter

558

XML Classes

xmlnode_object.LastChild Method

Returns the last child node of the current node.

…xmlnode_object.LastChild

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the last child node of the
current node. If the current node does not have any children, the returned object is

thing.

 met te a new node in the DOM tree.

Exampl

Dim doc As XmlDoc
m root As XmlNode
m elem1 As XmlNode

Dim elem2 As XmlNode

elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
Console.Writeline(root.LastChild.Name) ' Displays "section2"

See Also

XML Classes

No

This hod does not crea

es

Di
Di

doc = New XmlDoc("my_doc")
root = doc.DocumentElement

 | xmlnode_object.FirstChild | xmlnode_object.NextSibling | xmlnode_object.ParentNode |
xmlnode_object.PreviousSibling

559

GPL Dictionary Pages

xmlnode_object.Name Property

Returns the name of the current node, if it has a name.

…xmlnode_object.Name

Prerequisites

None

Parameters

None

Remarks

Returns the name of the current node or an empty string ("") if the node has no name.

Examples

Dim doc As XmlDoc

root = doc.DocumentElement
sole.Writeline(root.Name) ' Displays "my_doc"

See Als

XML Cl

Dim root As XmlNode
doc = New XmlDoc("my_doc")

Con

o

asses | xmlnode_object.Type | xmlnode_object.Value

560

XML Classes

xmlnode_object.NextSibling Method

Returns the next sibling node of the current node.

…xmlnode_object.NextSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the next sibling of the
current node. If there is no next sibling, the returned object is Nothing.

A sibling is a node that has the same parent as the current node. The order of siblings

s method does not create a new node in the DOM tree.

Exampl

ot = doc.DocumentElement
em1 = root.AddElementNode("section1", "Data for section 1")

elem2 = root.AddElementNode("section2", "Data for section 2")
g.Name) ' Displays "section2"

See Also

XML Classes

corresponds to the order of data items in the XML text document.

Thi

es

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
ro
el

Console.Writeline(elem1.NextSiblin

 | xmlnode_object.ParentNode | xmlnode_object.PreviousSibling

561

GPL Dictionary Pages

xmlnode_object.OwnerDocument Method

 that contains the current node. Returns the XmlDoc object for the DOM tree

…xmlnode_object.OwnerDocument

Prerequisites

None

Parameters

None

Remarks

This method provides a back-pointer for the current node to the XmlDoc object for the
node’s DOM tree. Normally, all nodeobjects have an associated XmlDoc object, unl
the document tree was freed by some ot

ess
her method.

tion is thrown.

_doc")

See Als

s

If the current object has no associated document, an excep

Examples

Dim doc1 As XmlDoc
Dim doc2 As XmlDoc
Dim root As XmlNode
doc1 = New XmlDoc("my
root = doc1.DocumentElement
doc2 = root.OwnerDocument
' doc1 and doc 2 point to same object, doc1 Is doc2

o

XML Classe | xmlnode_object.ParentNode

562

XML Classes

xmlnode_object.ParentNode Method

Returns the parent node of the current node.

…xmlnode_object.ParentNode

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the parent of the curren
node. If the current node is not part of a DOM tree, it will not have a parent and the

t

returned object is Nothing.

Exampl

doc As XmlDoc
root As XmlNode

e

oc")
ment

See Als

ses

This method does not create a new node in the DOM tree.

es

Dim
Dim
Dim elem1 As XmlNod

sub1 Dim As XmlNode
 = New doc XmlDoc("my_d

leroot = doc.DocumentE
Elemenelem1 = root.Add tNode("section1", "Data for section 1")

esub1 = elem1.AddElementNod ("section-a", "Sub-section data")
Console.Writeline(sub1.ParentNode.Name) ' Output is "section1"

o

XML Clas | xmlnode_object.NextSibling | xmlnode_object.OwnerDocument |
xmlnode_object.PreviousSibling

563

GPL Dictionary Pages

xmlnode_object.PreviousSibling Method

Returns the previous sibling node of the current node.

…xmlnode_object.PreviousSibling

Prerequisites

None

Parameters

None

Remarks

This method returns a new XmlNode object that corresponds to the previous sibling of
e current node. If there is no previous sibling, the returned object is Nothing.

A sibling is a node that has the same parent as the current node. The order of siblings
corresponds to the order of data items in the XML text document.

This method does not create a new node in the DOM tree.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode

 elem2
_doc")

root = doc.

Console.Writeline PreviousSibling.Name) ' Displays "section1"

See Also

XML Classes

th

Dim As XmlNode
doc = New XmlDoc("my

DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")

(elem2.

 | xmlnode_object.NextSibling | xmlnode_object.ParentNode

564

XML Classes

xmlnode_object.RemoveAttribute Method

 its subtrees from a DOM tree. Removes specified child attribute node and

xmlnode_object.RemoveAttribute(attribute)

Prerequi

rrent node must be of type "element" or "document".

Parame

ute

required string expression that specifies the name of the attribute to be
removed.

Remarks

This is a convenience method that finds and removes a child node that contains a

Examples

m doc As XmlDoc

doc")
ment
or", "orange")

) ' Attribute is removed

See Also

XML Classe

sites

The cu

ters

attrib

A

specified attribute. The removed attribute node and any nodes beneath it are deleted and
are no longer accessible.

If an attribute is not found, an exception is thrown.

The attribute must be immediate child of the current node.

Di
Dim root As XmlNode
doc = New XmlDoc("my_
root = doc.DocumentEle
root.AddAttribute("col
root.RemoveAttribute("color"

s | xmlnode_object.AddAttribute | xmlnode_object.RemoveChild |
object.xmlnode_ RemoveElement

565

GPL Dictionary Pages

xmlno

ee from the DOM tree.

de_object.RemoveChild Method

Remove a specified child node and its subtr

xmlnode_object.RemoveChild(old_child)

Prerequ

None

Parame

old_chil

A required XmlNode object that indicates the DOM tree node to remove.

Remarks

d its subtree can then be placed in the same tree at a different location.

the current node.

ere else in the same
tree, it and its subtree are lost once the corresponding XmlNode object is destroyed.

Examples

n 2")
root.RemoveChild(elem1) ' "section1" is removed from the tree

See Also

isites

ters

d

The DOM node (and its subtree) associated with the old_child object is removed from the
tree. This node an

The old_child object must be an immediate child of

If a node is removed from the DOM tree and not placed somewh

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement

on 1") elem1 = root.AddElementNode("section1", "Data for secti
elem2 = root.AddElementNode("section2", "Data for sectio

XML Classes | xmlnode_object.RemoveAttribute | xmlnode_object.RemoveElement

566

XML Classes

xmlnode_object.RemoveElement Method

e from the DOM tree. Removes a specified child element node and its subtre

xmlnode_object.RemoveElement(element)

Prerequisites

The current node must be of type "element" or "document".

 be

Remarks

This is a convenience method that finds and removes a specified child element node in a
DOM tre nd are no
longer a

 the element is not found, an exception is thrown.

Exampl

Dim doc As XmlDoc

c")
ent

AddElementNode

XML Classes

Parameters

element

A required string expression that specifies the name of the element to
removed.

e. The removed element node and the nodes beneath it are deleted a
vailable.

If

The element must be an immediate child of the current node.

es

Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
doc = New XmlDoc("my_do
root = doc.DocumentElem
elem1 = root. ("section1", "Data for section 1")
elem2 = root.AddElementNode("section2", "Data for section 2")
root.RemoveElement("section1") ' Removes "section1"

See Also

 | xmlnode_object.AddElement| xmlnode_object.RemoveAttribute |
xmlnode_object.RemoveChild

567

GPL Dictionary Pages

xmlnode_object.ReplaceChild Method

Replaces a child of the current node with a new node.

xmlnode_object.ReplaceChild(new_child, old_child)

Prerequisites

None

Parameters

new_child

A required XmlNode object that specifies a new node in the current
node’s DOM tree. This new node will be inserted as a child of the current
node.

old_child

A required XmlNode object that specifies a child of the current node.
This child will be removed from the DOM tree.

Remarks

The old_child node and its subtree are removed from the DOM tree and the new_child
node and its subtree are put in its place. The old_child node and its subtree can then be
placed at a different location in the same tree or they can be deleted.

The old_child node must be an immediate child of the current node.

You cannot place a node that is a member of one document tree into a different
document tree. Use the Clone method if you wish to make a copy of a node for a
different document tree.

If a node is removed from a DOM tree and is not placed somewhere else in the tree, it is
deleted once the corresponding XmlNode object is destroyed.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem1 As XmlNode
Dim elem2 As XmlNode
Dim text As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem1 = root.AddElementNode("section1", "Data for section 1")
elem2 = doc.CreateNode("element", "section2")
text = doc.CreateNode("text")
text.Value = "Data for section 2"

568

XML Classes

elem2.AppendChild(text)
root.ReplaceChild(elem2, elem1) ' Replace section1 with section2

XML Cl

See Also

asses | xmlnode_object.RemoveAttribute | xmlnode_object.RemoveChild |
xmlnode_object.RemoveElement

569

GPL Dictionary Pages

xmlnode_object.SetAttribute Method

Changes the value of an existing attribute.

xmlnode_object.SetAttribute(attribute, new_value)

Prerequisites

The current node must be of type "element" or "document".

Parameters

attribute

A required String expression that specifies the name of the attribute to
be changed.

new_value

A required String expression that specifies the new value of the
attribute.

Remarks

ribute value in a DOM tree. The
new_value replaces the old value of the attribute.

The attribute must be an immediate child of the current node.

If the attribute is not found, an exception is thrown.

Examples

root.SetAttribute("color", "green") ' Change color to "green"

See Also

XML Classes

This is a convenience method that modifies an att

Dim doc As XmlDoc
Dim Asroot XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddAttribute("color", "orange")

 | xmlnode_object.GetAttribute | xmlnode_object.SetElement

570

XML Classes

xmlnode_object.SetElement Method

Changes the value of an existing child element.

xmlnode_object.SetElement(element, new_value)

Prerequisites

The current node must be of type "element" or "document".

t

A required String expression that specifies the name of the element to
be changed.

new_value

A requir pression that specifi ue of the element.

Remarks

This is a conven th e. The
new_value replaces the old value of the element.

The element must be an immedia

If the element is n an ex

Examples

Dim doc As XmlDoc
Dim root As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
root.AddEle
root.SetEle ew data for section 1")

See Also

XML Classes

Parameters

elemen

ed String ex es the new val

ience method at modifies an element value in a DOM tre

te child of the current node.

ot found, ception is thrown.

ment("section1", "D
ment("section1", "N

ata for section 1")

 | xmlnode_object.GetElement | xmlnode_object.SetAttribute

571

GPL Dictionary Pages

xmlnode_object.Type Property

he current node as a String. Returns the type of t

… xmlnode_object.Type

Prerequisites

None

Parameters

None

Remarks

Returns one of the type Strings from the table below.

type String Description

attribute An attribute. Normally has a text node child
with the attribute value.

cdatasection
A CDATA text node that allows special
characters in the data without encoding
them.

comment A special text node that contains a comment
not considered part of the document data.

element

The basic node type. An element
corresponds to an XML text tag that begins
with “<name>” and ends with “</name>”.
Normally has a text node child with the
element value.

processinginstructionA text node that contains processor-specific
information.

text
The data contents of an element or attribute.
It holds whatever is between two element
tags, or the “value” of an attribute.

attributedeclaration
document

documentfragment
documenttype

dtd
elementdeclaration

entity
entitydeclaration
entityreference
htmldocument
namespace

notation
xincludeend

You cannot create nodes of these types
within the GPL classes, but they may appear
in externally created XML text documents.

572

XML Classes

xincludestart

Examples

Dim As XmlDoc doc
Dim root As XmlNode

)
t

See Also

XML Classes

doc = New XmlDoc("my_doc"
root = doc.DocumentElemen
Console.Writeline(root.Type) ' Displays "element"

 | xmlnode_object.Name | xmlnode_object.Value

573

GPL Dictionary Pages

574

xmlnode_object.Value Property

Returns the value of the current node as a String or sets the value of the current node.

… xmlnode_object.Value
-or-
Txmlnode_objectT.Value = Tstring_valueT

Prerequisites

None

Parameters

None

Remarks

If a node does not have a value directly, any child text nodes are accessed transparently
and their values are set or returned.

Examples

Dim doc As XmlDoc
Dim root As XmlNode
Dim elem As XmlNode
doc = New XmlDoc("my_doc")
root = doc.DocumentElement
elem = root.AddElementNode("section1", "Data for section 1")
Console.Writeline(elem.Value) ' Writes "Data for section 1"

See Also

TXML Classes T | Txmlnode_object. TName | Txmlnode_objectTT.TTTypeT

	GPL Dictionary Pages Summary
	Array Class
	Array Class Summary
	array.GetUpperBound Property
	array.Length Property
	array.Rank Property

	Console Class
	Console Class Summary
	Console.Write Method
	Console.WriteLine Method

	Controller Class
	Controller Class Summary
	Controller.Command Method
	Controller.ErrorLog Property
	Controller.Load Method
	Controller.PDb Property
	Controller.PDbNum Property
	Controller.PowerEnabled Property
	Controller.PowerState Property
	Controller.RecordButton Property
	Controller.ShowDialog Method - Basic Modes
	Controller.ShowDialog Method - Advanced Mode
	Controller.ShowDialogMCP Method
	Controller.SleepTick Method
	Controller.SoftEStop Property
	Controller.SystemMessage Method
	Controller.SystemSpeed Property
	Controller.Tick Property
	Controller.Timer Property
	Controller.Unload Method

	Exception Handling
	Exception Handling Summary
	Catch Statement
	End Try Statement
	Exit Try Statement
	Finally Statement
	Throw Statement
	Try..Catch..Finally..End Try Statements
	exception_object.Axis Property
	exception_object.Clone Method
	exception_object.ErrorCode Property
	exception_object.Message Method
	exception_object.Qualifier Property
	exception_object.RobotError Property
	exception_object.RobotNum Property
	exception_object.UpdateErrorCode Method

	File and Serial I/O Classes
	File and Serial I/O Classes Summary
	File.Copy Method
	File.CreateDirectory Method
	File.DeleteDirectory Method
	File.DeleteFile Method
	File.GetDirectories Method
	File.GetFiles Method
	New StreamReader Constructor
	streamreader_object.Close Method
	streamreader_object.Peek Method
	streamreader_object.Read Method
	streamreader_object.ReadLine Method
	New StreamWriter Constructor
	streamwriter_object.AutoFlush Property
	streamwriter_object.Close Method
	streamwriter_object.Flush Method
	streamwriter_object.NewLine Property
	streamwriter_object.Write Method
	streamwriter_object.WriteLine Method

	Functions
	Function Summary
	CBool Function
	CByte Function
	CDbl Function
	CInt Function
	CShort Function
	CSng Function
	CStr Function
	Fix Function
	Hex Function
	Int Function
	Rnd Function

	Latch Class
	Latch Class Summary
	latch_object.Angle Property
	Latch.Count Shared Property
	latch_object.ErrorCode Property
	Latch.Flush Shared Method
	latch_object.Location Method
	Latch.Result Shared Method
	latch_object.Signal Property
	Latch.ThreadEvent Shared Property
	latch_object.Timestamp Property

	Location Class
	Location Class Summary
	location_object.Angle Property
	location_object.Angles Method
	location_object.Clone Method
	location_object.Config Property
	location_object.ConveyorLimit Method
	Location.Distance Method
	location_object.Here Method
	location_object.Here3 Method
	location_object.Inverse Method
	location_object.KineSol Method
	location_object.Mul Method
	location_object.Normalize Method
	location_object.Pitch Property
	location_object.Pos Property
	location_object.PosWrtRef Property
	location_object.RefFrame Property
	location_object.Roll Property
	location_object.Text Property
	location_object.Type Property
	location_object.X Property
	location_object.XYZ Method
	location_object.XYZInc Method
	Location.XYZValue Method
	location_object.Y Property
	location_object.Yaw Property
	location_object.Z Property
	location_object.ZClearance Property
	location_object.ZWorld Property

	Math Class
	Math Class Summary
	Math.Abs Method
	Math.Acos Method
	Math.Asin Method
	Math.Atan Method
	Math.Atan2 Method
	Math.Ceiling Method
	Math.Cos Method
	Math.Cosh Method
	Math.E Method
	Math.Exp Method
	Math.Floor Method
	Math.Log Method
	Math.Log10 Method
	Math.Max Method
	Math.Min Method
	Math.PI Method
	Math.Pow Method
	Math.Sign Method
	Math.Sin Method
	Math.Sinh Method
	Math.Sqrt Method
	Math.Tan Method
	Math.Tanh Method

	Modbus Class
	Modbus Class Summary
	modbus_object.Close Method
	modbus_object.ReadCoils Method
	modbus_object.ReadDeviceID Method
	modbus_object.ReadDiscreteInputs Method
	modbus_object.ReadHoldingRegisters Method
	modbus_object.ReadInputRegisters Method
	modbus_object.Timeout Property
	modbus_object.WriteMultipleCoils Method
	modbus_object.WriteMultipleRegisters Method
	modbus_object.WriteSingleCoil Method
	modbus_object.WriteSingleRegister Method

	Move Class
	Move Class Summary
	Move.Approach Method
	Move.Arc Method
	Move.Circle Method
	Move.Delay Method
	Move.Extra Method
	Move.ForceOverlap Method
	Move.Loc Method
	Move.OneAxis Method
	Move.Rel Method
	Move.SetJogCommand Method
	Move.SetRealTimeMod Method
	Move.SetSpeeds Method
	Move.SetTorques Method
	Move.StartJogMode Method
	Move.StartRealTimeMod Method
	Move.StartSpeedDAC Method
	Move.StartTorqueCntrl Method
	Move.StartVelocityCntrl Method
	Move.StopSpecialModes Method
	Move.Trigger Method
	Move.WaitForEOM Method

	Networking Classes
	Networking Classes Summary
	New IPEndPoint Constructor
	ipendpoint_object.IPAddress Property
	ipendpoint_object.Port Property
	socket_object.Available Property
	socket_object.Blocking Property
	socket_object.Close Method
	socket_object.Connect Method
	socket_object.KeepAlive Property
	socket_object.Receive Method
	socket_object.ReceiveFrom Method
	socket_object.ReceiveTimeout Property
	socket_object.RemoteEndPoint Property
	socket_object.Send Method
	socket_object.SendTimeout Property
	socket_object.SendTo Method
	New TcpClient Constructor
	tcpclient_object.Client Method
	tcpclient_object.Close Method
	New TcpListener Constructor
	tcplistener_object.AcceptSocket Method
	tcplistener_object.Close Method
	tcplistener_object.Pending Property
	tcplistener_object.Start Method
	tcplistener_object.Stop Method
	New UdpClient Constructor
	udpclient_object.Client Method
	udpclient_object.Close Method

	Profile Class
	Profile Class Summary
	profile_object.Accel Property
	profile_object.AccelRamp Property
	profile_object.Clone Method
	profile_object.Decel Property
	profile_object.DecelRamp Property
	profile_object.InRange Property
	profile_object.Speed Property
	profile_object.Speed2 Property
	profile_object.Straight Property
	profile_object.Text Property

	Reference Frame Class
	RefFrame Class Summary
	refframe_object.ConveyorOffset Property
	refframe_object.ConveyorRobot Property
	refframe_object.Loc Property
	refframe_object.PalletIndex Property
	refframe_object.PalletMaxIndex Property
	refframe_object.PalletNextPos Method
	refframe_object.PalletOrder Property
	refframe_object.PalletPitch Property
	refframe_object.PalletRowColLay Method
	refframe_object.Pos Method
	refframe_object.PosWrtRef Method
	refframe_object.Text Property
	refframe_object.Type Property

	Robot Class
	Robot Class Summary
	Robot.Attached Property
	Robot.Base Property
	Robot.CartMode Property
	Robot.Custom Property
	Robot.DefLinComp Method
	Robot.Dest Property
	Robot.DestAngles Property
	Robot.Home Method
	Robot.HomeAll Method
	Robot.JointToMotor Method
	Robot.LastProfile Property
	Robot.MotorTempStatus Property
	Robot.MotorToJoint Method
	Robot.Payload Property
	Robot.RapidDecel Property
	Robot.RealTimeModAcm Property
	Robot.RestartBase Property
	Robot.RestartTool Property
	Robot.Selected Property
	Robot.Source Property
	Robot.SourceAngles Property
	Robot.SpeedAngles Property
	Robot.Tool Property
	Robot.TrajState Property
	Robot.Where Property
	Robot.WhereAngles Property

	Signal Class
	Signal Class Summary
	Signal.AIO Property
	Signal.DIO Property

	Statements
	Statements Summary
	Call Statement
	Case, Case Else Statements
	Class Statement
	Const Statement
	Delegate Statement
	Dim Statement
	Do...Loop Statements
	Else, ElseIF Statements
	End Statements
	Exit Statements
	For...Next Statements
	Function Statement
	Get Statement
	GoTo Statement
	If..Then...Else...End If Statements
	Loop Statements
	Module Statement
	Next Statements
	Property Statement
	ReDim Statement
	Return Statement
	Select...Case...End Select Statements
	Set Statement
	Sub Statement
	While...End While Statements

	Strings
	String Summary
	String.Compare Method
	string.IndexOf Method
	string.Length Property
	string.Split Method
	string.Substring Method
	string.ToLower Method
	string.ToUpper Method
	string.Trim Method
	string.TrimEnd Method
	string.TrimStart Method
	Asc Function
	Chr Function
	Format Function
	FromBitString Function
	Instr Function
	LCase Function
	Len Function
	Mid Function
	ToBitString Function
	UCase Function

	Thread Class
	Thread Class Summary
	New Thread Constructor
	thread_object.Abort Method
	thread_object.Argument Property
	Thread.CurrentThread Shared Method
	thread_object.Join Method
	thread_object.Name Property
	thread_object.Project Property
	thread_object.Resume Method
	Thread.Schedule Shared Method
	thread_object.SendEvent Method
	Thread.Sleep Shared Method
	thread_object.Start Method
	thread_object.StartProcedure Property
	thread_object.Suspend Method
	Thread.TestAndSet Shared Method
	thread_object.ThreadState Property
	Thread.WaitEvent Shared Method

	Vision Classes
	Vision Classes Summary
	vision_object.Disconnect Method
	vision_object.ErrorCode Property
	vision_object.Instance Property
	vision_object.IPAddress Property
	vision_object.Process Method
	vision_object.Result Method
	vision_object.ResultCount Method
	vision_object.Status Property
	vision_object.ToolProperty Property
	visresult_object.ErrorCode Property
	visresult_object.Info Property
	visresult_object.InfoCount Property
	visresult_object.InfoString Property
	visresult_object.InspectActual Property
	visresult_object.InspectPassed Property
	visresult_object.Loc Property
	visresult_object.Type Property

	XML Classes
	XML Classes Summary
	New XmlDoc Constructor
	xmldoc_object.CreateNode Method
	XmlDoc.DecodeEntities Shared Method
	xmldoc_object.DocumentElement Method
	XmlDoc.EncodeEntities Shared Method
	xmldoc_object.ErrorCode Property
	XmlDoc.LoadFile Shared Method
	XmlDoc.LoadString Shared Method
	xmldoc_object.Message Property
	xmldoc_object.SaveFile Method
	xmldoc_object.SaveString Method
	xmlnode_object.AddAttribute Method
	xmlnode_object.AddElement Method
	xmlnode_object.AddElementNode Method
	xmlnode_object.AppendChild Method
	xmlnode_object.ChildNodeCount Property
	xmlnode_object.Clone Method
	xmlnode_object.FirstChild Method
	xmlnode_object.GetAttribute Method
	xmlnode_object.GetAttributeNode Method
	xmlnode_object.GetElement Method
	xmlnode_object.GetElementNode Method
	xmlnode_object.HasAttribute Method
	xmlnode_object.HasChildNodes Property
	xmlnode_object.HasElement Method
	xmlnode_object.InsertAfter Method
	xmlnode_object.InsertBefore Method
	xmlnode_object.LastChild Method
	xmlnode_object.Name Property
	xmlnode_object.NextSibling Method
	xmlnode_object.OwnerDocument Method
	xmlnode_object.ParentNode Method
	xmlnode_object.PreviousSibling Method
	xmlnode_object.RemoveAttribute Method
	xmlnode_object.RemoveChild Method
	xmlnode_object.RemoveElement Method
	xmlnode_object.ReplaceChild Method
	xmlnode_object.SetAttribute Method
	xmlnode_object.SetElement Method
	xmlnode_object.Type Property
	xmlnode_object.Value Property

